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The purpose of this review is to bridge the gap between clinical and basic research

through providing a comprehensive and concise description of the cellular and molecular

aspects of cardioprotective mechanisms and a critical evaluation of the clinical evidence

of high-energy phosphates (HEPs) in ischemic heart disease (IHD). According to

the well-documented physiological, pathophysiological and pharmacological properties

of HEPs, exogenous creatine phosphate (CrP) may be considered as an ideal

metabolic regulator. It plays cardioprotection roles from upstream to downstream of

myocardial ischemia through multiple complex mechanisms, including but not limited to

replenishment of cellular energy. Although exogenous CrP administration has not been

shown to improve long-term survival, the beneficial effects on multiple secondary but

important outcomes and short-term survival are concordant with its pathophysiological

and pharmacological effects. There is urgent need for high-quality multicentre RCTs to

confirm long-term survival improvement in the future.

Keywords: high-energy phosphates, creatine phosphate, energy metabolism, ischemic heart disease,

cardioprotection

INTRODUCTION

The heart is more than a hemodynamic pump. It is also an organ that needs energy from
metabolism (1). In fact, altered cardiac metabolism is the primary and upstream pathophysiologic
manifestation of myocardial ischemia in humans (2). After coronary blood flow blockage, energy
metabolism disorder occurs within a few seconds, followed by mechanical, electrophysiological
and structural abnormalities of the myocardium. To date, standard treatments for ischemic heart
disease (IHD), including revascularization (thrombolysis, percutaneous coronary intervention,
and coronary artery bypass grafting), antithrombotic therapy (antiplatelet and anticoagulant
agents), stabilization/reversal of atherosclerosis progression (control of atherosclerotic risk factors),
and inhibition of myocardial remodeling (sympathetic and renin-angiotensin-aldosterone system
inhibitors), focus on coronary anatomy and on the results of changes in myocardial metabolism
rather than on the metabolic changes themselves (2–8). In addition, almost all of the above
treatments exert cardioprotection by directly or indirectly affecting heart rate, blood pressure or
myocardial perfusion. In contrast, myocardial energymetabolic therapy (MEMT) plays a protective
role by regulating the energy synthesis and utilization of myocardial cells without significant
impacts on heart rate, blood pressure and perfusion (9, 10). Because of residual cardiovascular risk,
MEMT is promisingly emerging as an upstream treatment for IHD (11).
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Since the discovery of creatine phosphate (CrP) in 1927 (12)
and adenosine triphosphate (ATP) in 1929 (13), the biochemical,
physiological, and pharmacological properties of high-energy
phosphates (HEPs) have been gradually uncovered. Unlike the
single metabolic process of glucose, free fatty acids or amino
acids, the pathways and regulations of HEPs biosynthesis and
degradation are involved in all metabolic substrates. Moreover,
due to the production and consumption of HEPs in different cells
and subcellular organelles, the transmembrane transport of HEPs
is also a complex process requiring the assistance of many special
transporters and catalytic enzymes (14). Therefore, although
HEPs have been known for nearly a 100 years, clinicians still have
a lot to learn. In recent years, a series of basic and clinical studies
have shown potent protection for IHD by exogenous HEPs (15–
19). These results have been confirmed in our laboratories (16,
20, 21).

Previous reviews focused either on the cellular and molecular
mechanisms of HEPs which is too complex for clinical
application (14, 22), or on presenting the clinical evidence
which in turn is too simple for clinicians to understand their
pathophysiological and pharmacological effects (15, 16). The
purpose of this article is to bridge the gap between clinical and
basic research.

OVERVIEW OF HIGH-ENERGY
PHOSPHATES AND THEIR
TRANSFORMATION

It is believed that energy would be concentrated in the chemical
bond containing phosphate groups, which yields energy upon
hydrolysis (23). Low-energy phosphates are usually linked to
phosphoester bonds, which will release 2 and 3 kcal/mol energy.
HEPs include a variety of phosphate compounds with energies
of hydrolysis higher than 7 kcal/mol (24). ATP and CrP are
considered to be the primary HEPs in human body. ATP is
the intracellular energy currency, majority of which is not
synthesized de novo but generated from adenosine diphosphate
(ADP) by oxidative phosphorylation (OP) of mitochondria and
cytoplasmic substrate phosphorylation (SP) (Figure 1) (25, 26).
Thus, at any given time, the total amount of ATP and ADP
remains fairly constant and recycled continuously (27). While,
CrP is the storage and transport carrier of energy, which serves
to transfer the HEP-bond from the site of ATP production to
the site of ATP utilization through “CrP shuttle” (Figure 1) (28–
35). Normally the total quantity of ATP in human body is about
0.1 mole (∼50 g). However, the energy used by human cells
requires the hydrolysis of 100–150 moles (around 50–75 kg) of
ATP daily (36). This means that each ATP molecule is recycled

Abbreviations: ADP, adenosine diphosphate; AGAT, L-arginine:glycine

amidinotransferase; AMP, adenosine monophosphate; APD, action potential

duration; ATP, adenosine triphosphate; CK, creatine kinase; CrP, creatine

phosphate; ERP, effective refractory period; GAA, guanidinoacetic acid; GAMT, S-

adenosyl-L-methionine:N-guanidinoacetate methyltransferase; HEPs, high-energy

phosphates; IHD, ischemic heart disease; KATP, ATP-sensitive K+ channels; LPLs,

lysophospholipids; MDA, malondialdehyde; MEMT, myocardial energy metabolic

therapy; MRS, magnetic resonance spectroscopy; OP, oxidative phosphorylation;

RCTs, randomized controlled trials; SP, substrate phosphorylation.

1,000–1,500 times during a single day. The ATP and CrP activity
combined, also referred to as the phosphagen system, is the most
rapidly available source of energy (37). Unfortunately, the energy
available from the store of phosphagen system is limited and can
provide energy for a few seconds of maximal activity.

CrP, also known as phosphocreatine or phosphorylated
creatine, is a small molecular compound with the formula of
C4H10N3O5P, having a molecular weight of 211 daltons. There
is one high-energy phosphate bond (N∼P) in the chemical
structure. As compared, ATP has a relatively more complex
molecular structure (C10H16N5O13P3), larger molecular weight
(507 daltons), and two high-energy phosphate bonds (O∼P).
However, the N∼P bond of CrP has more energy than either one
O∼P bond of ATP, 10.3 kcal/mol in comparison with 7.3 kcal/mol
(Figure 2) (38). Therefore, CrP can easily provide enough energy
and serve as a HEP-bond donor for ATP reconstitution through
“CrP shuttle” (28).

The contents of HEPs vary significantly in different tissues.
The highest levels of HEPs are found in muscle, heart,
brain, spermatozoa, and retina (14). The concentration and
distribution of HEPs in vivo can be determined non-invasively
by 31P-magnetic resonance spectroscopy (MRS) (39, 40). The
myocardial CrP/ATP ratio measured by 31P-MRS reflects the
viability and energy metabolic status of cardiomyocytes (41).
Over a wide range of cardiac workloads, the CrP/ATP ratio is
essentially invariant and consistent with a constant free ADP
concentration (42, 43). The cutoff point for CrP/ATP ratio (>1.60
and <1.60), which was established retrospectively and need to be
evaluated prospectively, is a stronger predictor of cardiovascular
death (44). The ratio is decreased upon myocardial ischemia
(45, 46).

THE BIOSYNTHESIS, DEGRADATION AND
TURNOVER OF ENDOGENOUS CREATINE
PHOSPHATE

The biosynthesis of CrP begins by formation of creatine
from three essential amino acids: arginine, glycine, and
methionine (Figure 3) (14). The entire glycine molecule is
incorporated whereas arginine furnishes its amidino group
to yield guanidinoacetic acid (GAA), which then methylated
at the amidino group to give creatine. It is postulated, but
largely accepted, that the main route of creatine synthesis
involves formation of guanidinoacetate in kidney, and
methylation in liver (47–49). These reactions are respectively
catalyzed by two rate-limiting enzymes, i.e., L-arginine:glycine
amidinotransferase (AGAT) and S-adenosyl-L-methionine:N-
guanidinoacetate methyltransferase (GAMT) (47–50). To
complete the phosphorylation process, creatine is then
transported to tissues such as muscle, heart, and brain by a
specific Na+- and Cl−-dependent plasma membrane transporter
(51). CrP production is catalyzed by creatine kinase (CK),
which is a dimer of M and B (M = muscle, B = brain) subunits
produced by different structural genes. Three isozymes are
possible: BB, MB, and MM. Cardiac muscle contains significant
amounts of CK-MB (25–46% of total CK activity, as opposed to
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FIGURE 1 | An overview of synthesis of ATP and “CrP shuttle” in cardiomyocyte. ATP is the intracellular energy currency, majority of which is synthesized from ADP by

oxidative phosphorylation of mitochondria (predominant) and cytoplasmic substrate phosphorylation (subordinate). CrP is the storage and transport carrier of energy,

which serves to transfer the HEP-bond from the site of ATP production to the site of ATP utilization through “CrP shuttle.” ADP, adenosine diphosphate; ATP,

adenosine triphosphate; CK, creatine kinase; CrP, creatine phosphate; HEP, high-energy phosphate; OP, oxidative phosphorylation; SP, substrate phosphorylation.

FIGURE 2 | Transfer of HEP-bond through “CrP shuttle.” There is one HEP-bond (N∼P) in the chemical structure of CrP. As compared, ATP has a relatively more

complex molecular structure and two HEP-bonds (O∼P). However, the N∼P bond of CrP has more energy than either one O∼P bond of ATP, 10.3 kcal/mol in

comparison with 7.3 kcal/mol. ATP, adenosine triphosphate; CrP, creatine phosphate; HEP, high-energy phosphate; 1G, Gibbs free energy change.
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FIGURE 3 | Major routes of biosynthesis, degradation and turnover of

endogenous CrP. The biosynthesis of CrP begins by formation of creatine from

three essential amino acids: arginine, glycine, and methionine. The main route

of creatine synthesis involves formation of GAA in kidney, and methylation in

liver. These reactions are, respectively, catalyzed by AGAT and GAMT. Then

creatine is transported to heart by a specific Na+- and Cl−-dependent plasma

membrane transporter. The degradation of creatine and CrP is an irreversible,

non-enzymatic cyclization to creatinine, which should be supplemented by diet

or de novo biosynthesis. ADP, adenosine diphosphate; AGAT,

L-arginine:glycine amidinotransferase; ATP, adenosine triphosphate; CK,

creatine kinase; CrP, creatine phosphate; GAA, guanidinoacetic acid; GAMT,

S-adenosyl-L-methionine:N-guanidinoacetate methyltransferase.

<5% in skeletal muscle), so that in myocardial infarction the rise
in serum total CK activity is accompanied by a parallel rise in
that of CK-MB (14, 52, 53).

Unlike the biosynthesis, the degradation of creatine and
CrP is an irreversible, non-enzymatic cyclization to creatinine
(Figure 3) (54, 55). Almost constant fraction of the body creatine
(1.1%/day) and CrP (2.6%/day) is converted into creatinine,
giving an overall conversion rate for total creatine pool (creatine
+ CrP) of∼1.7%/day (56).

For example, in a 70 kg man containing around 120 g of
creatine pool, roughly 2 g/day are converted into creatinine and
have to be replaced by creatine or CrP supplementation or from
de novo biosynthesis (14).

MYOCARDIAL METABOLIC CHANGES
DURING ISCHEMIA/REPERFUSION:
SUBSTRATES, PATHWAYS, METABOLITES,
AND PURINE NUCLEOTIDE CYCLE

Within a few seconds after coronary blood flow blockage, the
oxygenated hemoglobin in ischemic zone rapidly depletes. The
main pathway used to generate energy in myocardium changes
from aerobic oxidation of mitochondria to cytoplasmic anaerobic
glycolysis (Table 1) (57, 58). And the primary substrate of
myocardial energy metabolism also changes from free fatty acids

to glucose (Table 1) (57–61). However, the HEPs synthesized
by glycolysis are far from meeting the energy requirements
of heart. Under such condition, the ischemic myocardium
preferentially utilizes the energy contained in endogenous CrP,
followed by ATP, ADP, and adenosine monophosphate (AMP)
(Figure 4) (62–67). AMP can also be decomposed into adenosine,
hypoxanthine, etc. under the action of 5’-nucleotidase (Figure 4)
(62, 68). The above reaction ultimately leads to a decrease in
intracellular adenine nucleotide pool (ATP + ADP + AMP),
resulting in a significant reduction in high-energy phosphate
precursors. If the myocardium recover aerobic oxidation in a
short period of time, AMP can be reoxidized to ADP and ATP
to replenish energy. If not, it is no longer possible to reoxidize
AMP to ADP or ATP. Furthermore, the lactic acid and other
intermediate products produced by glycolysis accumulate in
cardiomyocytes (Figure 4) (57, 58). After 10min of ischemia, the
intracellular pH will drop to 5.8–6.0 (69, 70). The rate of ADP
rephosphorylation to ATP by anaerobic glycolysis is slowed down
by acidosis (71).

Secondary to the metabolic changes, myocardial
ischemia/reperfusion injuries occur as follows: intracellular
Ca2+ overload, accumulation of arrhythmogenic intermediates
and oxygen free radicals, myocardial membrane instability,
electrophysiological changes in cardiomyocytes, mitochondrial
damage, and platelet aggregation, etc (Figure 4).

PATHOPHYSIOLOGICAL AND
PHARMACOLOGICAL EFFECTS OF
EXOGENOUS CREATINE PHOSPHATE ON
MYOCARDIAL ISCHEMIA

The clinical effects of ATP in patients with cardiovascular
disorders have been evaluated in early studies (72–74).
Intravenous administration of ATP can interrupt the reentry
pathways through the atrial ventricular node and restore normal
sinus rhythm accompanied by relatively high incidences of
advanced atrioventricular block and other adverse reactions,
which makes paroxysmal supraventricular tachycardia the
primary cardiovascular indication (75). And it seems quite
paradoxical that oral administration of ATP may lead to a
progressive diminution of plasma ATP level (76). Furthermore,
exogenous ATP is a charged molecule containing three negative
charges that is not freely permeable through cell membranes
(77–79). In addition, there are enzymes that decompose ATP
on the surface of cell membrane, including ATPase, adenylate
kinase and AMP deaminase, which can split ATP into ADP,
AMP, adenosine, and inorganic phosphate (80, 81). Since the
first publication by Parrat and Marshall (82), CrP has been
substantially demonstrated to be effective in protection of
ischemic myocardium. The following we will focus on the
pathophysiological and pharmacological effects of exogenous
CrP, including but not limited to supplementing cellular energy.

Replenishment of Intracelluar ATP
It has been observed that the exogenous CrP could be
incorporated into intracellular ATP molecules and increase the
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TABLE 1 | Myocardial energy metabolism: source, process and site of ATP production.

Source of ATP

production

Pathway of

ATP

production

Oxygen

consumption

(per unit ATP)

Accumulation of

acid metabolites

Rate of ATP

production

Net ATP yield (per

unit substrate)

Site of ATP

production

CrP CrP ⇆ ATP

shuttle

None – Very fast 1 Cytoplasm

Glucose Anaerobic

glycosis

None + + + Fast 2 Cytoplasm

Glucose Aerobic

oxidation

Less – Moderate 38 Mitochondria

(predominant) and

cytoplasm

Free fatty acids Aerobic

oxidation

More – Slow Usually > 100

(depending on the

number of carbon

atoms in the molecule

of free fatty acid)

Mitochondria

(predominant) and

cytoplasm

ATP, adenosine triphosphate; CrP, creatine phosphate/.

FIGURE 4 | The primary metabolic changes and the secondary celluar injuries during myocardial ischemia/reperfusion. Ischemic myocardium preferentially utilizes the

energy contained in CrP, followed by ATP, ADP, and AMP. And AMP can be further decomposed into adenosine and hypoxanthine, which leads to a decrease in

intracellular adenine nucleotide pool. Furthermore, the lactic acid produced by glycolysis accumulate in cardiomyocytes, resulting intracellular acidosis. The loss of

HEPs eliminates three of the four mechanisms of cellular calcium homeostasis, leading intracellular Ca2+ overload. Mitochondrial sequestration, the remaining

mechanism, causes overloading of the mitochondria with Ca2+ and diminished capacity for oxidative phosphorylation. And overloaded intracellular Ca2+ induces the

conversion of xanthine dehydrogenase to xanthine oxidase. The latter can produce oxygen free radicals, which in turn oxidize the membrane phospholipids and

produce MDA, causing the membrane instability. In addition, intracellular accumulation of metabolic intermediates, including AMP, lactic acid, Ca2+, and H+, etc, may

activate membrane phospholipase to make cell membrane degrade to LPLs, which also contribute to myocardial membrane instability. Increased ADP can induce

platelet adhesion and aggregation. ADP, adenosine diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate; CrP, creatine phosphate; HEPs,

high-energy phosphates; LPLs, lysophospholipids; MDA, malondialdehyde.

tissue level of ATP (83). Although exogenous CrP uptake was
3–4 orders of magnitude lower than ATP conversion in the case
of normal cardiac work, it may be important in maintaining

subsarcolemmal pools of CrP or ATP (Figure 4) (35, 83).
The exogenous CrP uptake rate can be markedly increased
in hypokinetic segments of ischemic myocardium (35, 83–86).
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Low-dose CrP may promote intracellular ATP synthesis mainly
through substrate. After reaching a certain concentration of
10 mmol/L, it can significantly inhibit 5’-nucleotidase and
AMP deaminase, thereby maintaining the nucleotide pool level,
indicating that CrP does not only act as a energy substrate but
also a regulator able to bind to the active sites of the enzymes and
change their activity (62, 68, 87–90).

Attenuation of Intracellular Ca2+ Overload
in Cardiomyocytes
Normally, extracellular fluid has a concentration of Ca2+ 10,000
times higher than intracellular fluid (91). Furthermore, there
is an electrical force driving Ca2+ into the cell because of
the negative resting membrane potential (91, 92). However,
there is little leakage of Ca2+ into the cardiomyocyte except
during the action potential. Even the Ca2+ that enters the
cell during action potentials must be removed from the cell
otherwise an accumulation of Ca2+ would lead to cellular
dysfunction (92).Mainmechanismsmaintaining the intracellular
to extracellular concentration and charge gradients include:
(1) pumping Ca2+ out of the cytoplasm by the plasma
membrane Ca2+ ATPase (93), (2) exchange of Ca2+ for
Na+ driven by the intracellular to extracellular concentration
gradient of Na+ as a result of the plasma membrane Na+-
K+ ATPase (94), (3) sequestration of cytoplasm Ca2+ in
sarcoplasmic reticulum (SR) by the SR Ca2+ ATPase (95), and
(4) accumulation of intracellular Ca2+ by oxidation-dependent
calcium sequestration inside the mitochondria (96). The loss of
HEPs during ischemia eliminates three of the four mechanisms
of cellular calcium homeostasis (Figure 4). Mitochondrial
sequestration, the remaining mechanism, causes overloading
of the mitochondria with Ca2+ and diminished capacity
for oxidative phosphorylation (Figure 4) (97). Furthermore,
activation of phospholipases and protein kinases (98), production
of arachidonic acid (99, 100), and oxygen free radicals (101) are
all involved in the destruction of membrane integrity. This, in
turn, causes a massive and rapid influx of Ca2+ into the cell.

Several studies have shown that intracellular Ca2+ overload is
a major cause of myocardial cell damage and cardiac dysfunction
in IHD. CrP can reduce Ca2+ influx by providing energy
to ATP-dependent Ca2+ ATPase and Na+-K+ ATPase on the
plasma membrane (102, 103). At the same time, the Ca2+

ATPase activity on the sarcoplasmic reticulum is restored, and
Ca2+ enter the sarcoplasmic reticulum to avoid the myocardial
stiffness contracture (104). Furthermore, CrP binds tomembrane
phospholipids through zwitterionic interaction, which can
enhance membrane stability (105, 106). In addition, CrP can
also provide energy for the sliding of actin-myosin filaments,
promoting the rapid recovery of myocardial contractility (107).

Protection of Heart From Oxidative
Stress-Induced Myocardial Injury
And overloaded intracellular Ca2+ induces the conversion of
xanthine dehydrogenase to xanthine oxidase (108–111). The
latter can produce superoxide and xanthine from hypoxanthine
upon reperfusion (Figure 4) (112). Furthermore, more damaging

free radicals could be produced by the metal catalyzed Haber-
Weiss reaction (113–115). The large amount of oxygen free
radicals generated by the above reactions can in turn oxidize the
membrane phospholipids and producemalondialdehyde (MDA),
causing the membrane instability (Figure 4) (116). Zucchi et al.
(117) found that supplementation of exogenous CrP could
reduce the product of phospholipid peroxidation, MDA, by
inhibiting ADP/AMP degradation and Ca2+ accumulation in
cardiomyocytes. Myocardial peroxidation damage is alleviated
through all of the above mechanisms.

Stabilization of Membrane Structure
Maintaining the integrity of the phospholipid bilayer membrane
is a basic requirement for preserving overall cell viability.
Myocardial membrane instability due to the decrease of ATP
production and accumulation of acid metabolites plays a
key role in the pathogenesis of ischemia-reperfusion injury,
especially the electrophysiological manifestation of ischemia
(118). The possibility that lysophospholipids (LPLs) contribute
to myocardial membrane instability was first reported by Hajdu
(119). Normally their concentration is maintained very low, but
LPLs in sufficient quantities are potent detergents, which can
alter general properties of the membrane such as fluidity and
permeability (120). Furthermore, LPLs have been shown to affect
the activities of plasma membrane Na+-K+ ATPase (121). Upon
myocardial ischemia, intracellular accumulation of metabolic
intermediates, including AMP, lactic acid, Ca2+, and H+, etc,
may activate membrane phospholipase to make cell membrane
degrade to LPLs (Figure 4). At 8min after ischemia, a 60%
increase in LPLs levels occurred, which could either be reacylated
or transacylated to form precursor phospholipids or further
degraded, depending on the energy state of the cell (121–123).
Supplementation of exogenous CrP can provide energy to ATP-
dependent Ca2+ ATPase and Na+-K+ ATPase on the plasma
membrane and reduce the activation of anaerobic glycolysis,
which blocks the process of phospholipids degradation and
stabilizes the cell membrane. In addition, the integrity of the
mitochondrial structure during ischemia is the basis for oxidative
phosphorylation to synthesize ATP after reperfusion. CrP also
has protective effects on the mitochondrial membrane and its
oxidative phosphorylation function (124–126).

Broad Spectrum Antiarrhythmic Effects
Normally, the electrophysiological properties of cardiomyocytes
require cell membrane integrity and maintaining of intracellular
to extracellular concentration and charge gradients. Metabolic
changes after myocardial ischemia, including the decrease of
ATP production and accumulation of acid metabolites, lead
to decreased activity of ATP-dependent transport systems.
ATP-sensitive K+ channels (KATP), inactivated by normal
cellular ATP levels, will open and permit K+ to leave the cell
upon ischemia (127, 128). Furthermore, decreased activity of
Na+/K+-ATPase leads to extracellular accumulation of K+ and
inactivation of fast Na+ channels that are responsible for the
rapid depolarization (129). These mechanisms lead to a series
of electrophysiological changes in cardiomyocytes, including:
(1) the resting membrane potential and the action potential
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amplitude are significantly decreased; (2) the depolarization
speed is slowed down; (3) the action potential duration (APD) is
shortened; (4) the distance from the resting membrane potential
to the K+ equilibrium potential is increased; (5) the conduction
velocity rate is slowed down (130). All of the above changes
ultimately can contribute to arrhythmias.

Studies have shown that in myocardial ischemia and
reperfusion, CrP can play a broad spectrum antiarrhythmic
effects through several electrophysiological mechanisms,
including but not limited to ATP replenishment (131). Firstly,
by providing energy to ATP-dependent KATP channels and
Na+/K+-ATPase, exogenous CrP can reduce extracellular
accumulation of K+ and reactivate the fast Na+ channels,
suggesting a Class I antiarrhythmic role (132). Secondly,
by prolonging ventricular myocardium APD and effective
refractory period (ERP) under normoxic but not ischemic
conditions, exogenous CrP can prevent reentrant circuits
forming between the ischemic and non-ischemic zone and
play a class III antiarrhythmic role (132, 133). Thirdly, by
attenuating intracellular Ca2+ overload, exogenous CrP can
inhibit Ca2+-mediated activation of inward current channels
and triggered activity, exerting a class IV antiarrhythmic
role (134, 135). Furthermore, exogenous CrP can also play
an antiarrhythmic role by reducing the accumulation of
arrhythmogenic lysophosphoglycerides and increasing the
threshold of ventricular fibrillation (136–138).

Inhibiting Platelet Aggregation and
Improving Microvascular Function
It is known that ADP can not only induce platelet adhesion and
aggregation, but also amplify the aggregation effects of collagen,
thrombin and other inducers (Figure 4) (139, 140). ADP may
still affect the platelets when the arachidonate pathway is blocked
(141). Exogenous CrP can inhibit platelet aggregation and then
improve the microvascular function by rapid removal of ADP
and formation of ATP, which is an inhibitor of ADP-induced
platelet aggregation (19, 142).

CLINICAL APPLICATION OF EXOGENOUS
CREATINE PHOSPHATE IN ISCHEMIC
HEART DISEASE: EVIDENCE AND
EVALUATION

As mentioned above, energy metabolic abnormalities are
the upstream and primary pathophysiologic manifestation
of myocardial ischemia. Whereas, hemodynamic,
electrophysiological, morphological, clinical, biochemical
and imaging changes are the downstream, and secondary
consequence of myocardial energy metabolic abnormalities.
The depletion of HEPs is involved in both upstream and
downstream changes in myocardial ischemia. As demonstrated
in vitro and animal experiments, CrP was suggested to be
potentially beneficial in patients with acute and chronic
myocardial ischaemic injury through multiple mechanisms,
including but not limited to ATP replenishment. In fact,
results from a large number of clinical studies substantially
support that supplementation of exogenous CrP is associated
with improved short-term survival (143, 144), enhancement
of cardiac systolic and diastolic function (145–147), lower
peak CK-MB/troponin release (20, 148–152), reduction in the
incidence of major arrhythmias (144, 151, 153–156), etc. There
is still uncertainty, however, whether the administration of
exogenous CrP can improve long-term outcomes, rather than
just the secondary endpoints or pathophysiological process
of IHD.

LIMITATIONS AND PERSPECTIVES

According to a meta-analysis performed by Landoni et al.
(16), although more than 4,000 articles were screened,
only 12 studies comparing CrP with placebo or standard
treatment in patients with IHD met the design requirements
for controlled or case-matched clinical trials. Unfortunately,
there is insufficient statistical power to obtain results on
long-term survival due to the common limitations, including:

TABLE 2 | The indications, contraindications, side effects, and application instructions of CrP supplement for IHD.

Indications Contraindications and

relative contraindication

Side effects Instructions of administration and dosage

• Cardiac metabolic

abnormalities during

myocardial ischemia.

• Cardioprotection during

heart surgery.

• Chronic renal failure (in

high doses, for example,

daily dose of 5–10 g).

• Hypersensitivity to drug

components.

• Pregnancy.

• Allergic reactions.

• Lowering of arterial

pressure.

• Cardiac metabolic abnormalities during myocardial ischemia: 0–24 h—

intravenous bystry infusion of 2–4 g of CrP divorced in water for injections of

50ml with the subsequent intravenous infusion for 2 h 8–16 g in 250ml of 5%

of solution of glucose; during second day 2 times a day intravenously kapelno

(infusion duration of 30min) enter 2–4 g of the drug divorced in 50ml of water

for injections; during third day the drug is administered according to the same

scheme in a dose 2 g (if necessary treatment is continued for 6 days).

• Cardioprotection during heart surgery: intravenously kapelno (infusion duration

of 30min) 2 g of the drug divorced in 50ml of water for injections with

frequency rate of introduction 2 times a day. The course is begun in 3–5 days

prior to surgical intervention and continued 1–2 more days after its carrying

out. During operation it is necessary to add to composition of usual

cardioplegic solution in concentration 10 mmol/l just before introduction.

CrP, creatine phosphate; IHD, ischemic heart disease.
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(1) single center trial; (2) small sample size; (3) short-term
follow-up; (4) secondary end-points; (5) choice of standard
treatment rather than placebo as the comparator; (6)
administration routes and doses of CrP varying significantly
among the studies; (7) inadequate baseline information
or baseline bias (20, 143, 144, 146, 150, 151, 153, 156).
In addition, majority of the studies were published before
the “era of revascularization” and patients were recruited
from those undergoing non-revascularization therapy or
mixed, significantly different from the current practice
(143, 144, 146, 150, 153, 156).

At first glance, it is surprising that exogenous CrP has
not been shown to improve long-term survival in clinical
studies. In fact, there are two sides to the same issue. On
one side, CrP may plays extensive roles in every physiological
and pathophysiological process from upstream to downstream
of myocardial ischemia. On the other side, the myocardial
intracellular actions of CrP lack target and pathway specificity.
Furthermore, the uptake and distribution of exogenous CrP in
vivo lack of tissue and cell specificity. Such non-specificities lead
to uncertainties in the dominant pharmacological mechanism,
optimal administration route and dose, as well as treatment
window of exogenous CrP in individualized patients with IHD.
Moreover, the cardioprotection of exogenous CrP may be limited
by endogenous CrP levels. However, owing to the physiological,
pathophysiological, and pharmacological plausibility of its effects
and to the concordance of the beneficial effects of exogenous
CrP on multiple secondary but important outcomes and
short-term survival, there is urgent need for high-quality
multicentre randomized controlled trials (RCTs) to confirm
long-term survival improvement. In addition, further studies
are needed to investigate the causality between changes in
endogenous/exogenous CrP levels and IHD progression and
prognosis (157).

To better understand the pathophysiological and
pharmacological effects, we specified the context for all cited

researches as cell study (19, 23–27, 29–35, 48–54, 69, 70, 91–
103, 118, 128), animal study (12, 41, 42, 45, 46, 65, 66, 68, 71–
74, 76–78, 81–90, 99, 104, 111, 116–119, 129, 133–135) and
human study (15–18, 20, 21, 37–40, 44, 58, 108–110, 143–156).
Furthermore, we detailed the indications, contraindications,
side effects, and application instructions of CrP supplement in
Table 2.

CONCLUSIONS

The purpose of this article is to provide a comprehensive
and concise description of the cellular and molecular aspects
of cardioprotective mechanisms and a critical evaluation
of the clinical evidence of HEPs in IHD. According to
the well-documented physiological, pathophysiological and
pharmacological properties of HEPs, exogenous CrP may
be considered as an ideal metabolic regulator. It plays
cardioprotection roles from upstream to downstream of
myocardial ischemia through multiple complex mechanisms,
including but not limited to replenishment of cellular energy.
Although exogenous CrP administration has not been shown
to improve long-term survival, the beneficial effects on multiple
secondary but important outcomes and short-term survival are
concordant with its pathophysiological and pharmacological
effects. There is urgent need for high-quality multicentre RCTs
to confirm long-term survival improvement in the future.
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