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Abstract
Being able to interpret a model’s predictions is a crucial task in many machine learning applications. Specifically,
local interpretability is important in determining why a model makes particular predictions. Despite the recent focus on
interpretable Artificial Intelligence (AI), there have been few studies on local interpretability methods for time series
forecasting, while existing approaches mainly focus on time series classification tasks. In this study, we propose two novel
evaluation metrics for time series forecasting: Area Over the Perturbation Curve for Regression and Ablation Percentage
Threshold. These two metrics can measure the local fidelity of local explanation methods. We extend the theoretical
foundation to collect experimental results on four popular datasets. Both metrics enable a comprehensive comparison of
numerous local explanation methods, and an intuitive approach to interpret model predictions. Lastly, we provide heuristical
reasoning for this analysis through an extensive numerical study.

Keywords Interpretable AI · Time series forecasting · Multivariate · Regression · Local explanation

1 Introduction

As machine learning approaches become increasingly
capable and find more use cases in the society, machine
learning systems get more complex and less interpretable.
The typical approach to assess the model performance is to
measure the prediction performance (e.g. by mean squared
error and mean absolute error for regression tasks) over
a test set which does not consider the interpretability of
the underlying model. In the absence of an understanding
about why a model is making a decision, trusting a model
can lead to inaccurate and potentially dangerous decisions
[5]. However, in recent years, the value of interpretability
in machine learning has been recognized and gained
significant attention [1, 8, 14].

Higher interpretability has many benefits. First of all, it
can create trust by showing the different factors contributing
to the decisions [12]. Trust on the model in turn can lead
to a higher acceptance of machine learning systems [1].
Secondly, interpretability tools can reveal incompleteness in
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the problem formalization [8]. This information can then be
used for debugging purposes, and designing better models.
Finally, interpretability methods can be used to improve
our scientific understanding [8]. By analyzing how machine
learning models behave, we can enhance knowledge about
the subject matter [3].

Interpretability aims to better understand a black-box
model. Based on the scope of interpretability, we can
divide existing methods to two classes: global and local.
Global interpretability methods aim to explain the entire
logic and reasoning of a model. On the other hand, local
interpretability methods focus on explaining the reasons for
a specific decision [1].

Considering the large number of real-world applications
of multivariate time series forecasting models in areas such
as retail, medicine and economics, increased interpretability
of those models can have significant practical implications.
The majority of the works on this topic focuses on com-
puting (temporal) variable importance to gain insights about
datasets and models [22]. The variable importances can be
used for feature selection [27] and model compression [16].
For instance, the temporal variable importances can help
identifying which temporal features are more important to
the prediction model [15]. The two-sided local explana-
tion methods that are considered in this paper (e.g., SHAP
(Shapley Additive Explanations) [23]) can further demistify
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the prediction process. The local explanations provided by
these methods can be positive or negative depending on how
the features are affecting the predicted value whereas the
variable importance methods only measure a single positive
value which is indicative of the importance, not contribution
of the feature. For instance, Mokhtari et al. [29] use SHAP
to interpret financial time series models, where the contri-
bution scores provided by SHAP allow financial experts to
better understand the model’s decisions.

In this paper, we focus on local explanations for
multivariate time series forecasting, where multivariate
refers to multiple input features. For a selected sample
and forecasting horizon, a local explanation method can
be used to show the contribution of each input feature
to the prediction. Local explanations are two-sided which
means that they show both the magnitude and the directional
importance. A heatmap of feature importances for an
arbitrary sample in the Rossmann sales dataset is provided
in Fig. 1, which shows the positively and negatively
contributing features in yellow and blue, respectively. The
Rossmann sales dataset consists of the historical store sales
of more than a thousand drug stores. All samples from
the dataset contain a 30 day time window (x-axis) of 10
different features (y-axis). By analyzing local explanations
over the samples, we can observe how important different
features are to the model and how they are contributing
to the prediction. For instance, from Figure 1, it can be
inferred that the number of customers is the most important
feature for the local predictions (i.e., for the illustrated
sample). We can observe that the more recent values
of the customers feature have greater contribution to the
prediction than the older values for this particular time
window. Furthermore, examining the local explanations for
certain scenarios such as promotions can provide insights

about how the complex prediction model makes decisions.
These feature importances can also be averaged over
many samples to compute the global importance of each
feature.

Evaluation of local explanations is challenging but
necessary to minimize misleading explanations. Various
approaches have been used to evaluate local explanations,
from visual inspection [7] to measuring the impact of
deleting important features on the classifier output [34,
37]. In time series forecasting domain, there are only a
few studies focusing on interpretability of machine learning
models [36, 44]. Moreover, the literature mostly focuses on
the time series classification task [33]. On the other hand,
the research on interpretability of time series regression
models mainly focuses on intrinsic explainability [22],
and the absence of proper evaluation metrics for local
explanation methods can be deemed as one possible reason
for the lack of studies on interpreting time series regression
models. Interpreting time series regression models is
equally important to those of time series classification, as
these are highly relevant in many areas including electricity
load [32] and wind speed [31] forecasting, anomaly
detection [35], spectrum occupancy prediction [38], sales
forecasting [20], and more recently, for COVID-19 spread
forecasting [11, 18]. Considering the large number of
real-world applications, increased interpretability of these
models can be highly important for practitioners in many
domains. In this regard, our paper makes the following
contributions:

– Novel evaluation metrics for time series regression: We
introduce two novel evaluation metrics for comparing
local interpretability methods which can be applied on
any type of time series regression problems.

Fig. 1 Local explanation of a
random sample from the
Rossmann dataset obtained from
feature importances, where the
positively and negatively
contributing features are
highlighted in yellow and blue,
respectively. This sample shows
that the number of customers is
the most important feature for
the local predictions
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– Comparison of local explanation methods for multivari-
ate time series regression: We perform a comprehensive
comparison of three local explanation approaches (and
a random baseline) on four different datasets.

The remainder of the paper is organized as follows.
Section 2 provides discussion on the interpretability
methods for time series models, feature selection methods,
and evaluation of local explanations. Section 3 describes the
datasets, the forecasting models and the local explanation
methods used in our analysis. Section 4 presents the results
and the insights obtained from the numerical study. Finally,
Section 5 provides concluding remarks along with future
research directions.

2 Related work

Machine learning has been used to improve many products
and processes. On the other hand, a large barrier for
adopting machine learning in many systems has been
the black-box architecture of many machine learning
systems, which prompted a large number of studies on AI
interpretability in recent years [30].

Interpretable AI can be considered as a toolbox that
consists of many different strategies. While different tax-
onomies were proposed, we focus on the one proposed by
Adadi and Berrada [1] where the existing interpretable AI
approaches are classified under three criteria: complexity,
scope and model-related.

In terms of complexity, generally, a more complex model
is more difficult to interpret and explain [1]. The simplest
approach for interpretability is to use an intrinsically
explainable model that is considered interpretable due
to its simple structure, e.g., a decision tree. However,
these models usually do not perform as well as the more
complex ones, which lends credibility to the argument that
intrinsic explainability comes with a reduction in prediction
performance. An alternative approach to interpretability
is post-hoc interpretability, which is illustrated in Fig. 2.

In this approach, the explanation is generated after
model training. Most post-hoc interpretability methods
work by creating perturbations in the input. Then, the
method observes the model outputs for the modified
inputs. In some cases, the interpretability method can
also access to the model internals such as the weights
of a neural network. Finally, the interpretability model
uses the predictions and the model internals to reverse
engineer the process and generate an explanation. The trade-
off between the accuracy and the explanation fidelity is
the crucial difference between the instrinsic and post-hoc
interpretability methods. Intrinsically explainable models
can sacrifice prediction performance to provide accurate
and undistorted explanations. On the other hand, post-hoc
methods are limited in their capacity to approximate the
predictions of a complex model.

Although this approach might be computationally
expensive, post-hoc interpretability methods are typically
model-agnostic and many recent studies on interpretable AI
falls under this category [33, 36, 37].

In terms of scope, we focus on local interpretability
methods since they give a more detailed picture of the model
behavior. For some models, local explanations are relatively
easy to construct. For instance, in a Naive Bayes classifier,
we can use the class probabilities with respect to each
feature, and for a decision tree, we can use the path chosen
as the explanation. However, when there are many features,
even these models become increasingly complex and not
interpretable. Thus, post-hoc interpretability methods such
as LIME [40] and SHAP [23] can be used to explain
decisions of a model.

Another way to categorize interpretable AI methods
is based on whether they are model specific or model
agnostic. Model agnostic methods are usually preferable
as they can be applied to all types of machine learning
models. However, model specific methods can use inherent
properties of a machine learning model, and can be
computationally cheaper. Lundberg and Lee [23] developed
different SHAP algorithms for post-hoc interpretability.
While the proposed kernelSHAP method can be considered

Fig. 2 Post-hoc interpretability
approach. The explanation
method feeds modified input to
the trained model, and the model
predictions are used along with
model internals to reverse
engineer the process
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as a model agnostic interpretability method, the authors also
proposed two faster model-specific approximations of the
same approach for neural networks and tree-based models.

In the case of a large number of features, high-
dimensionality of the data might pose a problem as
the samples appear equidistant from each other. In such
situations, various feature selection methods can be used to
filter out some of the features which can result in accuracy
and speed improvements. Feature selection methods can
be divided into three categories: filter, wrapper, and
embedded. The filter methods determine the important
features only by looking at the dataset, not the model.
The Pearson correlation coefficient and Mutual Information
(MI) are the two commonly used filter-based feature
selection methods. These methods are usually fast, however,
they can only detect linear dependencies between the
features and the models’ output, and they do not take
into account feature interactions [6]. Wrapper methods
evaluate subsets of features, which allows them to detect
possible interactions among variables. On the other hand,
these methods are computationally expensive, and heuristics
are usually applied to reduce the computation time. Local
explanation methods can also be used as a wrapper feature
selection method. Marcı́lio and Eler [27] test the SHAP
method on high-dimensional UCI datasets, and find that it
achieves better results compared to three commonly used
feature selection algorithms. Lastly, embedded methods
aim to combine the advantages of both previous methods
by performing feature selection and prediction at the
same time. They find the best features during training,
which makes them model-specific. These methods can use
mutual information or model parameters to find the feature
importance and perform feature selection. For example,
different decision tree criteria can be used to perform feature
selection for decision tree models [13]. In neural network-
based models, pruning strategies can be applied to remove
insignificant node connections with very small weights [17].

Various approaches have been suggested to interpret and
understand the behavior of time series models. We focus
on post-hoc local explanation methods due to their more
detailed explanations and ease of use. Perturbation-based
approaches measure the feature importance by replacing
the input features with different values and observing
the change in the output without any knowledge of the
model parameters. These methods assign higher feature
importance to a feature which has the highest impact on
the output when removed. For time series prediction, how
to represent a removed feature can be tricky: replacement
with mean value and adding random noise are two
popular options [9]. Attribution methods explain models
by computing the contribution of each input feature to
the prediction. Attributions can be assigned using gradient-
based methods by measuring the change in the output

caused by changes in the input features [42]. SHAP [23]
is an attribution based method and has been previously
considered for time series classification [33].

Evaluation of local explanations remain largely unex-
plored for time series forecasting models. Even though it
is studied for computer vision [9] and natural language
[34], these methods cannot be directly applied to time series
prediction. In this paper, we propose two new evaluation
metrics that can be applied to all types of time series
forecasting models.

3Methodology

In this section, we describe the datasets, the forecasting
models and the local explanation methods used in our
analysis.

3.1 Datasets

We experiment with four multivariate time series datasets
whose characteristics are summarized in Table 1. We add
time covariates as features to the datasets with periodic
behavior to improve the prediction performance. We apply
min-max normalization on the target feature in all the
datasets to bound the output feature between 0 and 1.
To maintain generalizability, we use a representative set
of 100 randomly selected time series from the Electricity,
Rossmann and Walmart datasets to train the machine
learning models, whereas we use all six time series (i.e.,
subjects) from the Ohio dataset.

– Electricity: This dataset contains the hourly electricity
consumption of 370 households in total, and has been
used as a benchmark for many time series forecasting
models [22, 41]. In addition to two available features in
the dataset (hourly electricity consumption and house
id), we generate four covariates (hour of the day, day of
the week, week of the month, and month) to be included
in our analysis.

Table 1 Dataset specifications

Electricity Rossmann Walmart Ohio

# time series 370 1115 2660 6

Domain R+ N N R+
# features 6 10 10 4

# time covariates 4 3 4 0

Input window size 168 30 30 60

Prediction window size 12 12 6 6

Time Granularity Hourly Daily Weekly 5 minutes
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– Rossmann: The Rossmann store sales dataset is released
as part of a Kaggle competition in 2015.1 This is the
first competition where a neural network placed in
the top three for a time series forecasting task [2].
The neural network submission uses a global fully
connected neural network with the exogenous variables
provided in the competition. The dataset contains
sales data from 1,115 Rossmann stores, providing a
useful test bed for sales forecasting tasks. The dataset
contains eight features (store number, sales, customers,
open, promo, state holiday, school holiday and day of
week). In our analysis, we include two additional time
covariates, which are week of the month and month.

– Walmart: The Walmart store sales forecasting dataset
is released as part of a Kaggle competition in 2014.2

The dataset contains weekly store sales of 45 stores
and 77 departments. Multiple exogenous variables such
as temperature, fuel prices, CPI, unemployment, and
information on markdowns are available in the dataset.
The top performing solutions of the Kaggle competition
uses conventional time series methods with minor
tweaks which indicates that accurate modelling of the
seasonality and holiday patterns are very important.

Many forecasting models do not employ majority
of the exogenous variables including temperature, fuel
prices, CPI, unemployment and markdown since they
do not sufficiently improve the forecasting performance
[2]. The processed version of the dataset used in our
analysis contains ten features: Weekly Sales, Store Size,
Store Type, Temperature, Store Id, Department Id, day,
week of month, month, and year.

– Ohio: The OhioT1DM [28] dataset contains 8 weeks
worth of data collected from 6 type-1 diabetic patients
in 5 minute intervals. We use this dataset for the glucose
forecasting task, which involves three continuous
features (Glucose level, insulin level and CHO intake)
and one discrete feature (Subject).

3.2 Time series forecastingmodels

We consider three different machine learning models
for time series forecasting: Time Delay Neural Network
(TDNN) [46], Long Short Term Memory Network (LSTM)
[19], and Gradient Boosted Regressor (GBR) [10]. We
note that there are various other machine learning-based
time series forecasting methods, and we choose these three
(TDNN, LSTM, and GBR) as representative models. We
refer the reader to recent forecasting competitions for more
information on best performing time series forecasting

1https://www.kaggle.com/c/rossmann-store-sales
2https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting

methods [2, 25, 26]. There are various strategies for training
these models for time series forecasting [45]. Typically, the
multiple input multiple output (MIMO) strategy is used for
training the Neural Network models where a single model is
trained to predict multiple forecasting horizons. The MIMO
strategy is not directly applicable to GBR, and we use a
direct strategy for GBR where a separate model is trained to
predict each step in the forecasting horizon.

3.2.1 Time delay neural network (TDNN)

This neural network architecture is composed of an input
layer, a set of hidden layers and an output layer. The
topology of the network architecture is a feedforward neural
network. In a typical TDNN, a sigmoid activation is used
for each hidden unit, and a dropout layer can be added after
each hidden layer in the network. In our implementation,
we randomly initialize all the weights in the network to be
close to 0. Furthermore, we use Root Mean Squared Error
(RMSE) as our evaluation metric for the loss function, and
Adam optimizer [21] for backpropagation.

3.2.2 Long short termmemory network (LSTM)

LSTM networks are very popular in the literature for time
series analysis. They can capture long term dependencies
in sequential data, which is an important advantage
over TDNNs. LSTMs are a special type of Recurrent
Neural Networks; unlike TDNNs they are optimized using
backpropagation through time, which unrolls the neural
network and backpropagates the error through the entire
input sequence. This process can be slow, however, it allows
the network to take advantage of the temporal dependencies
between the observations.

Multiple LSTMs can be stacked to create a stacked
LSTM network. In stacked LSTMs, the hidden state of the
early LSTM layer is fed as an input to the following LSTM
layer. This approach can be useful as it allows hidden states
at different layers to operate at different time scales [39].
Dropout can be applied after each LSTM layer in a stacked
LSTM. We use a multi-layer stacked LSTM network for the
time series prediction task. Similar to the TDNN model, we
use RMSE as the evaluation metric, and Adam optimizer for
updating the weights of the network.

3.2.3 Gradient boosted regressor (GBR)

Gradient boosting is another popular model in contem-
porary machine learning. The simplest gradient boosting
algorithm consists of learning many weak learners through
functional gradient descent, and adding weak learners to a
base function approximator. This is in contrast to how neural
networks learn.
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Neural networks have risen to prominence largely due
to their universal function approximator properties. Neural
networks use activation functions for nonlinear function
approximation, and can be expressed in closed form as y =
F(x; �), where � represents the weights in the network, x
is a vector consisting of the regressor values, and y is the
target vector. Gradient boosting utilizes classification and
regression trees (CART) [4] instead of activation functions
to achieve its non-linearity. That is,

y = F(x; {βm, am}Mm=1) =
M∑

m=1

βmh (x; am) (1)

where h (x; am) represent the weak learners. In addition, the
number of learners is specified by a hyper-parameter, M .
By changing the atomic building block from neurons and
activation functions to decision trees, several modifications
are needed. Instead of performing classical gradient descent,
more complicated updates are required for training. These
updates are made through performing functional gradient
descent, and adding these functions to the base model.

In (1), the parameters am represent the weights in each
decision tree, and the parameter βm represents the weight
of the tree in the general model. The loss function can
be chosen according to the problem specifications, where
commonly used loss functions include the mean squared
loss (L2), mean absolute loss (L1) and logistic loss.

In our analysis, due to the multi-step forecasting nature
of the problem, we have trained numerous gradient boosting
regressors, each responsible for predicting a particular
forecasting horizon. We take the learning rate as 0.01, use
the least squares loss for the loss function, and Friedman
Mean Squared Error for the tree splitting criterion.

3.3 Local explanationmethods

A particular dataset can be defined as combination of J

features. Each feature j ∈ {1, . . . , J } has a corresponding
feature space, which we denote as Sj , with n permissible
values. That is,

Sj ≡ {s[j ]
1 , s

[j ]
2 , . . . , s

[j ]
n } = {s[j ]

i }ni=1

A discrete time series model, F, can be formulated as
yt = F(Xt ) + εt , where t represents the time step. The
explanatory variables are represented as Xt , the target vector
is yt , and the error in the model is εt . The target vector
yt produces a multi-horizon forecast of length τ0. For
simplicity of notation, we only consider one of these target

time horizons, at an arbitrary index τ ∈ {1, . . . , τ0}, in
below analytical expressions.

yt ≡ yt[τ ]

= Fτ (Xt ) + ε
[τ ]
t

≡ f (Xt ) + εt

We drop the index, τ , without loss of generality, and refer
to this by scalar notation yt . It is a simple extension to
perform a multi-step forecast. As well, we explicitly choose
to omit the time series index for notational convenience.
Note that our proposed approach naturally scales to multiple
time series.

We denote the explanatory variables in matrix form, to
allow for a sliding window of time slices, xt . The sliding
window is of length L. This can be seen as,

Xt = [xt−(L−1), xt−(L−2), . . . , xt ]
= {xj�,t }, j ∈ {1, . . . , J }, � ∈ {1, . . . , L}

where we describe an individual covariate at position (j, �)

in the full covariate matrix at time step t as xj�,t .
We take xt as an individual time slice. Each feature

relates to its feature set, represented by a superscript. That
is,

xt =

⎡

⎢⎢⎢⎢⎣

x
[1]
t

x
[2]
t
...

x
[J ]
t

⎤

⎥⎥⎥⎥⎦

For example, if our sets were

S1 ≡ {Apple, Banana, Tomato}
S2 ≡ {Red, Yellow, Green}
S3 ≡ {Ripe, Not Ripe}
S4 ≡ {Bruised, Not Bruised}
then we can represent a ripe tomato at time t as:

xt =

⎡

⎢⎢⎣

Tomato
Red
Ripe

Not Bruised

⎤

⎥⎥⎦

and a sample sliding window, Xt , for L = 3, can be obtained
as follows:

Xt =

⎡

⎢⎢⎣

Tomato Tomato Tomato
Green Red Red

Not Ripe Not Ripe Ripe
Not Bruised Not Bruised Not Bruised

⎤

⎥⎥⎦

In post-hoc local explanation methods, we can construct
an importance matrix �t = {φj�,t } to provide feature
importance scores for an instance Xt = {xj�,t } at a
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given time step t . A local explanation method aims to find
the importance of each covariate. We consider two local
explanation methods, namely, omission and SHAP, and
compare their performances against a random baseline.

3.3.1 Random baseline

In this approach, we randomly rank features from the most
important to the least important.

3.3.2 Omission

In omission, the estimated importance of a regressor in
question, xj�,t , is denoted as φj�,t . This importance score is
found by removing the regressor from the sliding window
matrix, which we represent as Xt\xj�,t

, and measuring the
effect. That is,

φj�,t = f (Xt ) − f (Xt\xj�,t
) (2)

Unlike a natural language processing problem where
we can easily remove words by replacing it with zeros,
we cannot just remove a feature with zeros without
consequences in the regression setting. If the features values
are replaced with zeros, then the interpretability method
will learn that when a covariate xj�,t is zero, it has no
contribution to the prediction [43]. Alternative approaches
can be replacing removed features with local mean, global
mean, local noise and global noise. Note that local refers
to a single sample and global refers to all the samples of
that feature in the dataset. On the other hand, adding local
and global noise can put extra peaks and slopes to the input,
which are usually important for the prediction. Thus, we
choose to test the omission method with local and global
mean replacement. The local mean calculates the average
value of a feature in a given window slice. This is done by
performing a column-wise average over a window in Xt (3).
The global mean is time invariant, and is the average feature
value of a given time series of length T (4).

Local Mean: μloc
j,t = 1

L

L∑

�=1

xj�,t (3)

Global Mean: μ
glo
j = 1

T

T∑

t=1

x
[j ]
t (4)

3.3.3 SHAP

SHAP is a post-hoc and model agnostic approach which
follows a very similar logic to many other popular
interpretability methods such as LIME [40] and DeepLIFT
[42]. All these methods learn a local linear model to
explain a more complex model. As such, these methods
are also referred to as additive feature attribution methods.

SHAP is the only local explanation method that satisfies
three desirable properties: local accuracy, missingness, and
consistency [23].

In our analysis, we use two SHAP based approaches,
DeepSHAP [23] and TreeExplainer [24], and two model-
specific methods that approximate SHAP values for
neural networks and tree-based models, respectively. We
experiment with DeepSHAP method for TDNN and LSTM
models, and TreeExplainer for the GBR models, and use the
shap library in Python [23] in our implementations.

3.4 Evaluationmetrics

We propose two new evaluation metrics for local explana-
tion methods in time series forecasting models. Specifically,
we can organize the top K features according to a local
explanation metric. These are sorted according to largest
φij,t values. When we take out the top K features from Xt ,
which, without loss of generality, is defined as Xt,\1:K . This
is a combination of defined covariates, xj�,t and random
covariates, rj�,t , sampled from the marginal distribution of
the respective feature space Sj . For example, a particular
model may have a window of length L = 2 with three
features at each time slice, J = 3. Then, a local explana-
tion model determines the importance of variables φt , where
φ12,t > φ31,t > φj�,t ∀(j, �) /∈ {(1, 2), (3, 1)}. We repre-
sent the removal of the top two most important features (i.e.,
(j = 1, � = 2) and (j = 3, � = 1)) as

Xt,\1:2 =
⎡

⎣
x11,t r12,t

x21,t x22,t

r31,t x32,t

⎤

⎦

Due to the stochastic nature of this process, in order to
perform the feature ablation, we need to collect the expected
value of the ablated feature. We represent this as Er [·].

We next define two evaluation metrics to evaluate the
local fidelity of local explanation methods. Local fidelity is
an important measure for explanation methods. It evaluates
the level of alignment between the interpretable model
and the black-box model [14]. Local states that we look
for this alignment is the neighborhood of an instance.
Local fidelity can be measured by k-ablation methods [43],
where we delete features in the order of their estimated
importance for the prediction. Nguyen [34] uses two metrics
to measure local fidelity: Area Over the Perturbation Curve
(AOPC) and Switching Point (SP). However, similar to
other existing evaluation methods, AOPC and SP are only
used for classification tasks.

To measure local fidelity for a multivariate time series
forecasting task, we define two new metrics: AOPCR and
APT. These metrics can be considered as variants of AOPC
and SP, and they are specifically designed for evaluating
interpretable AI methods for time series forecasting task.
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AOPCR and APT measure the local fidelity in two different
ways. AOPCR measures the effect of removing the top K

features, and APT measures the percentage of features that
need to be removed to pass a certain threshold. AOPCR
focuses on a small percentage of the most important features
whereas APT usually requires the removal of a higher
percentage of features.

3.4.1 Area over the perturbation curve for regression
(AOPCR)

The area over the perturbation curve for regression at time
horizon τ , denoted as AOPCRτ , is obtained as

AOPCRτ = 1

K

K∑

k=1

Fτ (Xt ) − Fτ (Xt,\1:k) (5)

Then, the total area over the perturbation for regression is
the average of all the time steps τ = 1, . . . , t0, where

AOPCR = 1

t0

t0∑

τ=1

AOPCRτ (6)

In its current state, AOPCR introduce random variables
due to the feature removal procedure. In order to explicitly
calculate AOPCR and AOPCRτ , we collect the expected
value of the ablated features, and compute AOPCRτ with
this expected value, denoted by ÂOPCRτ . That is,

̂AOPCRτ = Er [AOPCRτ ] (7)

= 1

K

K∑

k=1

Fτ (Xt ) − Er

[
Fτ (Xt,\1:k)

]
(8)

where the source of randomness, r , is the randomly drawn
covariates, rj�,t . Similarly, ÂOPCR = Er [AOPCR].

3.4.2 Ablation percentage threshold (APT)

APT provides an alternative way to measure local fidelity.
In classification, the switching point [34] is defined as the
percentage of features that needs to be deleted before the
prediction switches to another class. For regression, we can
define the switching point as a point above and below the
original prediction by a predefined threshold distance.

In this approach, we take all J features and sort them by
importance. Then, we remove K features from the top or
the bottom, stopping when the prediction changes by a pre-
defined factor, α. The percentage of features that need to be
removed until the prediction passes the threshold is reported
as the APT score at the particular time step. A lower APT
score means a lower percentage of features has to be deleted
to pass the threshold, which shows a higher local fidelity.

We define APT at time horizon τ with significance factor
α as follows.

APTτ,α = arg min
k∈{1,...,J }

k

J
(9)

such that: Fτ (Xt )(1 + α) > Fτ (Xt,\1:k) (10)

Note that in order find the lower bound significance thresh-
old, α needs to be set to a negative number. This represents
when a predicted value has gotten significantly smaller
due to feature removal. The total ablation percentage thresh-
old is a simple average over the time index:

APTα = 1

t0

t0∑

τ=1

APTτ,α (11)

Finally, to convert the theoretical metric, APTα , into an
experimental metric, we take the expected value, ÂPTα =
Er [APTα]

3.5 Experimental setup

In our numerical experiments, we consider four diverse
datasets with different characteristics in terms of size,
and observed seasonality/trends among others. We use
a sliding window method for framing the datasets, and
employ a 60-20-20% train-validation-test split where the
last 20% of the sliding windows are added to the test set.
Input window size (i.e., look back window) and prediction
window size for each dataset are provided in Table 1.
We perform a detailed hyperparameter tuning for all three
models using a grid search approach, where we consider the
hyperparameter values given in Table 2. For hyparameter
tuning, the models are trained on the training set and
evaluated on the validation set. Afterwards, the train and
validation datasets are combined and the dataset-model
pairs with the best hyperparameters are retrained using the
combined dataset and evaluated on the test set. The best
performing hyperparameters for each dataset-model pair are
shown in Table 3. For the TDNN and LSTM models, we
experiment with different number of layers, hidden units
and dropout rates. For the LSTM model, when multiple
layers are stacked, each LSTM layer returns its hidden states

Table 2 The hyperparameter tuning search space

Model Search space

LSTM/TDNN # of layers: [1, 2, 3, 4],

# hidden units: [16, 32, 64, 128],

dropout rate: [0. 0.2, 0.5]

GBR # of trees: [10, 100, 200],

max depth: [2, 3, 4, 5],

min samples split: [2, 5, 10, 15]
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Table 3 The hyperparameter values (LSTM/TDNN: {# of layers, # of
units, dropout rate}, GBR: {# of trees, max depth, min samples split})
Model Hyperparameters

TDNN Electricity: {1,16,0}, Rossmann: {2,64,0},
Walmart: {3,128,0.2}, Ohio: {3,32,0},

LSTM Electricity: {1,128,0}, Rossmann: {2,128,0.2},
Walmart: {1,128,0}, Ohio: {3,32,0},

GBR Electricity: {200,5,5}, Rossmann: {100,4,10},
Walmart: {100,4,15}, Ohio: {200,5,15},

instead of its output to the next layer. For the GBR models,
we test three important hyperparameters which are the total
number of tress in the ensemble (# of trees), the number of
leaves in each tree (max depth) and the minimum number
of samples required to split an internal node (min samples
split).

For the AOPCR and APT metrics, we estimate the
expected values of the metrics by taking numereus Monte
Carlo samples. The ablated features are randomly replaced
with in-sample values, proportional to their distribution.

Any biasing choice in the design of the experiment can be
a threat to the external validity. To evaluate the explanation
methods, we arbitrarily choose a K value and a threshold
value for AOPCR and APT methods, respectively. A very
small value can make the AOPCR and APT methods too
sensitive and make the resulting scores incomparable. Thus,
we found a K value of 10 for AOPCR to be suitable for the
analysis. Additionally, for APT, a very large value can make
it impossible for an ablated sample to pass the threshold and
again result in incomparable scores. For the threshold value
in APT, we experimented with multiple values, and found
that 10% is an ideal value for comparing different methods
and models for all the datasets.

In order to reduce the randomness in the evaluation
metrics, we added an early stopping condition. Once the
margin of error for the ÂOPCR (or ÂPT) statistic was less
than 0.05%, with 95% confidence (assuming a Gaussian
distribution of the statistic), we ceased taking more samples.
This was a natural stopping condition, which provided
stable results.

A summary statistic can often contain a threat to the
conclusion validity. In evaluations, we need to take the
average of the scores over Monte Carlo samples and
forecasting horizons, t0. However, since the important
features for the model can vary over τ ∈ {1, . . . , t0}, the
scores can also vary across the same interval. Therefore,
we compute the confidence intervals separately for each
forecasting horizon. Once every forecasting horizon lies in
a tolerable confidence interval, the scores are first averaged
over Monte Carlo samples and then over t0.

4 Results

We perform various numerical experiments to illustrate the
role of proposed evaluation metrics for interpreting time
series forecasting models. We first discuss the predictive
performances of the considered time series forecasting
models. Then, we compare different explanation methods
for these models using our evaluation metrics. Next, we
examine the predictive power of the identified features by
only considering those for model training, which further
provide evidence on the usefulness of the explanation
methods and the evaluation metrics. Finally, we provide our
observations on the sensitivity of the local fidelity metrics
with respect to the model parameters.

4.1 Model performances

We compare the performance of the three models (LSTM,
TDNN and GBR) over four datasets (Electricity, Rossmann,
Walmart and Ohio). We use Normalized Root Mean
Squared Error (NRMSE) and Normalized Deviation (ND)
to assess the predictive performance, which can be obtained
as

NRMSE(y, ŷ) =

√
1
N

N∑
i=1

(ŷi − yi)2

ymax − ymin
,

ND(y, ŷ) =

N∑
i=1

|ŷi − yi |
N∑

i=1
|yi |

(12)

NRMSE, a popular error measure for evaluating time series
models, can be particularly preferred when outliers are
rare and not important to the user [41]. In NRMSE, we
choose the spread as the difference between the maximum
and the minimum value of the training dataset (ymax −
ymin). However, this error measure may not be an accurate
representation of the model performance when there are
large scale differences between multiple time series in
the datasets. Thus, we consider a second error measure,
ND, which can account for the scale differences as the
differences are divided by the true values. Table 4 provides
the summary statistics on model performances, including
mean NRMSE and ND values, along with the standard
deviation (std) and 95% confidence intervals (CIs) around
the calculated values.

Overall, LSTM and GBR models perform significantly
better than the TDNN models considering both NRMSE
and ND values. GBR consistently performs the best,
whereas LSTM is better than the TDNN models for all the
datasets except the Electricity dataset. Note that the clear
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Table 4 Comparison of TDNN,
LSTM and GBR models on the
Electricity, Rossmann, Walmart
and Ohio datasets

Dataset Model NRMSE ND

Mean std CI Mean std CI

Electricity TDNN 0.0469 0.0161 [0.0465, 0.0473] 0.0868 0.0436 [0.0857, 0.0878]

LSTM 0.0501 0.0147 [0.0497, 0.0504] 0.0936 0.0429 [0.0926, 0.0947]

GBR 0.0426 0.0161 [0.0422, 0.0430] 0.0752 0.0413 [0.0743, 0.0762]

Rossmann TDNN 0.1545 0.0062 [0.1542, 0.1549] 0.2972 0.0078 [0.2968, 0.2976]

LSTM 0.1361 0.0080 [0.1357, 0.1365] 0.2500 0.0063 [0.2496, 0.2503]

GBR 0.1264 0.0077 [0.1260, 0.1269] 0.2062 0.0066 [0.2059, 0.2066]

Walmart TDNN 0.0225 0.0061 [0.0221, 0.0228] 0.1422 0.0174 [0.1412, 0.1432]

LSTM 0.0192 0.0020 [0.0191, 0.0193] 0.1393 0.0197 [0.1382, 0.1405]

GBR 0.0189 0.0033 [0.0187, 0.0191] 0.1085 0.0099 [0.108, 0.1091]

Ohio TDNN 0.0531 0.0169 [0.0528, 0.0534] 0.0832 0.0303 [0.0828, 0.0837]

LSTM 0.0377 0.0133 [0.0375, 0.0379] 0.0547 0.0224 [0.0544, 0.0551]

GBR 0.0367 0.0130 [0.0365, 0.0369] 0.0526 0.0213 [0.0522, 0.0529]

performance ranking of the three prediction models (e.g.,
TDNN ≺ LSTM ≺ GBR) is useful for understanding the
link between the model performance and the interpretability.
Furthermore, we observe that the error rates change
considerably by the dataset, and the models perform the
best for the Electricity and Ohio datasets, and worse for
the Rossmann dataset. Interestingly, there is a significant
difference between NRMSE and ND values for the Walmart

dataset, which is possibly due to large fluctuations in values
in the Walmart dataset.

We provide illustrations of the predictions for these three
models on randomly sampled time series from each dataset
in Fig. 3. Each background color on the figures corresponds
to a separate prediction window. We note that all three
models are able to generate conformal predictions, and
capture the trends for the provided samples.

Fig. 3 Visualization of models’
predictions on random time
series samples. Each
background color corresponds to
a separate prediction window.
Each model generates
predictions that can capture the
trends for the provided sample

4736 O. Ozyegen et al.



4.2 Evaluation of local explanations

We experiment with three AI interpretability/explanation
methods (Omission (Global), Omission (Local), SHAP)
and a random baseline to examine the three time series
forecasting models. We repeat this analysis for all four
datasets, and compare the performances of the explanation
methods using AOPCR (see Table 5) and APT (see Table 6)
metrics.

First, we compare the explanation methods for each
model. For the GBR model, SHAP performs significantly
better in all four datasets considering both AOPCR and APT
metrics. Thus, the results suggest that SHAP is easily able to
identify the important features in the GBR model, and works
well for explaining the tree-based models. For the TDNN
model, the global omission and SHAP methods perform
relatively similar and better than the local omission method.
Considering the computational burden, we recognize that
global omission might be preferrable over SHAP due to its
simplicity without loss of accuracy. For the LSTM model,
overall, we make similar observations to those of TDNN,
where the global mean replacement and SHAP methods
perform better than the local mean replacement, except for
one case for the Walmart dataset, where APT values show

that local mean replacement performs the best to explain the
positive contributions.

Second, we compare the explanation methods indepen-
dent of the machine learning models. As expected, ran-
dom explanations (e.g., randomly selecting features to be
removed) lead to the worst scores in almost all cases. In fact,
the APT scores can be high for random explanations, even
close to 100%. Note that, this is observed because, for a
given sample, if all the features are removed and the predic-
tion does not pass the threshold, the APT scores of 100% are
assigned. However, in some cases (e.g., for the Walmart and
Ohio datasets), the APT scores for local omission is higher
than the random baseline. In APT scores of the Walmart
dataset, we observe that the scores vary significantly for the
local omission where it ranks first for positive case of the
LSTM model but performs worse than the baseline in other
cases. This result might indicate that local mean replacement
is not a reliable baseline for omission methods. Mujkanovic
[33] makes a similar observation, and suggests that global
mean replacement is a better alternative to local mean
replacement since it removes the most information while
inserting the least accidental structure. Global omission
method outperforms the local omission in almost all of the
cases, which indicates that global omission is the preferred

Table 5 AOPCR scores for the
electricity and Rossmann
datasets

TDNN LSTM GBR

Model Positive Negative Positive Negative Positive Negative

(a) Electricity dataset

Random 0.00022 0.00002 0.00004 0.00004 0.00017 0.00068

Omission (Global) 0.15613 0.14029 0.06432 0.07810 0.05870 0.06287

Omission (Local) 0.13386 0.12560 0.05460 0.06593 0.04424 0.05008

SHAP 0.16119 0.16057 0.07766 0.08101 0.06594 0.07173

(b) Rossmann dataset

Random 0.00056 0.00018 0.00043 0.00069 0.00081 0.00080

Omission (Global) 0.05246 0.04907 0.05007 0.07525 0.06415 0.09736

Omission (Local) 0.03819 0.03595 0.03240 0.06572 0.05992 0.09013

SHAP 0.10266 0.09392 0.03066 0.06672 0.07623 0.11258

(c) Walmart dataset

Random 0.00614 0.00625 0.00283 0.00303 0.00138 0.00168

Omission (Global) 0.17907 0.23159 0.23491 0.28617 0.24000 0.25960

Omission (Local) 0.08063 0.07464 0.13248 0.11156 0.06275 0.03772

SHAP 0.20461 0.24236 0.23484 0.28956 0.25040 0.32470

(d) Ohio dataset

Random 0.00609 0.00504 0.00009 0.00052 0.00004 0.00056

Omission (Global) 0.12362 0.07904 0.07872 0.08554 0.01110 0.01579

Omission (Local) 0.00619 0.00739 0.02109 0.01952 0.00591 0.01059

SHAP 0.12235 0.07701 0.07930 0.08624 0.01261 0.01773

Higher values show higher local fidelity. Best method in each column is in bold
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Table 6 APT % scores for the
Electricity and Rossmann
datasets

TDNN LSTM GBR

Model Positive Negative Positive Negative Positive Negative

(a) Electricity dataset

Random 0.192 0.241 0.604 0.557 0.708 0.568

Omission (Global) 0.002 0.003 0.013 0.019 0.328 0.306

Omission (Local) 0.002 0.003 0.050 0.026 0.411 0.368

SHAP 0.002 0.002 0.008 0.014 0.142 0.136

(b) Rossmann dataset

Random 0.316 0.416 0.547 0.545 0.597 0.580

Omission (Global) 0.158 0.286 0.103 0.172 0.231 0.348

Omission (Local) 0.191 0.327 0.219 0.230 0.260 0.376

SHAP 0.052 0.135 0.184 0.224 0.150 0.214

(c) Walmart dataset

Random 0.022 0.124 0.025 0.128 0.055 0.123

Omission (Global) 0.004 0.014 0.015 0.033 0.027 0.075

Omission (Local) 0.005 0.029 0.005 0.060 0.087 0.150

SHAP 0.004 0.012 0.010 0.025 0.031 0.042

(d) Ohio dataset

Random 0.365 0.731 0.716 0.699 0.977 0.941

Omission (Global) 0.056 0.121 0.311 0.275 0.949 0.870

Omission (Local) 0.490 0.701 0.640 0.563 0.961 0.892

SHAP 0.060 0.127 0.321 0.266 0.933 0.847

Lower percentage shows higher local fidelity. Best method in each column is in bold

option as a local explanation method for time series fore-
casting. In general, SHAP is the best approach to interpret
the model predictions, which is followed by the global
omission method. This observation is intuitive since SHAP
method is more complex and has the ability to account
for the interactions between the features unlike the omis-
sion methods. However, the results also indicate that, it can
perform equally or worse than simpler approaches in select
examples, which shows that there might not be a uniformly
superior explanation method for time series forecasting.

Lastly, we compare the evaluation metrics. AOPCR
and APT give two different views on local fidelity. Our
experiments show that these local fidelity scores do not have
to correlate, therefore, each method should be used based
on the intended experiment. For instance, if the objective
is to correctly identify the importance of a predetermined
number of top features, AOPCR should be used.

In contrast, if the objective is to examine the general
explainability of the model, APT could be preferrable.

4.3 Impact of Feature Selection

For further validation of the explanation methods (e.g.,
Omission and SHAP) and the interpretability performance

metrics (i.e., AOPCR and APT), we retrain the models
only with the top 10 most significant features (which is
an arbitrarily selected number of features) identified by the
local explanation method. Note that the number of features
considered in a time series forecasting task is dependent
on standard features (e.g., Promo in Rossmann dataset) as
well as sliding (input) window size (e.g., 30 in Rossmann
dataset). All such features in the datasets have actual
meanings (e.g., see Fig. 1). For example, “Promo-1” feature
in the Rossmann dataset corresponds to whether there was
an actual promotion on the day before the first prediction.

For this experiment, the best performing explanation
method (SHAP) and time series forecasting model (GBR)
are used. SHAP is then compared with three alternative
feature selection methods, namely, Mutual Information, F
Statistic and Tree (Gini) Importance. Table 7 shows the
NRMSE and ND error on all four datasets for the GBR
model when it is trained with all the features, and only
with the 10 most significant features determined by the
feature selection methods. The results show that SHAP
performs consistently well as a feature selection method
across different datasets. Moreover, we observe that using a
fraction of the features leads to significant savings in terms
of model training times.
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Table 7 Performance of the
GBR model trained with all
available features and only
with the top 10 most significant
features determined by
different feature importance
assessment strategies

Dataset Model NRMSE ND Time (sec)

Mean std Mean std

Electricity Full 0.0426 0.0161 0.0752 0.0414 3750

Mutual Information 0.0494 0.0183 0.0852 0.0464 78

F Statistic 0.0498 0.0184 0.0856 0.0465 83

Tree Importance 0.0455 0.0166 0.0800 0.0428 79

SHAP 0.0449 0.0166 0.0788 0.0423 83

Rossmann Full 0.1264 0.0077 0.2062 0.0066 131

Mutual Information 0.1361 0.0070 0.2276 0.0061 10

F Statistic 0.1317 0.0077 0.2151 0.0045 11

Tree Importance 0.1402 0.0078 0.2275 0.0055 10

SHAP 0.1343 0.0077 0.2196 0.0060 11

Walmart Full 0.0189 0.0033 0.1086 0.0099 152

Mutual Information 0.0304 0.0217 0.1268 0.0215 17

F statistic 0.0368 0.0321 0.1396 0.0371 17

Tree importance 0.0220 0.0069 0.1196 0.0106 16

SHAP 0.0265 0.0143 0.1219 0.0135 17

Ohio Full 0.0367 0.0130 0.0526 0.0213 2455

Mutual Information 0.0370 0.0127 0.0527 0.0213 112

F statistic 0.0370 0.0126 0.0527 0.0212 109

Tree importance 0.0371 0.0126 0.0527 0.0211 109

SHAP 0.0373 0.0129 0.0529 0.0212 112

Sample predictions of the GBR model that uses top 10
features (determined by SHAP) and all the features are
illustrated in Fig. 4, where the identical random samples in
Fig. 3 are used for consistency. GBR produces a slightly
worse accuracy when only a fraction of the features are used
on all four datasets. These results help further validating
the ability of the local explanation method to find the
most significant features. In addition, we observe that local
explanations can potentially be used as a feature selection
method to find the most useful features in a given dataset.

We also provide the normalized global feature impor-
tances as a heatmap for the Rossmann dataset in Fig. 5
as a representative example. We rank the features using
four methods, namely, Mutual Information, F-Statistic, Tree
Importance and SHAP. Mutual Information and F-Statistic
are popular filter-based feature selection methods that mea-
sure the importance of features independent of the machine
learning model used for prediction. Tree Importance method
calculates the feature importance values as the decrease in
node impurity weighted by the probability of reaching that
node, where each node is associated with a feature, and
probability value is obtained as the ratio of instances reach-
ing the node divided by total number of instances. Finally,
SHAP computes a local explanation for each sample in the
dataset. These features are then averaged to obtain the global

feature importances. Note that, we normalize these values
to suppress the time index for the purpose of providing
more intuitive results over standard features. Three of the
methods find the time series feature (Series) to be the most
important. All methods assign low importance to the Store
feature and holiday related features. This is reasonable since
these features themselves have very low predictive ability.
Overall, we observe that there is a high level of agree-
ment between Tree Importance (tree imp) and SHAP, with
the time series (Series) feature being the most important in
both cases, which is followed up by the “weekofthemonth”
feature. Other methods (i.e., Mutual Information and F-
Statistic) provide somewhat conflicting feature importance
values. However, inherent correlations between the features
must also be taken into account when assessing the impact
of feature selection on the model performance.

4.4 Sensitivity analysis

We next measure the sensitivity of the local fidelity
(evaluation) metrics with respect to the time series
forecasting model parameters. First, we retrieve the top
three LSTM and GBR models for each dataset after the
hyperparameter tuning. These models are selected based
on the NRMSE metric. Then, SHAP explanations are
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Fig. 4 Visualization of
predictions for the GBR model
trained on all available features
and only with the top 10 most
significant features determined
by the SHAP method

generated for each model. After that, the AOPCR and APT
scores are calculated using the local explanations in order
to measure the sensitivity of the local fidelity metrics with
respect to the model parameters.

Figure 6 shows that, for local interpretability methods
such as SHAP, the effectiveness of the method changes

based on the predictive model’s performance. If the
predictive model has low accuracy, then the explanations
generated on top of these models also tend to have high
errors. As such, the change in the model hyperparameters
may result in different degrees of change on the local
fidelity metrics. The results also indicate that the local

Fig. 5 Normalized global
feature importances for the
Rossmann dataset obtained by
different feature selection
strategies and SHAP method
with the GBR model
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Fig. 6 Sensitivity of the
explanation methods and
evaluation metrics with respect
to the forecasting model
parameters

explanations generated for the LSTM models are more
sensitive to the model hyperparameters. On the other hand,
for the GBR models, we see a clear and robust ranking of
local explanations with both local fidelity metrics across all
datasets.

5 Conclusion and future work

There has been a significant interest in AI interpretability
mainly caused by the growing adoption of the machine
learning systems. Even though there are some studies
focusing on the interpretability of machine learning models
for time series, most of the existing literature is focused
on the time series classification task. There is relatively
low research interest in interpreting time series forecasting
models. An improved understanding on evaluating local
explanations can contribute to a further progress in this area.
Thus, we focus on evaluating local explanation methods for
the multivariate time series forecasting problem.

Local explanations are typically computed by finding
the importance of features towards the prediction. In this
study, two new evaluation metrics are proposed for thorough
comparison of the local explanation methods. Three local
explanation methods are compared for the multivariate
time series forecasting problem. More specifically, we
first train three models (TDNN, LSTM, GBR) on four
datasets (Electricity, Rossmann, Walmart and Ohio). Then,

we evaluate the three local explanation methods for all the
models using two new local fidelity metrics suitable for the
time series forecasting tasks. Overall, we find that the SHAP
method has the highest fidelity, especially for the tree-
based models, and global mean replacement is a preferable
choice over local mean replacement. The results are mostly
consistent accross all the datasets, and we observe some
discrepancies for the Walmart dataset, which might be
attributed to the fact that this dataset is not as clean, more
noisy, and contain more missing data points compared to
the others. Additionally, we investigate the performance
of SHAP as a feature selection method and measure the
sensitivity of the local explanation methods with respect to
model hyperparameters.

An area that could be further explored is the idea of
placing more weight on immediate time steps. That is, we
can modify the evaluation metrics as follows:

AOPCR = 1

t0

t0∑

τ=1

γ τ−1AOPCRτ

APTα = 1

t0

t0∑

τ=1

γ τ−1APTτ,α

By setting γ = 1, these metrics can be reduced back to
our initially proposed evaluation metrics. As γ → 0, more
weight is placed on the initial terms in the expansion. The
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choice of γ could be application specific. For example, if
a short-term weather model is being evaluated, it might be
more important to predict the next day’s forecast compared
to forecasting five days into the future.
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29. Mokhtari KE, Higdon BP, Başar A (2019) Interpreting financial
time series with shap values. In: Proceedings of the 29th Annual
International Conference on Computer Science and Software
Engineering, pp 166–172

30. Molnar C (2019) Interpretable Machine Learning. https://
christophm.github.io/interpretable-ml-book/

31. Moreno SR, da Silva RG, Mariani VC, dos Santos Coelho L
(2020) Multi-step wind speed forecasting based on hybrid multi-
stage decomposition model and long short-term memory neural
network. Energy Convers Manag 213:112869

32. Mughees N, Mohsin SA, Mughees A, Mughees A (2021) Deep
sequence to sequence bi-lstm neural networks for day-ahead peak
load forecasting. Expert Syst Appl 175:114844

33. Mujkanovic F (2019) Explaining the predictions of any time series
classifier. Master’s thesis, Hasso Plattner Institut

34. Nguyen D (2018) Comparing automatic and human evaluation
of local explanations for text classification. In: Proceedings of
the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, vol 1. Long Papers, pp 1069–1078

35. Nguyen H, Tran KP, Thomassey S, Hamad M (2021) Fore-
casting and anomaly detection approaches using lstm and lstm
autoencoder techniques with the applications in supply chain
management. Int J Inf Manag 57:102282

36. Norgeot B, Lituiev D, Glicksberg BS, Butte AJ (2018) Time
aggregation and model interpretation for deep multivariate
longitudinal patient outcome forecasting systems in chronic

4742 O. Ozyegen et al.

https://www.kaggle.com/c/rossmann-store-sales/data
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/
http://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
http://arxiv.org/abs/170208608
http://arxiv.org/abs/14126980
http://arxiv.org/abs/191209363
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


ambulatory care. In: NeurIPS Machine Learning for Health
(ML4H) Workshop

37. Olah C, Cammarata N, Schubert L, Goh G, Petrov M, Carter S
(2020) Zoom in: An introduction to circuits. Distill 5(3):e00024–
001

38. Ozyegen O, Mohammadjafari S, Kavurmacioglu E, Maidens J,
Basar A (2019) Experimental results on the impact of memory
in neural networks for spectrum prediction in land mobile radio
bands. IEEE Transactions on Cognitive Communications and
Networking

39. Pascanu R, Gulcehre C, Cho K, Bengio Y (2013) How to construct
deep recurrent neural networks. arXiv:13126026

40. Ribeiro MT, Singh S, Guestrin C (2016) ”why should i trust you?”
explaining the predictions of any classifier. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 1135–1144

41. Salinas D, Flunkert V, Gasthaus J, Januschowski T (2019) Deepar:
Probabilistic forecasting with autoregressive recurrent networks.
International Journal of Forecasting

42. Shrikumar A, Greenside P, Kundaje A (2017) Learning important
features through propagating activation differences. In: Proceed-
ings of the 34th International Conference on Machine Learning,
vol 70. JMLR. org, pp 3145–3153

43. Sturmfels P, Lundberg S, Lee SI (2020) Visualizing the impact
of feature attribution baselines. Distill, https://distill.pub/2020/
attribution-baselines

44. Suresh H, Hunt N, Johnson A, Celi LA, Szolovits P, Ghassemi
M (2017) Clinical intervention prediction and understanding with
deep neural networks. In: Doshi-Velez F, Fackler J, Kale D,
Ranganath R, Wallace B, Wiens J (eds) Proceedings of the 2nd
Machine Learning for Healthcare Conference, PMLR, vol 68.
Massachusetts, Proceedings of Machine Learning Research,
Boston, pp 322–337. http://proceedings.mlr.press/v68/suresh17a.
html

45. Taieb SB, Bontempi G, Atiya AF, Sorjamaa A (2012) A review
and comparison of strategies for multi-step ahead time series
forecasting based on the nn5 forecasting competition. Expert Syst
Appl 39(8):7067–7083

46. Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ (1989)
Phoneme recognition using time-delay neural networks. IEEE
Trans Acoust Speech Signal Process 37(3):328–339

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Ozan Ozyegen is a Ph.D.
Candidate at Ryerson Uni-
versity at the Department of
Mechanical and Industrial
Engineering. He received his
M.Sc. degree in Data Science
and Analytics from Ryerson
University and B.Sc. degree in
Computer Engineering from
Istanbul Technical University.
His research interests include
Interpretable AI, Time Series,
Natural Language Processing
and Deep Learning. He is
involved in several interna-
tional projects as a research

assistant at Ryerson University Data Science lab.

Igor Ilic received his M.Sc.
degree in Data Science and
Analytics from Ryerson Uni-
versity, and BMath degree
in Mathematical Physics from
University of Waterloo. He
worked as a research assis-
tant at Data Science Lab at
Ryerson University conduct-
ing research on focusing on
probabilistic time series fore-
casting and explainable AI.

Dr. Mucahit Cevik is an
Assistant Professor at the
Department of Mechanical
and Industrial Engineer-
ing, Ryerson University. He
obtained his Ph.D. in Indus-
trial and Systems Engineering
from University of Wiscon-
sin - Madison, and received
his B.Sc. and M.A.Sc. in
Industrial Engineering from
Bogazici University, Turkey.
After finishing his Ph.D.,
he worked at University of
Toronto and Sunnybrook
Health Sciences Centre as a

postdoctoral fellow. The focus of his research has been on machine
learning, reinforcement learning and integer programming with
applications in healthcare, transportation and energy.

4743Evaluation of interpretability methods for multivariate time series forecasting

http://arxiv.org/abs/13126026
https://distill.pub/2020/attribution-baselines
https://distill.pub/2020/attribution-baselines
http://proceedings.mlr.press/v68/suresh17a.html
http://proceedings.mlr.press/v68/suresh17a.html

	Evaluation of interpretability methods for multivariate time series forecasting
	Abstract
	Introduction
	Related work
	Methodology
	Datasets
	Time series forecasting models
	Time delay neural network (TDNN)
	Long short term memory network (LSTM)
	Gradient boosted regressor (GBR)

	Local explanation methods
	Random baseline
	Omission
	SHAP

	Evaluation metrics
	Area over the perturbation curve for regression (AOPCR)
	Ablation percentage threshold (APT)

	Experimental setup

	Results
	Model performances
	Evaluation of local explanations
	Impact of Feature Selection
	Sensitivity analysis

	Conclusion and future work
	References


