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Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China

Ovarian cancer (OC) is the most malignant tumor in the female reproductive tract.
Although abundant molecular biomarkers have been identified, a robust and accurate
gene expression signature is still essential to assist oncologists in evaluating the
prognosis of OC patients. In this study, samples from 367 patients in The Cancer
Genome Atlas (TCGA) database were subjected to mRNA expression profiling. Then,
we used a gene set enrichment analysis (GSEA) to screen genes correlated with
epithelial–mesenchymal transition (EMT) and assess their prognostic power with a Cox
proportional regression model. Six genes (TGFBI, SFRP1, COL16A1, THY1, PPIB, BGN)
associated with overall survival (OS) were used to construct a risk assessment model,
after which the patients were divided into high-risk and low-risk groups. The six-gene
signature was an independent prognostic biomarker of OS for OC patients based on
the multivariate Cox regression analysis. In addition, the six-gene model was validated
with samples from the Gene Expression Omnibus (GEO) database. In summary, we
established a six-gene signature relevant to the prognosis of OC, which might become
a therapeutic tool with clinical applications in the future.

Keywords: ovarian cancer, EMT, prognostic, mRNAs, survival

INTRODUCTION

Ovarian cancer is currently the fifth leading cause of death and has become a major threat
to the reproductive health of women. According to previous reports, 80% of OC patients are
initially diagnosed with advanced OC (Baldwin et al., 2015; Ferlay et al., 2015), and 28% of
these patients show distant metastasis (Torre et al., 2018). Although standard therapies aimed at

Abbreviations: ADM, adrenomedullin; AJCC, American Joint Committee on Cancer; ASPM, abnormal spindle homolog,
microcephaly associated; AUC, area under curve; BGN, biglycan Gene; ceRNA, competing endogenous RNAs; ChIP,
chromatin immunoprecipitation; COL16A1, collagen type XVI alpha 1 chain; CRAN, China Video Station; CSCs, cancer
stem cells; DCBLD2, discoidin, CUB and LCCL domain containing 2; DAVID, Database for Annotation, Visualization
and Integrated Discovery; DLL3, delta-like protein 3; E2F7, E2F transcription factor 7; EMT, epithelial-to-mesenchymal
transition; ES, enrichment score; GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, gene set enrichment
analysis; GSVA, gene set variation analysis; HR, hazard ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; KRT6A,
keratin 6A; Nrf2, nuclear factor erythroid 2-related factor 2; OC, ovarian cancer; OS, overall survival; PDAC, pancreatic
ductal adenocarcinoma; PPI, protein–protein interaction; PPIB, peptidylprolyl isomerase B; qRT-PCR, RNA isolation and
quantitative real-time polymerase chain reaction; ROC; receiver operating characteristic; ROS, reactive oxygen species;
SFRP1, secreted frizzled related protein 1; TCGA, The Cancer Genome Atlas; TGFBI, transforming growth factor beta
induced; TGF-beta, transforming growth factor-beta; THY1, thy-1 cell surface antigen; TIE2, tyrosine kinase receptor; VEGF,
vascular endothelial growth factor.
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complete resection combined with chemotherapy and
neoadjuvant therapies, such as carboplatin and paclitaxel
(Elies et al., 2018) have been widely used in clinical practice,
the prognosis of OC is poor, and the 5-year survival rate
is only 30–50% (Tarver and Cancer Facts & Figures, 2012).
The traditional FIGO (2014) staging system is the primary
assessment standard for estimating the treatment and outcome
of OC patients. However, the heterogeneity of OC is constantly
changing. Clonal expansions in histologically normal tissues
occurs not only in adults, but in childhood. The extent of
clone expansion may inform the malignant potential and
recurrence risk, which is a new insight in tumor therapy. For
heterogeneous tumor samples at different sites or different times,
the sequencing results of the same patient are theoretically
inconsistent. PyClone can be used to analyze which subclones
are present in the different sequencing data1. Each ovarian tumor
can be regarded as a collection of many cells with different
genetic and epigenetic traits. It is obviously impossible to
completely cure OC by treating with a rigid treatment model,
as individuals with the same stage and who receive the same
treatment experience different outcomes (Minlikeeva et al., 2017;
Testa et al., 2018). Thus, the current staging system is inadequate,
and it is urgent to seek more accurate indicators to identify the
high-risk population.

It is time consuming and laborious to experimentally
identify key genomic mutations (structural variation or number
variation). However, with the rapid development of high-
throughput gene microarrays and whole-genome sequencing,
numerous molecular landscapes and gene variants have been
discovered in many tumors (Nakagawa and Fujita, 2018; Schuh
et al., 2018). Developing a convenient and effective programmatic
screening method for high-risk populations is of vital importance
(Song et al., 2019). Currently, a large number of databases have
been built by researchers to provide access for the exploration of
genomic alterations. Increasing evidence has demonstrated that
molecular biomarkers contribute to the prognosis evaluation of
tumors, and searches can be conducted for cancer-related somatic
mutation sites from databases such as COSMIC (Bamford et al.,
2004). For example, overexpression of upregulated DLL3 is
an independent prognostic predictor for endometrial cancer
and could be a potential and novel tumor marker for early-
stage endometrial cancer (Wang et al., 2018). The angiopoietin
receptor, plasma TIE2, is a tumor vascular response biomarker
for VEGF that inhibitors in metastatic colorectal cancer (Jayson
et al., 2018). Nevertheless, researchers found that rather than
traditional single-gene biomarkers, gene signatures comprising
several genes can provide strong evidence for the prognosis
and survival of patients with tumors. For example, a five-
gene signature (ADM, ASPM, DCBLD2, E2F7, and KRT6A)
demonstrates significant power to predict patient survival in two
distinct patient cohorts with pancreatic ductal adenocarcinoma
and is independent of the AJCC TNM staging of this disease
(Raman et al., 2018). Cross-validation of this gene signature
reported a better AUC of the ROC (≥0.8) than existing
pancreatic ductal adenocarcinoma (PDAC) survival signatures.

1https://github.com/aroth85/pyclone

Gene signatures may provide insights into the mechanism of
carcinogenesis to facilitate a preferable and ideal treatment
schedule. A modified PageRank algorithm was used to establish
a pipeline that can help identify driver mutations among
the many differentially expressed genes to produce prognostic
genes. It is also helpful in the selection of key genes in
other biological processes (Wang et al., 2017). Murakami et al.
(2016) proposed a scoring system through TCGA and the GEO
databases that could predict the tumor response to platinum-
based therapies or taxane, which could be useful to develop
individualized treatments for OC . A prognostic model of high-
grade serous ovarian carcinoma classification named CLOVAR
was developed by the TCGA specifically for OC (Verhaak et al.,
2013; Boris et al., 2016). In fact, many studies about creating
prognostic models via TCGA databases, gene set enrichment
analysis (GSEA) and COX analysis have emerged (Huiran et al.,
2019; Wang et al., 2019), and the gene signatures concluded
from other studies were different than what we identify and
present below.

In this study, we used GSEA, a technique superior to
traditional analysis, to screen target genes because GSEA is not
limited to focusing on gene expression differences in disease
biomarkers and analyzing survival changes; rather, this technique
only focuses on genes with statistically significant aberrant
expression (Mathur et al., 2018). For GO) and KEGG pathway
enrichment analysis, researchers need to provide a clear threshold
for differentially expressed genes. However, the actual changes
in RNA expression observed by ChIP are usually the result of
multiple negative feedback loops, and the sensitivity of expression
discrepancies is different among various tissues. GSEA can
avoid ignoring those genes that have no significant expression
difference but contribute to biological behavior, gene function,
and are even related gene regulation networks. In addition, GSEA
allows for the monitoring of the expression changes in gene sets
rather than in individual genes, so subtle expression changes can
be included to obtain more accurate results (Dean et al., 2017;
Zhang et al., 2017).

In our study, we attempted to produce enriched gene sets
based on molecular signatures with the prognosis of OC in
different stages. To this end, we profiled specific gene sets in 367
OC patients with integrated mRNA expression datasets from the
TCGA database. A total of 197 mRNAs were related to epithelial–
mesenchymal transition (EMT), and a six-gene risk signature
that could predict patient outcomes and identify high-risk OC
populations that indicate poor prognosis was established.

MATERIALS AND METHODS

Patient Clinical Data Source and mRNA
Expression Dataset
The mRNA expression profiles and corresponding clinical
information from OC patients were extracted from the
TCGA2 data portal3 (Tomczak et al., 2015). These data

2https://tcga-data.nci.nih.gov/tcga/
3https://cancergenome.nih.gov/
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TABLE 1 | Clinical pathological parameters of patients with ovary
cancer in this study.

Clinical pathological
parameters

N % Confirmed deaths

Stage

Stage I 1 0.27 1

Stage II 22 5.99 5

Stage III 289 78.74 159

Stage IV 55 14.98 34

Cancer status

Tumor free 85 23.22 3

With tumor 281 76.78 196

Grade

G1 1 0.27 0

G2 42 11.48 25

G3 314 85.79 167

G4 1 0.27 1

GX 8 2.186 5

Age

<58 183 50 92

>58 183 50 107

Venous invasion

No 40 38.83 17

Yes 63 61.17 23

Lymphatic invasion

No 47 41.23 19

Yes 97 58.77 45

were imputed on an Illumina HiSeq RNA-Seq platform and
comprised of one OC patient in stage I, 22 in stage II,
289 in stage III, and 55 in stage IV, with matching relative
to stage, age, cancer status, grade, venous invasion, and
lymphatic invasion. The above information is based on high-
throughput whole-genome sequencing of each tumor sample.
The abovementioned data are displayed in Table 1. Both
the expression profiles and clinical characteristics can be
obtained publicly, so there was no need to obtain ethics
committee approval.

Gene Set Enrichment Analysis
Single-gene analysis yields little similarity between two
independent fields of patient survival in cancer. GSEA is
an approach that focuses on many biological functions,
chromosomal locations, or regulatory activities to interpret
genome-wide expression profiles (Fevzi et al., 2005). We
used GSEA4 to determine whether a particular gene set
shows a statistically significant difference in expression.
The key point of GSEA is the ES, with which each gene
is endowed. The ES reflects the degree of enrichment of
gene members at both ends of the sequencing list. For the
analysis results, we defined the significance of gene sets
based on the following parameters: |normalized enrichment
score (NES)| > 1, nominal p-value (NOM) < 0.05, and FDR
q-val < 0.25.

4http://www.broadinstitute.org/gsea/index.jsp

Construction of Risk Model
Firstly, we matched the patient’s gene expression profile with
the patient’s clinicopathological parameters and selected patients
with relatively complete data. The patients were divided into two
groups according to stage: group 1 included stage I and stage II
patients, whereas group 2 included stage III and stage IV patients.
We determined the enriched cell pathways in group 2 by GSEA,
after which we selected the target cell pathway according to the
screening conditions and sorted enriched mRNAs. Univariate
Cox regression analysis (Woodward and Overall, 1975) was
launched to screen for survival-related mRNAs with p < 0.05,
and then the multivariate Cox proportional hazards regression
analysis was used to analyze mRNAs related to OS. After all of
the genes were divided into high-risk [hazard ratio (HR) > 1] and
protective (0 < HR < 1) groups, a prognostic risk score formula
was established based on a linear combination of the expression
levels weighted with regression coefficients originating from the
multivariate Cox regression analysis. The formula is as follows:
Risk score =

∑n
i=1 Exp

∗
i βi, where n is the number of selected

genes, ExPi is the expression level of gene i, and βi represents the
regression coefficient of gene i.

Patients were divided into high-risk and low-risk groups
according to the median patient risk score. Differential
expression and heat maps were used to analyze the different
expression levels of genes that constitute the risk scores in the
high-risk and low-risk groups. cBioPortal provides visualization
tools for research and analysis of cancer genetic data to help
decipher the molecular data obtained from cancer tissue and
cytology research. We used cBioPortal to identify whether the
genes that make up the risk score manifested mutations.

GEPIA5 is a cancer data mining website mainly based on the
TGCA and GTEx projects. The content that can be analyzed
also covers multiple aspects: single-gene or multi-gene analysis,
cancer types. Researchers select the specific tumor data according
to their needs. Here, we entered the name of the single gene and
obtained its expression level in different stages of OC.

Functional Enrichment Analysis
Gene set variation analysis6 was performed with R according
to the researchers’ needs of the OC patients’ mRNA expression
profile data. In addition to the R version of the downloaded
executable files, source code and documentation, various user-
written software packages were also included. Downloading R
(3.4.1. Windows 64-bit) required visiting the main website7 and
selecting the CRAN to initiate download.

We identified differentially expressed genes between high-
and low-risk groups through the EDGR algorithm (Robinson
et al., 2010) and analyzed the cell pathways corresponding to the
genes with significant differences between the high- and low-risk
groups online through the DAVID8.

We used GO and KEGG analyses to explore the biological
processes related to the differentially expressed genes. The results

5http://gepia.cancer-pku.cn/index.html
6https://bioconductor.org/packages/release/bioc/html/GSVA.html
7https://www.r-project.org/
8https://david.ncifcrf.gov/
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of the two strategies were substantial in providing both an overall
and a deep understanding of the biological systems identified by
GSEA in our study. A PPI network was developed to explore
the relationships among these genes using the online database
STRING9. STRING was then used to map all of the hub genes
connected with each other.

Verification of the Risk Score via Cox
Regression Analysis
We classified patients according to their risk scores and other
clinicopathological parameters. Then, we used univariate Cox
regression analysis to screen clinical pathological parameters
related to survival followed by multivariate Cox proportional
hazard regression analysis to determine whether the risk score
was an independent predictor of OC. Most OC patients are
diagnosed with stages III–IV disease, so the number of stages I–
II OC cases is limited. Kaplan–Meier survival curves and ROC
curves were created to compare the accuracy of the prognostic
ability of the risk score with other pathological parameters in
OC. To estimate the sensitivity and specificity of the risk score
model and AUC value, ROC analysis was performed using SPSS
19.0. The visual nomogram (Roman et al., 2005) was displayed
in the R software mentioned above as the total points for OS
for each patient.

Validation of the Risk Prognosis Model
With a GEO Dataset
Although there are more than a dozen GEO datasets for OC,
we chose the GSE9891 dataset because it included all six genes
with matched survival data, and the size of the dataset is
considerable. We downloaded GSE989110 (Tothill et al., 2008),
which comprises the clinical and gene expression data of 285
OC patients from the GEO database11. We matched the gene
expression profiles of these patients with their clinicopathological
parameters. The risk scores of the OC patients were calculated,
and they were divided into a high-risk group and a low-risk
group according to the median risk score. The feasibility of
this prognosis model was verified based on whether there was a
difference in survival between the high-risk and low-risk groups.

RNA Isolation and Quantitative
Real-Time Polymerase Chain Reaction
(qRT-PCR)
Twenty pairs of OC tissues and normal ovarian tissues
were obtained from patients seen at the Department of
Obstetrics and Gynecology, Shengjing Hospital of China
Medical University, China, from 2015 to 2019. In addition,
non-cancerous ovarian tissues were collected from women who
underwent a hysterectomy for diseases other than cancer. All
patients provided informed consent, and this study was approved
by the Ethics Committee of Shengjing Hospital of China Medical
University (2018PS251K). Histological diagnosis was assessed

9https://string-db.org/
10https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9891
11http://www.ncbi.nlm.nih.gov/gds

by three experienced pathologists. No patient received local or
systemic treatment preoperatively. Total RNA was extracted
from cancer and normal tissues with a TRIzol reagent (Takara,
Dalian, China), and cDNA was generated from total RNA using
a PrimeScript RT-polymerase (Takara). qRT-PCR was performed
using SYBR-Green Premix (Takara) with specific PCR primers
(Sangon Biotech, Co., Ltd., Shanghai, China) for the following
proteins: TGFBI, F ACTCAGCCAAGACACTATTTGA, R
CTTGTATGGGCATCAATTGGAG; SFRP1, F GCTCAACAAG
AACTGCCAC, R CTTGTCACACTTAAGCATCTCG; COL
16A1, F GGAAGGACTCAAATTGGAACAC, R GATCTTC
TTGATGGCAGACGTC; THY1, F CCAACTTCACCAGCAAA
TACAA, R ACTTGACCAGTTTGTCTCTGAG; PPIB, F TTC
TTCATCACGACAGTCAAGA, R TCACATCCTTCAGGGGT
TTATC; and biglycan (BGN), F GAACATGAACTGCATCGAG
ATG, R ATTTTGTTGTGGTCTAGGTGGA. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as an
internal control, and fold-changes were calculated with the
2−11Ct method. The qRT-PCR data are expressed as the
means ± standard deviation (SD) of three independent
experiments. Statistical analyses were performed with the
GraphPad Prism 6.0 software (La Jolla, CA, United States).
Since the data in both groups exhibited normal distribution,
two-sided Student’s t-test or one-way analysis of variance
(ANOVA) was used to ascertain differences between the two
groups. A p-value < 0.05 was considered statistically significant.

RESULTS

The flowchart of this study is shown in Figure 1. A prognostic
model was established with EMT-related genes and Cox analysis,
which indicated that the risk model was an independent
prognostic indicator of OC.

Gene Set Enrichment Analysis
There were 367 specimens (with a total of 24991 genes) from
the TCGA database classified into two groups (stages I–II and
stages III–IV). GSEA revealed that 24 out of the 50 hallmark
biological processes were significantly enriched in the stages III–
IV group. Among the 24 processes, EMT (p = 0), oxidative
phosphorylation (p = 0), adipogenesis (p = 0), myogenesis (p = 0),
coagulation (p = 0.003), apoptosis (p = 0.037), and fatty acid
metabolism (p = 0.038) showed the most significant differences
between the stages I–II and stages III–IV groups (Figure 2 and
Table 2). A false discovery rate (FDR) < 0.25, NOM p-val < 0.05
and |NES| > 1were considered the cut-off criteria for each
process. The top-ranking gene set was the EMT process with the
highest |NES|, which includes 197 mRNAs, and was selected for
further studies.

Identification of a Six-mRNA Signature
Predicts Survival of OC Patients
Eighty-three of the 197 genes were selected because their
expression profile was enriched in stages III–IV OC. Then, the
top 19 mRNAs associated with prognosis were obtained using
univariate Cox regression analysis, six of which (TGFBI, SFRP1,
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FIGURE 1 | Flowchart of this study.

COL16A1, THY1, PPIB, BGN) were selected for multivariate Cox
regression analysis to construct a risk assessment model. A p-
value < 0.05 in the univariate Cox analysis was the criterion for
inclusion in the multivariate Cox analysis. We designated four
mRNAs as high-risk mRNAs (TGFBI, SFRP1, COL16A1, and
THY1; HR > 1) and two as protective mRNAs (PPIB and BGN;
0 < HR < 1) (Table 3).

A model was developed to predict prognosis according to the
gene expression and regression coefficients of the six genes and is
summarized as follows.

Risk score = 0.1243∗ TGFBI + 0.0683∗ SFRP1 + 0.1422∗
COL16A1 + 0.0819∗ THY1 – 0.2837∗ PPIB – 0.1965∗ BGN.

After a risk score was calculated for every patient, the median
risk score was regarded as the cut-off value, and the patients
were divided into low-risk and high-risk groups (Figure 3A).
The distribution of the patient relapse status is also shown in

Figure 3A. The mortality increased with an increasing risk score
among these patients, with a heat map (Figure 3B) indicating
the expression pattern of the six mRNAs. As the risk score
of the OC patients increased, the expression of the high-risk
mRNAs (TGFBI, SFRP1, COL16A1, THY1) showed obvious
upregulation whereas the expression of protective mRNAs (PPIB,
BGN) was downregulated.

The results from the OncoPrint of cBioPortal showed a
summary of the genetic alterations of the six genes in 367
OC patients. It indicated that TGFBI was altered in 0.9%
patients, with two instances of amplification, two instances
of deep deletions and one instance of a missense mutation
(unknown significance). SFRP1, COL16A1, THY1, PPIB, and
BGN showed alterations in 4, 3, 1, 1.2, and 4% of patients,
respectively (Figure 3C). Similarly, the specific type of alteration
in the selected genes are shown in high-grade serous OC
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FIGURE 2 | Enrichment plots of seven gene sets that were functionally enriched in OC.

TABLE 2 | Gene sets enriched in ovary cancer (367 samples).

GS follow link to MSigDB Size ES NOM p-value Rank at maximum

EPITHELIAL MESENCHYMAL TRANSITION 197 0.6 0 5691

OXIDATIVE PHOSPHORYLATION 183 0.53 0 7891

ADIPOGENESIS 190 0.41 0 10392

MYOGENESIS 199 0.39 0 10785

COAGULATION 136 0.39 0.003 10967

APOPTOSIS 159 0.32 0.037 5216

FATTY ACID METABOLISM 157 0.32 0.038 10137
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TABLE 3 | The detailed information of six prognostic mRNAs significantly associated with overall survival in patients with ovarian cancer.

mRNA Ensemble ID Location HR B(Cox) p

TGFBI ENSG00000120708 Chr5: 136,028,988–136,063,818 1.1324 0.1243 0.0175

SFRP1 ENSG00000104332 Chr8: 41,261,962–41,309,473 1.0707 0.0683 0.0217

COL16A1 ENSG00000084636 Chr1: 31,652,263–31,704,319 1.1528 0.1422 0.0249

THY1 ENSG00000154096 Chr11: 119,417,378–119,424,985 1.0853 0.0819 0.0504

PPIB ENSG00000166794 Chr15: 64,155,812–64,163,205 0.7530 −0.2837 0.0069

BGN ENSG00000182492 ChrX: 153,494,980–153,509,546 0.8216 −0.1965 0.0393

FIGURE 3 | The six-mRNA signatures related to risk score predicts the OS and was associated with survival in OC patients. (A) mRNA risk score distribution and
survival days of patients. (B) A heatmap of five gene expression profiles. (C) Selected gene alterations in the clinical samples. (D) Selected gene-specific alterations
in the detailed cancer type.

(Figure 3D). It is clear that a loss of mRNA constituted the
majority of alterations.

Validation of the Six mRNAs for
Predicting Survival by Kaplan–Meier
Curves
Kaplan–Meier curves were used to validate the prognostic value
of each mRNA in predicting OC. The results showed that in

addition to SFRP1 (p = 0.0314), the risk score was a specific
indicator between the high- and low-risk groups (p < 0.0001).
The patients in the high-risk group definitively had a shorter
survival (Figure 4A). The original data of the six-mRNA
expression profiles without log transformation in the high- and
low-risk groups are displayed in Figure 4B. Furthermore, the
mRNA expression levels of the six selected genes were tested
in normal ovary tissues and OC tissues (Figure 4C). High-risk
genes such as TGFBI (p = 0.0002), SFRP1 (p = 0.0344), COL16A1

Frontiers in Genetics | www.frontiersin.org 7 October 2020 | Volume 11 | Article 1006

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-01006 October 10, 2020 Time: 18:58 # 8

Pan and Ma Gene Signature for Prognosis Prediction

FIGURE 4 | Survival validation and expression profile of the six genes grouped by high- and low-risk. (A) Prognostic prediction of OC by every mRNA in high- and
low-risk groups. (B) Gene expression of the six genes in high- and low-risk groups. (C) Differential expression of the six genes. (D) The expression level of six
mRNAs detected by qRT-PCR. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

(p = 0.0449), and THY1 (p < 0.0001) were overexpressed in OC
tissues compared with normal tissues, while protective genes such
as PPIB (p = 0.0128) and BGN (p = 0.0047) were expressed at
lower levels in the OC tissues (Figure 4D).

EMT Process Was Validated to Be
Associated With the High-Risk Group of
OC via GSVA Database and Functional
Enrichment Analysis
According to the high- and low-risk score groups obtained using
samples from the GSVA database, we established a heatmap
displaying various biological processes associated with OC, from
which we could see that EMT was included (Figure 5A).
A heatmap generated by the EDGR algorithm of the 83 most
common differentially expressed genes in the high-risk and low-
risk groups is shown in Supplementary Figure 1. Upregulated
genes were defined as logFC > 1, and downregulated genes
were defined as logFC < −1. p < 0.05 was considered
statistically significant. The prognostic signaling pathways were
evaluated by KEGG and GO pathways, from which we concluded
that the genes related to prognosis were enriched in ligand
receptor activity. Figures 5B,C display the GO and KEGG
pathway enrichment plots, respectively, for OC. There were some
differentially expressed cancer-related biological processes, such
as ligand receptor activity and the PI3K-Akt signaling pathway,
between the high-risk and low-risk groups, which indicated that

the risk score was of great relevance to the tumorigenesis or
development of OC.

The Risk Score, Stage, and Cancer
Status Are Independent Prognostic
Indicators of OC
Univariate and multivariate analyses were carried out together
to compare the prognostic strength of the risk score and other
common clinicopathological parameters (Table 4). The results
with the GSVA dataset indicated that risk score, stage, and
cancer status were independent prognostic indicators since their
p-values were < 0.05 not only in the univariate but also in the
multivariate analysis. Importantly, the cancer status was the most
obvious clinical parameter related to mortality for OC patients
in the high-risk group, who were 8.837 times more likely to die
than those in the low-risk score group. Risk score was the next
most relevant factor, indicating a 2.742-fold increased likelihood
of death for OC patients in the high-risk score group compared
to those in the low-risk group.

Validation of the Six-mRNA Signature for
Predicting Survival by Kaplan–Meier
Curves
Kaplan–Meier curves and the log-rank method were used to
validate the prognostic ability of clinical parameters (risk score,
stage, age, cancer status, grade, venous invasion, and lymphatic
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FIGURE 5 | Epithelial–mesenchymal transition process was associated with the high-risk group of OC. (A) Heatmap displayed various biological processes
associated with OC. (B) GO and (C) KEGG pathways for the functional enrichment analysis.

TABLE 4 | Univariable and multivariable analyses for each clinical feature.

Clinical feature Number Univariate analysis Multivariate analysis

HR 95%CI of HR p-Value HR 95%CI of HR p-Value

Risk score 367 2.742 1.855–4.053 <0.0001 1.983 1.263–3.112 0.0029

Age 367 1.023 1.010–1.035 0.0003 8.241 1.445–15.279 0.0044

Cancer Status 318 8.837 4.787–16.315 <0.0001 0.421 0.300–0.594 <0.0001

Grade 366 1.214 0.811–1.818 0.3457

Stage 367 2.113 0.937–4.763 0.0711

Venous invasion 102 1.026 0.611–1.722 0.924

Lymphatic invasion 147 1.447 0.847–2.472 0.176
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invasion) to predict survival in OC. The results indicated that
patients with high-risk scores had poor prognoses. Patients with
stages III–IV disease or tumor status were at a higher risk
of poor prognosis than were patients with stages I–II disease
(Figure 6A). Furthermore, we performed a data stratification
analysis on the entire cohort, and 367 patients were stratified
based on their clinical parameters. According to the results above,
patients with tumors, patients in stages III–IV or grade 3, and
patients older than 65 years old were more likely to have a shorter
survival (Supplementary Figure 2A). Kaplan–Meier curves were
established to validate the prognostic value of the risk score to
predict survival in OC in an independent GEO cohort (GSE9891).
As we stated above, every patient was assigned a risk score, with
patients from the GEO database divided into low-risk and high-
risk groups based on the median risk score value as the cut-off
criterion. The distribution of the patient relapse status is shown
in Supplementary Figure 2D. It was apparent that patients with
high-risk scores had poor prognoses (p < 0.0001), which was
consistent with the result observed in Figure 6B. Kaplan–Meier
curves were also used to validate the prognostic value of the risk
score in predicting colon cancer (Supplementary Figure 2B) and
hepatocellular cancer (Supplementary Figure 2C). The results
showed that the risk score was not a significant indicator between
the high- and low-risk groups (p = 0.1158 and p = 0.3675), which
indicated the specificity of the risk score model to OC.

The time-dependent ROC curve of each parameter
demonstrated the sensitivity and specificity of the 5-year
OS prediction (Figure 6C). We identified that risk score, age,
and cancer status were independent risk factors, with AUCs of
0.711, 0.56, and 0.731, respectively. In addition, we integrated
these three independent risk factors into a larger model, and its
AUC increased to 0.776. The AUC of the ROC curve verified
the accuracy of our prognostic model. As shown in Figure 6D,
each patient can be assigned point values according to the
risk score, age, and cancer status in this nomogram, with
the total score reflecting OS. The model is more accurate in
assessing patient outcomes when the risk score, age, and cancer
status are combined.

Protein–protein interaction networks obtained from the
STRING database and visualized with the Cytoscape software
helped us to identify the hub genes among the genes related
to prognosis. The core genes (degrees ≥ 15) (Supplementary
Figure 3B) were further submitted for PPI network analysis,
which indicated that TGFBI, SFRP1, and COL16A1 were clearly
at the center of the network (Supplementary Figure 3A).

DISCUSSION

In clinical practice, although two patients with the same
clinical and pathological parameters received the same treatment,
their outcomes were sometimes drastically different. Robust
biomarkers are emerging to stratify high-risk groups among
these patients. For example, the expression level of miR-205
was an independent variable selected to predict the events of
progressive disease (Cañueto et al., 2017). Soluble VEGFR-
2 level could predict the malignancy of ovarian neoplasms

and poor prognosis in epithelial OC (Sallinen et al., 2014).
The lncHIFCAR-mediated mechanism for HIF-1 activation in
oral carcinoma is of great value in determining prognosis and
developing a potential therapeutic strategy (Bolha et al., 2017;
Shih et al., 2017). Nevertheless, increasing studies support the
fact that gene regulation in biological processes is complex, with
multiple genes interacting with each other to form a network.
Therefore, the expression status of a single gene is insufficient
to predict the prognosis of these patients (Qiu et al., 2017;
Chen et al., 2018).

Epithelial–mesenchymal transition was initially studied as one
of the five characteristics to differentiate benign and malignant
tumors. One group proposed that an accumulation of a set of four
specific cancer mutations results in the malignant transformation
of normal cells (Koten and Otter, 1991; Koten et al., 1993).
The EMT process has been well-studied for almost 30 years,
and there have also been arguments about its mechanism as it
relates to cancer (Jolly et al., 2017). In EMT, cancer cells lose
their epithelial features and acquire more invasive characteristics.
Activation of EMT elicits changes in multiple fundamental
aspects of cellular physiology, such as wound healing, tissue
fibrosis, and drug resistance, and has become a hot topic in
studying carcinoma progression (Nieto et al., 2016; Shibue and
Weinberg, 2017). As previously described, EMT gives rise to a
variety of intermediate cell states functioning as CSCs between
the epithelial and mesenchymal states (Anushka and Robert,
2019). EMT might control the expression of immune checkpoint
inhibitors and promote immune evasion in non-small-cell lung
carcinoma (Asgarova et al., 2018). miR-34a acts on SNAIL to
regulate EMT in breast cancer and lung cancer cells (He et al.,
2017). The EMT markers currently used are not consistently
related to poor prognosis because the cellular context is complex.

The wide application of genomic profiling is gradually
becoming the standard in clinical oncology and will undoubtedly
accelerate progress in diagnosing and treating cancer (Ocak
et al., 2009; Wheeler and Wang, 2013; Ouellet et al., 2019). The
age of big data has arrived, and the endless screening of hub
molecules has emerged. For example, researchers presented a
data-interlinked platform called BIOOPENER, which enabled the
query of different types of mutations and genomic alterations
that may contribute to molecular and clinical insights in cancer;
this approach resulted in the discovery of three pathways that
potentially cause promoter changes in gynecological cancers
(Jha et al., 2017). Gene signatures containing several genes are
superior to individual biomarkers in predicting OC prognosis
and survival and can be applied widely (Shahid et al., 2016; Liu
et al., 2018; Qiao et al., 2019).

In the present study, we obtained mRNA data from 367
patients from the TCGA database, and vital bioinformatics
analyses, such as GSEA, were used to reveal that EMT was
potentially the most affected pathway in OC with p < 0.05.
We then screened the 197 mRNAs related to EMT signaling
and found that 83 were enriched in OC patients with stages
III and IV disease. To narrow the field and improve the
predictive efficiency, univariate and multivariate Cox regression
analyses were performed, and six mRNAs, namely, TGFBI,
SFRP1, COL16A1, THY1, PPIB, and BGN, were found to be
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FIGURE 6 | Kaplan–Meier survival analysis for the patients with OC in the TCGA dataset. (A) The Kaplan–Meier curve for patients divided into high-risk and low-risk
groups and different clinical features that predict patient survival. (B) GEO validation of the signature. (C) ROC curves of each parameter and the combination of
independent prognostic risk factors of the 5-year OS prediction. (D) Nomogram of total points for OS for each patient.

associated with the prognosis of OC patients and subsequently
combined to construct a six-gene signature model. TGFBI,
SFRP1, COL16A1, and THY1 were validated to be high-risk
genes, while PPIB and BGN were low-risk genes. The expression
level of these genes as detected by qRT-PCR confirmed that the
high-risk genes were overexpressed in OC tissues and that the
protective genes were expressed at lower levels. We were able
to distinguish low-risk and high-risk samples using the content
of these six-mRNA signatures with relatively high prognostic
accuracy. The prognosis-related biological processes and hub
genes were further probed based on different risk groups. Among
these mRNAs, TGFBI was investigated as a highly induced
transcript during EMT in the non-small-cell lung cancer cell
line A549, acting as a competing endogenous RNA (ceRNA) (Qi
et al., 2015) for miR-21 to modulate EMT, which indicated that
the TGFBI 3′ UTR containing the miR-21 binding site could
reduce miR-21 expression and mitigate its biological function
(Liu et al., 2019). SFRP1 exhibited a tumor-promoting function
by selectively activating TGFβ signaling in gastric cancer cells and
thus activating EMT progression (Peng et al., 2019). COL16A1

was found to be one of eight genes in a signature that predicts
survival in OC and was validated to be highly expressed in
cancer tissues compared with normal tissues (Wang and Li,
2020). THY1 is more highly expressed in ovarian CSCs than in
non-CSCs, and high THY1 expression in patients with serous
OC indicates poorer outcomes. THY1 promotes proliferation
and self-renewal in OC (Elizabeth et al., 2019). BGN was
indicated to be an endogenous inhibitor of bladder cancer
cell proliferation by antiproliferative tyrosine kinase inhibitors.
BGN is related to favorable prognosis (Christian et al., 2013).
However, we also discovered that SFRP1 is thought to be a tumor
suppressor that is epigenetically silenced by DNA methylation
(Rashidah et al., 2020). Given all these data, what should we
think about the contradictory function of a single gene? As far
as we know, many genes have “dual roles” in different cancers,
even in different stages of one cancer type. For example, TGF-
beta inhibits the proliferation of carcinomas in the early stages
of breast cancer but promotes tumor growth and metastasis
in later stages of cancer (Aesun et al., 2005). In esophageal
cancer cells, Nrf2 promotes cell proliferation via metabolic
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reprogramming and ROS detoxification (Yuki et al., 2017). By
contrast, low levels of Nrf2 expression were correlated with poor
survival in patients with melanoma (p = 0.0341), kidney cancer
(p = 0.0203), and prostate cancer (p = 0.00279) (Juan et al.,
2014). Therefore, the role and function of genes in cancer are
complex and multifactorial; they may depend on the tumor
microenvironment, targets of genes, or tumor stage, all of which
need to be studied in the future.

We also investigated the prognostic value of the signature
and compared it with that of other clinicopathologic parameters
and different subgroups. Based on Cox analysis, the signature
was able to strongly predict risk score, cancer status, and
age in OC patients. It is generally considered scientific to
represent tumor prognosis with 5-year OS rates. It is obvious
that 5-year OS was significantly different between the high-
risk and low-risk groups, revealing that the signature is a
prospective independent marker of prognosis. Actually, when
assessed as a ROC curve, the combination of the six-gene
signature with cancer status and age exhibited a more powerful
prediction for OS than did the parameters individually, indicating
that comprehensive consideration of these three factors may
be a promising independent tool for OC. Finally, the GEO
cohort was examined to confirm the predictive capacity of
this signature, and the survival result was consistent with that
obtained from the original dataset. In fact, OC metastasis to
the liver, colon, and other important visceral tissues is common.
However, the risk score of the six-gene signature was not
significant in primary liver or colon cancer, which indicated
that the risk score was specific to OC prognosis. To our
knowledge, this study is the first to create a prognostic gene
signature in OC.

Despite the novel findings proposed by our study of candidates
for OC prognosis, there are still limitations that require further
investigation. This is a retrospective study, and the results would
be more convincing with a larger sample size. In conclusion,
the six signature genes TGFBI, SFRP1, COL16A1, THY1, PPIB,
and BGN might be potential biomarkers for predicting the
prognosis of OC patients. To some degree, our study might
provide some clues for further investigation into the biological
processes, clinical diagnosis, and therapeutic strategies of OC
relating to these genes.
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