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Inspired by the human brain, the spike-based neuromorphic system has attracted strong
research enthusiasm because of the high energy efficiency and powerful computational
capability, in which the spiking neurons and plastic synapses are two fundamental
building blocks. Recently, two-terminal threshold switching (TS) devices have been
regarded as promising candidates for building spiking neurons in hardware. However,
how circuit parameters affect the spiking behavior of TS-based neurons is still an open
question. Here, based on a leaky integrate-and-fire (LIF) neuron circuit, we systematically
study the effect of both the extrinsic and intrinsic factors of NbOx -based TS neurons
on their spiking behaviors. The extrinsic influence factors contain input intensities,
connected synaptic weights, and parallel capacitances. To illustrate the effect of intrinsic
factors, including the threshold voltage, holding voltage, and high/low resistance states
of NbOx devices, we propose an empirical model of the fabricated NbOx devices, fitting
well with the experimental results. The results indicate that with enhancing the input
intensity, the spiking frequency increases first then decreases after reaching a peak
value. Except for the connected synaptic weights, all other parameters can modulate
the spiking peak frequency under high enough input intensity. Also, the relationship
between energy consumption per spike and frequency of the neuron cell is further
studied, leading guidance to design neuron circuits in a system to obtain the lowest
energy consumption. At last, to demonstrate the practical applications of TS-based
neurons, we construct a spiking neural network (SNN) to control the cart-pole using
reinforcement learning, obtaining a reward score up to 450. This work provides valuable
guidance on building compact LIF neurons based on TS devices and further bolsters
the construction of high-efficiency neuromorphic systems.

Keywords: threshold switching devices, influence factors, spiking neuron circuits, frequency tunability, spiking
neural network, reinforcement learning
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INTRODUCTION

In the big data era, traditional computing architectures are
facing the challenge known as the “Von Neumann bottleneck”
due to the separated memory and computing units and thus
struggling on high efficiency to process massive data (Ambrogio
et al., 2018; Zidan et al., 2018; Sebastian et al., 2020). By
contrast, neuromorphic systems based on the spiking neural
network (SNN) integrate collocated memory and computing
components, eliminating the memory bottleneck and data
congestion (Wang et al., 2014; Kheradpisheh and Masquelier,
2020; Taherkhani et al., 2020). Also, combining the event-
driven and spatiotemporal information processing features, such
a system shows great potential to build a low-power and high-
efficiency machine for handling different types of data-intensive
tasks, thus attracting much attention in both the industry and
academia field.

For implementing the SNN hardware system, two key modules
must be developed: artificial synapses and spiking neurons.
Artificial synapses connect pre- and post-neurons and store
weight values that determine the conveyed information intensity
(Werner et al., 2016; Zhang et al., 2017; Prezioso et al.,
2018; Kurenkov et al., 2019). Recently, emerging memories
such as phase-change memory (PCM) (Nomura et al., 2019;
Nandakumar et al., 2020), resistive random-access memory
(RRAM) (Yu et al., 2015; Guo et al., 2019; Duan et al., 2020;
Kim et al., 2021; Shi et al., 2021), and magnetoresistance
memory (Zhang et al., 2021a) in a crossbar array structure
are regarded as promising candidates to serve as artificial
synapses. Neurons integrate and process the signals from the
synaptic array and then transmit the resulting pulse to the next
neuron. Neuron circuits based on complementary metal-oxide-
semiconductor (CMOS) technology have been widely reported
(Wijekoon and Dudek, 2008; Ebong and Mazumder, 2012; Cai
et al., 2019). However, due to the limited biodynamics in CMOS
devices, the constructed neuron circuit typically needs a large
number of transistors and capacitors, accounting for a complex
configuration, large area fraction in the overall chip design,
and low integration density (Indiveri et al., 2006; Dutta et al.,
2017; Prezioso et al., 2018). To improve the area efficiency and
integration density of the neuromorphic hardware, emerging
devices, such as PCM (Burr et al., 2010; Tuma et al., 2016)
and RRAM (Pickett et al., 2013; Zhang et al., 2018, 2021b;
Wang et al., 2021), have also been proposed to build spiking
neurons. According to the retention time, the emerging neuron
devices could be roughly divided into nonvolatile and volatile
types. PCM is a typical nonvolatile memory with a metal-sulfide-
metal structure, whose resistance change under pulse stimuli
emulates the neuron’s membrane potential. However, due to
the nonvolatile mechanism, PCM-based neurons inevitably lack
leaky neural dynamics and demand additional reset circuits
that introduce hardware overhead. In comparison, threshold
switching (TS) devices perform abrupt resistance switching in
a volatile manner. They switch to a low-resistance state (LRS)
when the applied bias exceeds a threshold voltage (Vth) and
subsequently return to a high-resistance state (HRS) as the
voltage drops below a hold voltage (Vhold). Generally, TS-based

neurons combine a simple TS device with a capacitor or resistor,
which are equipped with the characteristic of self-sustained
oscillation (Gao et al., 2017; Woo et al., 2019; Wang et al.,
2020). Such a neuron circuit allows the design of an inductor-
free circuit without needing an additional reset circuit, which has
the advantages of low power consumption, nanoscale scalability,
and high integration intensity. To promote TS-based neurons in
practical applications, deep research in the influence parameters
of their firing responses is urgent. It has been reported that
external circuit elements such as capacitance (C) and resistance
can affect the firing rates in some certainty (Ignatov et al.,
2015; Duan et al., 2020; Zhang et al., 2020). However, the
relationship between the intrinsic parameters (such as Vth, Vhold,
LRS, and HRS) of the device and spike behaviors as well as the
energy consumption is rarely studied. Thus, construction of a
complete performance assessment system for TS-based neurons
deserves more attention.

In this work, combining experiment and simulation
methods, we comprehensively investigate the spiking frequency
characteristic of leaky integrate-and-fire (LIF) neurons based
on a NbOx-based TS device. First, the effect of extrinsic circuit
parameters, such as the synaptic weights that connect with
the neuron, and the membrane C, on the spiking frequency
are studied by controlling the input intensity. Second, with
the help of the proposed device model, we further illustrate
how the intrinsic parameters (Vth, Vhold, Rhigh, and Rlow)
affect the spiking behaviors. These results offer a thorough
understanding of the intrinsic factors of neurons that determine
the firing frequency, further providing device engineering
methods for controlling the firing response of neurons.
For further building low-power neuromorphic computing
systems using these neuron circuits, the relationship between
firing rate and the energy consumption per spike is also
discussed. Finally, we construct an SNN with the structure of
8 × 256 × 2 for cart-pole control and achieves up to 450 reward
score, demonstrating the practical application of TS-based
neurons. This work shows comprehensive guidance on building
spiking neurons with TS devices and has great significance
in developing high-efficient neuromorphic systems using
emerging devices.

MATERIALS AND METHODS

Device Fabrication
The fabrication processes of the Ti/Pt/NbOx/Ti/Pt device are as
follows. First, the bottom electrode composed of Pt film with
a thickness of 40 nm and Ti adhesive layer with a thickness
of 5 nm was deposited by electron beam evaporation. The
patterning was processed by photolithography and released by
liftoff processes. Then, the pattern of the functional layer was
formed by the second lithography process. And then, NbOx
(2 < x < 2.5) with a thickness of 50 nm was deposited by
magnetron sputtering. Next, the liftoff process was carried out.
Finally, Ti film with a thickness of 10 nm was deposited as
the top electrode and capped by a 30-nm Pt protection layer
by magnetron sputtering, and then the device was released
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by the final liftoff process. The area of the devices is 5
µm× 5 µm.

Electrical Measurements
During the test of the device’s electrical characteristics, a Keithley
4200 semiconductor parameter analyzer was used to provide
input signals and detect the current flowing through the NbOx
device. The voltage bias was applied to the top electrodes of
the NbOx device, and the bottom electrodes were grounded.
During testing of the spiking behavior of the neuron circuit, a
Keithley 4200 supplied the input voltage pulse and measured
the current flowing through the NbOx device. A Tektronix
oscilloscope was used to measure the voltage oscillation output
on the NbOx device.

Simulations
In this research, we construct an empirical device model of the
NbOx TS device based on the experimental data. The NbOx TS
device is a two-terminal device with two resistive states—HRS
and LRS, whose state transition depends on the applied voltage.
We used a piecewise function to fit the experimental results of
the resistance of the device varying with the input voltage. The
detailed process is described in the following functions (Eqs. 1
and 2):

Rhigh = R0−a exp
v + b
c

(1)

Rlow = R1 +m exp (−nv) (2)

where Rhigh and Rlow are the HRS and LRS, respectively, v is the
input voltage, and a, b, c, m, and n are fitting parameters. Initially,
the device resistance-voltage function follows Eq. 1. When the
voltage applied to the device exceeds Vth, the device switches
from the HRS to the LRS and the resistance-voltage relation
obeys Eq. 2. Then, as the input stimulus decreases below Vhold,
the device switches back from an LRS to an HRS again, and
the resistance varies with the voltage according to Eq. 1 (see
Supplementary Figure 1 for the R-V fitting curve). In addition,
biological neurons are stochastic in nature; the stochastics in TS-
based neuron is mainly responsible for the threshold fluctuation.
Hence, we extract the distribution of Vth and Vhold of the device
from the measured data, proving to be Gaussian distribution (see
Supplementary Figure 2). Thus, we use a Gaussian distribution
rather than a fixed value for Vth and Vhold in the simulation.

The simulated LIF neuron circuit was made of a resistor
and a NbOx memristor in parallel with a capacitor.
According to the law of Kirchhoff, the relation between the
voltage across the device and the input can be described as
(Eq. 3):

C
dVNbOx(t)

dt
=

V−VNbOx(t)
R

−
VNbOx (t)
RNbOx

(3)

Thus, the simulated spiking behavior is
obtained based on Eq. 3.

RESULTS

Schematic of a Biological Neuron and a
NbOx-Based Leaky Integrate-and-Fire
Neuron
Figure 1A shows the schematic of a simple connected biological
neural network consisting of neurons and connected synapses.
Concisely, a single neuron contains three functional parts:
dendrites that receive pre-neurons’ inputs, soma that serves as the
central processing part, and the axon that generates and transmits
action potentials. Figure 1B illustrates the schematic diagram of
the cell membrane. Once the cell receives stimuli, ion channels
enable the ions (such as Na+ and K+) to flow through the
cell membrane, further leading to potential differences on both
sides of the membrane. Figure 1C demonstrates the concrete
production process of an action potential. At the initial stage (À
in Figure 1C), the neuron remains in a resting state. When the
neuron receives an external stimulation, several Na+ channels
open so that a small amount of Na+ flows into the membrane
and lifts the membrane potential (Á in Figure 1C). During
stimulus intervals, the membrane potential gradually falls back
to a polarized state spontaneously due to the continual ion
exchange through the membrane, corresponding to leaky features
(gray dotted line in Figure 1C). As more stimulation is applied
to the neuron, more Na+ channels open, enabling more Na+
to enter the cell and further increasing membrane potential
and generating impulses when it exceeds the threshold (Â in
Figure 1C). After that, Na+ channels are closed while K+
channels are opened up to cause the outflow of K+, inducing the
depolarization (Ã in Figure 1C). That is the whole generation
process of an action potential (Kandel et al., 2000).

The LIF model is a simplified neuron model that follows
the working principle of biological neurons in some certainty
and provides a feasible solution for spike generation (Burkitt,
2006). In the LIF circuit model, the cell membrane is similar
to a capacitor, which integrates charges injected into the
neuron. A resistor parallel with the capacitor performs the
leaky behavior. A switch driven by input is supposed to take
the place of ion channels. In such a model, the resistor
and switch could be faithfully implemented in a TS device
(such as the NbOx device). Therefore, combining the dynamics
of a TS device with a capacitor could emulate the LIF
neurons in an abstract form, as shown in Figure 1D. The
circuit comprises a synaptic resistor (Rs) and a TS device
in parallel with a C that can be either the external or the
intrinsic C. There have been many studies for building such
a spiking neuron with self-sustained spikes or oscillations
based on TS devices.

Here, we study the LIF neuron using a typical NbOx-based
TS device, where the threshold fluctuations in the dynamics are
utilized as inherent physical noise to implement the stochasticity.
The schematic of the device with Ti/Pt/NbOx/Ti/Pt structure
is illustrated in the inset of Figure 1E. Figure 1E depicts
the current-voltage (I-V) characteristics of the device (see
Supplementary Figure 3 for current scan curve). Initially, the
device is in an HRS, which switches to an LRS (B→C) once
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FIGURE 1 | Biological neuron vs. artificial neuron. (A) Schematic of biological neurons, which can be divided into three parts: dendritic, soma, and axon.
(B) Illustration of a cell membrane embedded with ion channels letting charged particles enter or leave a cell to produce electrical signals. (C) Diagram of an action
potential generation. (D) Circuit configuration of a TS-based LIF neuron circuit, consisting of a synaptic resistor (Rs) and a TS device with a parallel capacitance (C)
that is either parasitic or external. (E) Hysteresis I-V characteristic of a NbOx-based TS device, which is composed of a NbOx functional film deposited onto a Ti/Pt
layer as bottom electrode to form a sandwich that is covered with another Ti/Pt layer as top electrode. (F) Voltage output waveform and current spike of the
TS-based LIF neuron circuit under a constant bias.

the voltage reaches a threshold value Vth. When the voltage is
lower than the hold voltage (Vhold), the device spontaneously
returns to the HRS (D→A) (see Supplementary Figure 1 for R-V
characteristic). Thus, the device is capable of emulating the open–
close dynamics of ion channels in biological neurons. We also
demonstrate that such a TS device exhibits more than 1012 cycles
and thus possesses the potential to construct artificial neurons
(Zhang et al., 2020). Figure 1F exhibits the spiking behavior
of the neuron circuit based on such a device under a constant
voltage input. During working, the capacitor charges through the
connected Rs and lifts up the voltages on the NbOx devices. When
the voltage on the device cannot exceed the Vth of ∼1.90 V, the
device’s current varies from A to B as the voltage increases. The
device remains in HRS and INbOx is subtle (À in Figure 1F). Once
the bias further rises up to Vth, the device switches to an LRS
abruptly, and the current flowing through the device experiences
a significant increase from B to C in Figure 1E (Á in Figure 1F).
Then, the capacitor discharges through the NbOx device, and
the current decays along the C→D curve in Figure 1E (Â in
Figure 1F), where the device remains in LRS. Once the voltage
drops below the holding voltage (Vhold) of ∼1.42 V, the device
returns to HRS spontaneously so that the current flowing through
the device falls off from D to A in Figure 1E (Ã in Figure 1F).
Therefore, the neuron generates a complete current spike and
prepares for the next spike event.

The Spiking Response of the Firing
Neuron Under Different Parameters
In biological nervous systems, the firing frequency of neuron
pulse is often used to encode information (Adrian and
Zotterman, 1926; Chapleau, 2007). Hence, it is attractive to
explore the spiking response of a neuron circuit and further
control it by changing the input or other related circuit
parameters. Then, we study the intensity-modulation spiking
characteristics based on the abovementioned neuron circuit. For
a clearer presentation, we split the analysis of the influencing
factors into two parts. First, we discuss the effect of external
parameters on the firing frequency, i.e., the input strength, Rs,
and C in the circuit. After that, we explore the influence of the
device’s intrinsic parameters, including Vth, Vhold, HRS, and LRS.

Effect of External Circuit Parameters on Spiking
Behaviors
Figure 2A illustrates the spike output of a fixed neuron circuit
under different Vin. The input signals are single voltage pulses
with amplitudes varying from 2 to 21 V. When Vin is less than
4 V, the VNbOx is insufficient to switch the device on and thus
presents no spike output during the time interval studied. When
Vin = 8 V, 15 V, 20 V, VNbOx exceeds Vth and switches the device
on. To obviously present the relation between the firing rate and
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Vin, we plot the frequency as a function of input intensity, as
shown in Figure 2B. The spiking frequency amplifies first and
then attenuates with the strengthening of Vin, which faithfully
realizes the response of biological neurons (Stetler et al., 2009).
The appearance of the saturated frequency can be attributed to
the counteraction of the decrease of integration time and the
increase of discharge time with increasing the input intensity.
Under low input intensity, the integration time dominates the
output frequency until the integration time equals the discharge
time, where the frequency gets saturated (see Supplementary
Figure 4 for detailed variation of both the integration time and
discharge time).

Previous studies have roughly indicated that the spiking
frequency is affected by Rs and C (Liu et al., 2016). To formally
and systematically verify this conclusion, a set of voltage pulses
ranging from 0 to 25 V was applied to the same neuron under
a single variable of Rs or C. Figure 2C shows the relationship
between the firing frequency and different Vin with varying the
Rs. Under the same Vin, the frequency decreases with increasing
Rs (Figure 2D). This phenomenon can be clarified as that a
larger Rs resulting in a higher time constant and thus extends
the integration time that directly affects the firing rate of the
device (Zhang et al., 2020). However, the essence of the slow-
down effect is the decrease of charging current caused by the
increase of Rs, which can be offset by lifting the input intensity.
Thus, the saturation values of output frequency are identical (see
Supplementary Figure 5 for detailed integration and discharge
time with different Rs). Figure 2E demonstrates the firing
frequency of circuits with different C under different Vin. For
each curve, the frequency sustains the increase until it reaches
the peak value with intensifying Vin. At the same Vin, the spiking
frequency decreases with the growth of C, as shown in Figure 2F.
This is because the increase of C causes the expansion of both
integration time constant and discharge time constant, which
also results in the reduction of peak frequency under a larger C.
This cannot be eliminated by varying Vin (see Supplementary
Figure 6 for a more detailed analysis).

Furthermore, to explore the limiting frequency of the device,
we shrink C to 300 fF in our circuit model in view of the inevitable
wire parasiticC in the actual test. The inset of Figure 2E illustrates
the spike frequency under different Vin when C declines to
10 pF, 1 pF, and 300 fF. The results reveal that the spiking
frequency can be as high as 500 MHz under 300 fF C. Such
a high oscillation frequency is expected to promote the rapid
development of computing using neuron-like spike signals. As
C is minimized to several orders of fF, the charging/discharge
time of the device is as small as the transition time; then, the
peak frequency is restricted by the transition time of the device.
Also, during the period of transition from HRS (LRS) to LRS
(HRS) of the device, an overshoot (undershoot) above Vth (below
Vhold) of the output oscillation voltage is consequently generated
(see Supplementary Figure 7 for the spike train schematic of
the device with transition time) (Chen et al., 2016). The results
show that the spiking frequency of neurons can be regulated
via changing stimuli, synaptic weights, and membrane C to
modify the integration and discharge time. Specifically, the C
determined the peak frequency, while the synaptic weights did

not. This enables us to customize the properties by adjusting
circuit parameters to meet the demands of specific applications.

Effect of Intrinsic Parameters on Spiking Behaviors
A vital aim of this research is to guide device screening or design
according to the frequency required for application. Therefore, it
is critical to figure out the relationship between device parameters
and spiking frequency. In this part, four intrinsic factors that
affect the spiking frequency are studied based on our model: (I)
Vth and Vhold of the device (Figure 3); (II) HRS and LRS of the
device (Figure 4).

(I) Effect of device’s Vth and Vhold on spiking behavior.
Figure 3A shows a schematic of the Vth ranging from 1.6 to

2.1 V with a fixed Vhold. The recorded frequency-voltage curves
corresponding to each given Vth are illustrated in Figure 3B.
The results illustrate that the beginning spiking voltage (BSV)
increases with increasing Vth, but the stop spiking voltages (SSVs)
are unchanged. This is directly attributed to the requirement
that the device with higher Vth needs to be switched on at a
higher Vin. The inset of Figure 3B presents that the spiking
frequency decreases with increasing Vth under the same Vin.
This mainly results from the prolonged time for the integration
process and also the increased time for discharging. Besides, the
longer integration and discharge time caused by the increased
Vth cannot be fully compensated by a higher Vin, resulting in
a difference in peak firing frequency, as revealed in the blue
curve in Figure 3C. On the other hand, the orange curve in
Figure 3C illustrates that the voltage demanded by the saturation
frequency gradually increases with a higher Vth. This is because
the extension of integration time calls for a higher bias to
compensate for the variation of integration and discharge time
(see Supplementary Figure 8 for detailed discussion).

Except for the Vth, we further adjust the device with different
Vhold, as shown in Figure 3D. Figure 3E shows the corresponding
frequency response curves under different Vin. Unlike changing
Vth, which affects the BSV, the change of Vhold brings about
different SSVs. This is attributed to that a lower Vhold requires
the device to be turned off at a lower Vin, leading to the decline of
stop voltages. The spiking frequency of the device with different
Vhold under the same input is shown in the inset of Figure 3E.
Obviously, the increase of Vhold generates a higher frequency,
which could be explained by the contraction of both charging
and discharge time, thus shrinking the oscillation window. To
more clearly present the effect of Vhold on spiking behaviors, we
extracted the peak frequency under different input intensities. In
contrast to the effect of V th, the peak frequency increases with
enhancing the Vhold, as shown in Figure 3F and Supplementary
Figure 9. A higher input voltage is also required to obtain
the peak frequency with the increase of Vhold. These results
demonstrate that to obtain a higher peak frequency, designing
a device with narrow Vth-Vhold window and low operation
voltages is required.

(II) Effect of device’s HRS and LRS on spiking behavior.
During working, the TS device in the neuron circuit needs

to switch frequently between HRS and LRS to complete the
continuous spiking process; hence, these two states are important
factors. Both high (Rhigh) and low (Rlow) resistances are functions
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FIGURE 2 | The influence of firing rates via changing input intensity (Vin), synaptic resistor (Rs) and capacitance (C). The device used has a Vth of ∼1.90 V and a
Vhold of ∼1.42 V. (A) The firing response under different Vin (4, 8, 15, and 20 V). The circuit parameters are as follows: Rs = 60 k�, C = 10 nF. (B) Corresponding
frequency-voltage curve. (C) The relation between frequency and voltage as a function of Rs under parasitic capacitance. (D) The oscillation behavior with different
Rs under the same Vin of 4 V. (E) The relation between frequency and voltage as a function of C under Rs = 60 k�, which was reduced to 330 fF in simulation and
the firing response frequency of which is demonstrated in the inset. (F) The oscillation behavior with different C under the same Vin of 10 V.

FIGURE 3 | The simulation results of the influence of spiking behavior through varying Vth (A–C) and Vhold (D–F). The circuit parameters used in the simulation are:
C = 100 pF, Rs = 60 k�. (A) Schematic diagram of changing Vth in simulation with a ∼1.42 V Vhold . (B) Related firing frequency with different Vth. (C) The plot of
peak frequency and corresponding voltage with Vth. (D) Schematic diagram of changing Vhold in simulation with a ∼1.90 V Vth. (E) Related frequency with different
Vhold . (F) The effect of Vhold on peak frequency and required voltage.
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FIGURE 4 | Illustration of the variation of firing response caused by Rhigh (A–C) and Rlow (D–F) in the developed model. The circuit parameters used in the simulation
are: C = 100 pF, Rs = 60 k� (A) Different values of HRS adjusted in the model. The linear part of Rhigh function, R0, are marked on the figure, from bottom to top:
154.5, 204.5, 254.5, 304.5, 404.5, 504.5, 804.5, 1004.5 k�. Changing R0 is actually equivalent to shifting the R-V curve in the HRS along the Y-axis. (B,C) The
simulation results of difference between frequency, peak firing behavior and required Vin brought about by changing Rhigh. (D) The tuning of Rlow in the model. R1,
which is the linear part of Rlow function is noted above, along the direction of the arrow is: 0.2, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 2, 2.5 k�. (E,F) Related results obtained
in (D).

of voltage (see section “Materials and Methods” for details). For
providing qualitative analysis, only the constant part value of
HRS (R0) and LRS (R1) is changed here, which corresponds to
HRS (LRS) shifts along the ordinate, as shown in Figures 4A,D,
respectively. Figure 4B demonstrates the relation of frequency
and Vin as a function of R0 obtained through simulation.
Obviously, the larger R0 enables VNbOx to reach Vth at a lower
Vin due to the partial-voltage effect, so the BSV tends to shift
to the left while the SSV remains unchanged. In addition, the
frequency increases with increasing R0 under the same Vin (inset
in Figure 4B), which can be explained by the effect of Rhigh on
the leaky of C during charging, i.e., higher Rhigh leads to less
leaky and thus shortens the integration process. Moreover, to
directly present the effect of R0 on the peak spiking behavior,
we also plot the peak frequency-R0 and Vin-R0 relationship
curves in Figure 4C. As R0 enhances, the peak frequency
first increases slightly and then tends to be saturated (orange
curve in Figure 4C, see Supplementary Figure 10 for detailed
explanation), while the Vin@peak frequency is nearly identical.
The results show that the HRS (R0) only has a slight effect on
the peak frequency, which may help to fine modulate the peak
frequency of the circuit.

Likewise, as for the case of changing R1, the recorded
frequency-Vin relation is illustrated in Figure 4E. Apparently, the
R1 presents a more dominant effect on spiking frequency than
R0. With increasing the R1, both the SSV and peak frequency

decrease while the BSV remains unchanged. This is because the
discharging time is longer under the same input when the R1
is higher, which reduces spiking frequency. Also, a higher R1
divides higher voltage on the device, making the circuit stop firing
under a lower input voltage. The inset of Figure 4E shows the
frequency evolution with decreasing the R1, indicating a linear
relationship. Correspondingly, the peak frequency-R1 and Vin-
R1 relationship curves are illustrated in Figure 4F. Both the peak
frequency and Vin@peak frequency decline as the Rlow increases
(see Supplementary Figure 11 for detailed explanation). These
results suggest that the Rlow is an effective factor in modulating
the spiking frequency of the neuron circuit, providing us the
guidance to design TS device with decent Rlow to meet the
practical applications.

From now on, various parameters of modulating the firing
frequency of spiking neurons have been studied separately. To
more intuitively present the evolution rule, we summarize the
change of frequency, peak frequency, and Vin@peak frequency as
these parameters increase in Table 1.

The Influence Factors on Power
Consumption Per Spike
Heat dissipation becomes the most serious challenge in the
chip industry when it comes to the complex algorithms
and architectures used in current machine learning tasks.
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TABLE 1 | Summary of parameter influences on neuron spiking behaviors.

Circuit parameters Frequency Peak
frequency

Vin @ Peak
frequency

Extrinsic Vin – –

Rs Unchanged

C Unchanged

Intrinsic Vth

Vhold

Rhigh Slight increase
followed by
saturation

Slight decrease
followed by
saturation

Rlow

Neuromorphic chips with bionic characteristics are regarded
as a promising solution to reduce energy consumption
(Blouw et al., 2019). In this context, for further expanding
the practical applications of TS-based neurons, energy
consumption is an inevitable evaluation parameter while
optimizing the spiking frequency based on the application
scenarios. Therefore, the following part presents the relationship
between frequency and spike energy consumption so as
to provide a reference for optimizing the firing states of
neuron circuits.

According to the above analysis, capacitors play the role of
the cell membrane, and the NbOx-based TS device emulates
ion channels. In consequence, capacitor and TS devices are
regarded as a whole, namely, neuron cells. Thus, to obtain
the optimal energy efficiency of a system, we investigate the
power consumption variations of a specific neuron cell brought
about by varying Rs and Vin. For calculating the total energy
consumption of the neuron cell, the current flowing through Rs
(which is equal to the current flowing through the cell according
to Kirchhoff’s law) and the voltage across the device (which is
equivalent to the voltage applied to the neuron cell) are measured.
Figure 5A shows the measured total current and voltage on
the neuron cell during oscillation. The process of VNbOx from
Vhold to Vth is defined as the capacitor integration process,
the voltage on Rs hence decreases, resulting in the decline of
current. The process of VNbOx from Vth to Vhold is defined as
the discharging process, and the voltage on Rs increases because
the TS device switches on. Based on such data, we adopt the
product of total current (the current flowing through the Rs)
and voltage on the neuron cell as the total power. Then we
integrate the total power over an oscillation cycle to obtain the
energy consumption of each spike under different conditions.
Figure 5B shows the energy consumption of each spike under
different Rs and fixed C (100 pF) with increasing the spike
frequency (equal to increasing the Vin). The energy consumption
of neuron cell experiences an attenuation first and then an
increase as the frequency increases. For each fixed Rs, there is
minimum energy consumption, and the minimum values are
identical, which means that a determined neuron cell possesses a
specified lowest energy consumption when the input intensity is
decent. Moreover, the gray curve in Figure 5B is the projection
of energy consumption per spike-frequency curve of multiple

resistors in the ZX plane, indicating that energy consumption of
the cell module is solely related to frequency. This phenomenon
results from the offset between the variation of integration power
consumption and discharge power consumption. In detail, as
the frequency increases, the integration energy consumption
decays continuously due to the shrinking of the integration
process, while the discharging energy consumption gradually
increases owing to the prolonged relaxation period, as depicted
in Figure 5C. When the variation of the former (1ECintegration)
is higher than the latter (1ECdischarging), the energy consumption
shows a decreasing trend and reaches a minimum value until the
two changes are equal. Hence, the lowest energy consumption
can be obtained by adjusting the input intensity and synaptic
resistor according to the demand in practical applications.
It should be noted that when the neuron cell consumes its
lowest energy consumption, the frequency is not the highest.
Therefore, when the application requires a fast response to
achieve optimal performance, the circuit needs to sacrifice
some energy. Hence, compromise considerations between energy
consumption and response speed are required when dealing
with specific tasks.

As for neuron cells, the energy consumption per spike presents
a similar tendency with increasing frequency under each C, which
declines at the early stage, followed by growth, as illustrated in
Figure 5D. The gray curve in Figure 5D further presents the
projection of energy consumption under different C in the ZX
plane. The energy consumption drops with decreasing the C at
the same frequency. This can be attributed to the requirement
for higher Vin to get the same frequency at a higher C, which
induces the rise of base current flowing through Rs, leading to
the increase of energy consumption, as shown in Figure 5E. We
can clearly see that the base current of 330 pF is higher than
that of 100 pF under the same frequency. Moreover, to study
the ultimate energy consumption under a smaller capacitor, we
reduce the C to 300 fF by simulation, obtaining a minimum
energy consumption of∼0.52 pJ per spike under 300 fF, as shown
in Figure 5F. This result indicates that a sub-pJ spike operation
is easy to reach based on such a TS-based neuron by further
reducing the parasitic C. It should be noted that the V th, Vhold,
HRS, and LRS also affect the spike energy, which is not presented
in this work. The results show that the energy consumption
per spike decreases with reducing the Vth, Vth-Vhold window,
also decreases with enhancing the values of HRS or diminishing
the values of LRS.

Spiking Neural Network With
NboX-Based Leaky Integration-and-Fire
Neurons for Cart-Pole Control Through
Reinforcement Learning
To further explore the potential of TS-based neurons in practical
applications, we construct an SNN to perform a cart-pole control
task by adjusting the moving direction of the cart in real time.
Figure 6A depicts the conducted network with an 8 × 256 × 2
structure. The left part of Figure 6A presents the equipment of
a cart-pole game (Barto et al., 1983; Wang et al., 2019), which
consists of a cart and a pole attached by an un-actuated joint
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FIGURE 5 | The energy consumption of the neuron cell. (A) Diagram of integration and discharge energy consumption calculation in a single spike. The orange curve
represents the current flowing into the neuron cell node, and the blue curve represents the voltage applied to the neuron cell. The circuit parameters are: C = 330 pF,
Rs = 60 k�, Vin = 5 V. (B) The variation of energy consumption per spike with spiking frequency related to Rs under a 100 pF C. (C) Analysis of the variation of
integration time and discharge time, which are both extracted from (B). Each data point in (B) is compared to the previous adjacent data point to obtain the changing
value. EC is the abbreviation of energy consumption and “1” represents the changing size. 1ECint and 1ECdis refer to the variation of integration and discharge
energy consumption, respectively. (D) The plot of energy consumption varied with frequency related to the parallel capacitance (C) ranged from 100 pF to 1 nF under
a 60 k� Rs, which are all experimental data. (E) Explanation of the increasing tendency of energy consumption with larger C in the inset of (D). The orange and blue
curves represent the overall current flowing through the neuron cell when the parallel C is 100 and 330 pF, respectively. The red and gray curves demonstrate the
voltage across neuron cell when C is 100 and 330 pF, respectively. (F) Simulation plots of energy consumption-frequency when C is decreased to 330 fF.

connected to the cart by a non-actuated joint. The cart moves
along a frictionless track during working and is controlled by
applying a force of +1 or −1 to it. In the beginning, the pole
begins in an upright position, which needs to be prevented
from toppling. The cart moves left and right to keep the pole
upright and is awarded +1 bonus for each step. The episodes
terminate when the tilt angle of the pole is more than 15
degrees from the vertical or the cart is more than 2.4 units
from the center. To control the pole effectively, it is necessary
to provide the optimal actions to maximize the total rewards
in a specific state of the cart through the constructed network.
The input of the network is the state variables of the cart-pole
(observation). The observation that determines the state of the
pole is a four-dimensional vector: (i) position of the cart on the
track, represented by x; (ii) angle of the pole from the vertical,
represented by θ; (iii) cart velocity, represented by ẋ; (iv) rate of
change of the angle, represented by θ̇. To achieve stable coding,
we use two LIF neurons to encode the positive and negative
values of a variable, respectively, which is why eight input layer
neurons are needed for the four state variables. First, the four
state variables of the cart-pole are fed into the input neurons,
generating spike trains when the neurons’ membrane potential
reaches Vth. These spike trains serving as input are transmitted

to the hidden layer neurons, inducing output spikes that are
then propagated to the output layer. The output neurons are
stimulated, leading to the increase or decline of the membrane
potential that is further converted into probability distribution by
softmax function. Consequently, a sample from this probability
distribution is taken as the decision result. Different from the
gradient descent algorithm in classification tasks, a gradient
ascent algorithm is adopted here, since the maximum of the
objective function is required, and then the synaptic weight is
adjusted accordingly (Williams, 1992).

Figures 6B,C show the rewards of the backend learning agent
in 2,000 game epochs under different Rs and C, respectively. The
reward score gradually increases as the learning process goes on,
finally reaching as high as 450. It is not hard to spot that the
agent gets low scores in the early stage, since it has not learned
a good policy function. Subsequently, the agent gradually trains
the relationship between input and output based on the feedback
of cart-pole output, indicating that the network has the ability
to maintain balance for a long time. Noting that the learning
speed is faster under a lower Rs or C, this is because that the
neurons feature a higher spike frequency in these cases. These
results provide a guide to accelerating the training process of
the network through adjusting the firing frequency and thus lead
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FIGURE 6 | Cart-pole realized in a 3-layer SNN constructed by LIF models. (A) Schematic of the 3-layer SNN for cart-pole. The input of the network is four state
variables. The neurons of the input layer and the hidden layer implement the established LIF model, and thereby generated pulse event sequences are transferred
between different layers of the network. The neurons of the output layer adopts the leaky-integrator neuron model enabling solely integration but not emission, and
the output accumulated voltage are transmitted to softmax function to produce the probability finally. (B) The agent’s rewards in 2000 epochs when the synaptic
resistor (Rs) changes. Spiking frequency of neurons increases with the increase of RS, so that relatively high rewards can be obtained in a shorter period and learning
speed is thus accelerated. (C) The curve of rewards when the parallel capacitance (C) is adjusted. The direction indicated by the arrow reveals that the oscillation
behavior is inhibited as C increases, resulting in a deceleration in rewards growth. Hence, learning speed can be facilitated by enhancing the firing response rate of
neurons.

us to design a neuron circuit by choosing decent parameters in
practical applications.

DISCUSSION

In conclusion, we comprehensively investigated the spiking
characteristics of a NbOx-based LIF neuron from both extrinsic
and intrinsic parameters. The extrinsic parameters include
input strength, synaptic weights, and parallel C. The higher
the given stimulus, the higher the weight, and the smaller
the C, the higher the frequency neuron fires. The intrinsic
parameters include Vth, Vhold, Rhigh, and Rlow of the NbOx
device. Neurons capable of higher spiking frequency are equipped
with lower Vth or higher Vhold and higher Rhigh or lower Rlow.
Furthermore, to meet the practical application, we studied the
relation between spike energy consumption and the frequency
of neuron cells. The results show that a fixed cell possesses
the lowest energy consumption at a fixed frequency, whatever
the connected synaptic resistor is. Besides, given that the
lowest energy consumption and highest frequency cannot be
obtained simultaneously, it is necessary to make a trade-
off between performance maximization and energy saving in
practical applications. In addition, when the C of neuron cells
decreases, the energy consumption of a single spike further
decreases and could be as low as 0.52 pJ at 300 fF. Finally, to
verify the feasibility of improving learning speed by optimizing
device spiking frequency, we construct a three-layer SNN based
on such a neuron for cart-pole control, obtaining a reward
score as high as 450. These results provide important ideas and
guidance for optimizing TS-based neurons and promoting them
in real applications.
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