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Plio-Pleistocene sea level and temperature
fluctuations in the northwestern Pacific promoted
speciation in the globally-distributed flathead
mullet Mugil cephalus
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Abstract

Background: The study of speciation in the marine realm is challenging because of the apparent absence of
physical barriers to dispersal, which are one of the main drivers of genetic diversity. Although phylogeographic
studies using mitochondrial DNA (mtDNA) information often reveal significant genetic heterogeneity within marine
species, the evolutionary significance of such diversity is difficult to interpret with these markers. In the
northwestern (NW) Pacific, several studies have emphasised the potential importance of sea-level regression during
the most recent glaciations as a driver of genetic diversity in marine species. These studies have failed, however, to
determine whether the period of isolation was long enough for divergence to attain speciation. Among these
marine species, the cosmopolitan estuarine-dependent fish Mugil cephalus represents an interesting case study.
Several divergent allopatric mtDNA lineages have been described in this species worldwide, and three occur in
sympatry in the NW Pacific.

Results: Ten nuclear microsatellites were surveyed to estimate the level of genetic isolation of these lineages and
determine the role of sea-level fluctuation in the evolution of NW Pacific M. cephalus. Three cryptic species of M.
cephalus were identified within this region (NWP1, 2 and 3) using an assignment test on the microsatellite data.
Each species corresponds with one of the three mtDNA lineages in the COI phylogenetic tree. NWP3 is the most
divergent species, with a distribution range that suggests tropical affinities, while NWP1, with a northward
distribution from Taiwan to Russia, is a temperate species. NWP2 is distributed along the warm Kuroshio Current.
The divergence of NWP1 from NWP2 dates back to the Pleistocene epoch and probably corresponds to the
separation of the Japan and China Seas when sea levels dropped. Despite their subsequent range expansion since
this period of glaciation, no gene flow was observed among these three lineages, indicating that speciation has
been achieved.

Conclusions: This study successfully identified three cryptic species in M. cephalus inhabiting the NW Pacific, using
a combination of microsatellites and mitochondrial genetic markers. The current genetic architecture of the M.
cephalus species complex in the NW Pacific is the result of a complex interaction of contemporary processes and
historical events. Sea level and temperature fluctuations during Plio-Pleistocene epochs probably played a major
role in creating the marine species diversity of the NW Pacific that is found today.
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Background
In the marine environment, fluctuations in sea level,
water temperatures and sea ice caused by glacial cycles
are believed to have had a major influence on species
distributions and the population connectivity of marine
species [1-3]. For instance, lowered sea levels during gla-
cial maxima led to the emergence of land bridges, which
fragmented marine ecosystems and isolated populations
of aquatic species [4-6]. At the same time, temperature
fluctuations in the Pleistocene epoch influenced popula-
tion dynamics by promoting bottlenecks and the loss of
genetic heterogeneity. In fact, much of the intraspecific
genetic diversity that is exhibited by contemporary spe-
cies is generally assumed to have derived from such
events in the Pleistocene (for a review, see [7]).
The northwestern (NW) Pacific is characterised by

marginal seas, which were particularly impacted by Plio-
Pleistocene glacial cycles. The lowering of sea level
caused the recurrent closure of the Japan Sea, the semi-
closure of the South China Sea and the partial or full
exposure of the East China and Yellow Seas [8]. The

closure of the Japan Sea caused fluctuations in sea tem-
peratures, by halting the influx of the warm Tsushima
Current, a branch of the Kuroshio Current (Figure 1)
that supplies a large amount of heat to northern areas
[9]. As a consequence, seascape dynamics of the region
are believed to have profoundly influenced both intras-
pecific genetic diversity and species diversity of marine
organisms, as exemplified by the exceptional diversity
found in SE Asia [10-12]. This hypothesis has been con-
firmed by recent phylogeographic investigations in the
NW Pacific area (Table 1). The significance of the low-
ering of the sea level and glaciations for species diversity
has generally, however, not been assessed. The overlap-
ping distribution of multiple divergent lineages is a
striking phylogeographic pattern that is common to
most of the organisms that have been investigated in
this region, and it raises the question of whether some
of these lineages are in fact cryptic species. For example,
some authors [13-15] considered the various divergent
lineages to be different species of Pleistocene origin,
while others [16,17] have interpreted these lineages as
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Figure 1 Sampling localitions of Mugil cephalus in the northwestern Pacific. The shaded zone in dark grey is the area of the continental
shelves that was exposed during periods of low sea levels. Blue arrows correspond to currents present in the area, C. C. C.: China Coastal
Current, S. C. C.: South China Current.
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intraspecific polymorphisms, consistent with the exis-
tence of isolated populations during glacial maxima and
secondary contact at the end of the Pleistocene. Finally,
the comparison of phylogeographic information among
different marine species inhabiting the same area can
provide for conflicting interpretations of the role of
decreasing sea level and Pleistocene glaciations, and
highlights the difficulty of distinguishing species in the
early stages of differentiation from populations experien-
cing secondary contact after an extended isolation.
The flathead mullet, Mugil cephalus Linnaeus, 1758, is

a euryhaline teleost distributed worldwide in coastal
waters, lagoons, bays and estuaries between latitudes 42°
N and 42° S [18]. It is subjected to intense and unregu-
lated inshore fisheries in the NW Pacific because of the
economic value of its roe. There have been drastic
declines in the landings of M. cephalus since 1980 (6
865 metric tons in 1980 versus 159 metric tons in 2008;
Taiwan Fisheries Agency), which has been suggested to

be the result of overfishing and the impact of global
warming [19,20]. Thus, a sound management program
is urgently needed, which requires precise knowledge
about the taxonomy and population structure of this
over-exploited species.
Previous studies have shown that up to three highly

divergent mitochondrial lineages exist in sympatry in
NW Pacific M. cephalus populations [14,17,21]. This
high inter-lineage divergence raises questions about the
taxonomic status of M. cephalus in the NW Pacific, but
studies have not reached consensus on this issue. The
inter-lineage divergence of 48% observed at the mtDNA
control region probably indicates a species complex,
because such divergence coupled with the existence of
different reproductive behaviours (resident versus migra-
tory) demonstrates that these lineages are independent
[14]. By contrast, an inter-lineage divergence of 5.3 to
6.7% was estimated using cytochrome b sequences,
which would argue for the existence of a single species

Table 1 List of phylogeographic studies that investigated the genetic diversity of NW Pacific marine species and
summary of the relevant information reported in each study

Species Organism Genetic info. N Structure/Refugium NL % div. cryptic
sp.

References

Mugil cephalus Fish control region 126 East China Sea vs South China Sea 2 48% yes [14]

Mugil cephalus Fish control region 140 East China Sea vs South China Sea 2 55% no [21]

Mugil cephalus Fish cyto b 98 Japan Sea vs East China Sea vs South China Sea 3 5.1-6.6% no [17]

Mugil cephalus Fish COI 448 Japan Sea vs South China Sea vs SW Pacific origin 3 2.5-4.8% yes This study

Mugil cephalus Fish 16 S, 12 S 9 East China Sea vs South China Sea 2 1.87%,
1.61%

yes [71]

Mugil cephalus Fish microsatellites 713 Japan Sea vs South China Sea vs SW Pacific origin 3 11.5-30.5% yes This study

Mugil cephalus Fish AFLP 118 Bohai Sea vs Yellow Sea vs East China Sea vs South
China Sea

4 - no [23]

Chelon
haematocheilus

Fish control region 272 Japan Sea vs East China Sea vs South China Sea 3 1.55-2.41% no [16]

Chelon
haematocheilus

Fish 16 S, 12 S 8 East China Sea vs South China Sea 2 2.81%,
4.11%

yes [71]

Odontamblyopus
sp.

Fish ND5 85 East China Sea vs South China Sea 3 2.37-8.96% yes [15]

Lateolabrax sp. Fish control region 256 Japan Sea vs East China Sea 2 22.60% yes [72]

Lateolabrax sp. Fish cyto b 256 Japan Sea vs East China Sea 2 7.80% yes [72]

Eriocheir sensu
stricto

Crustacean COII, cyto b 154 Japan Sea vs East China Sea vs South China Sea 3 3.2-4.05% yes [13]

Eriocheir sensu
stricto

Crustacean COI, cyto b 446 Japan Sea vs East China Sea vs South China Sea vs
Ryukyu

4 - no [54]

Penaeus japonicus Crustacean control region 95 Japan Sea vs East China Sea vs South China Sea 3 FCT = 0.04 no [73]

Cyclina sinensis Mollusk RAPD 50 Yellow Sea vs South China Sea 2 10.90% no [74]

Cyclina sinensis Mollusk AFLP 160 Yellow Sea vs China Sea 2 - no [75]

Tegillarca granosa Mollusk COI 38 East China Sea vs South China Sea 2 15% no [76]

Tegillarca granosa Mollusk RAPD 96 East China Sea vs South China Sea 2 32.6
-45.1%

no [77]

Helice sp. Mollusk COI, 16 S, 12 S,
ITS2

123 East China Sea vs South China Sea vs Ryukyu &
Taiwan Islands

3 0.16-1.13% yes [78]

N: sample size, NL: number of lineage, % div.: percentage of divergence.

Shen et al. BMC Evolutionary Biology 2011, 11:83
http://www.biomedcentral.com/1471-2148/11/83

Page 3 of 17



because the genetic divergence between mugilid species
exceeds this by a factor of two [17]. However, because
the mtDNA genome used in both studies is maternally
inherited, it is not possible to determine whether the
presence of divergent mitochondrial lineages in the
same sample is a result of secondary contact after an
extended period of isolation and/or the presence of two
sibling species.
To our knowledge, only two studies on M. cephalus in

this region have used biparentally inherited markers
[22,23]. The first study used an allozyme locus, GPI-A
(glucose-6-phosphate isomerase), which may be able to
distinguish migratory from resident M. cephalus popula-
tions [22]. More recently, Liu et al. [23] found a high
level of genetic structure in M. cephalus using AFLP,
and four populations were identified among a set of 6
samples collected along the Chinese coast, with the
southern samples (Hainan Island) being the most diver-
gent. This marked genetic structuring in NW Pacific M.
cephalus contrasts with findings from the Gulf of Mex-
ico and the northwest Atlantic, which did not reveal any
genetic heterogeneity over a similar geographic scale,
and found only one mitochondrial lineage [24,25].
Therefore, given all of the above uncertainties, this study

investigated the level of both historical and contemporary
gene flow among M. cephalus samples collected in the
NW Pacific, using a set of ten microsatellites and one
mtDNA (COI) locus. The objective was to estimate the
level of independence of the different M. cephalus mtDNA
lineages, and reveal the existence of cryptic species. This
provided an opportunity to address both the evolutionary
forces and reproductive boundary uncertainties among
and within the mitochondrial lineages. Finally, we aimed
to better understand the importance of Pliocene and Pleis-
tocene geologic and climatic events in the diversification
of marine species in the NW Pacific.

Methods
Sampling and DNA extraction
A total of 713 sub-adult to adult M. cephalus were col-
lected from 12 locations in the NW Pacific (Table 2,
Figure 1). Additional temporal sampling (2005-2008)
was conducted at three localities around Taiwan: the
coast of Keelung (KL), which is located midway along
the M. cephalus spawning migration route from the
Eastern China Sea; the offshore waters of Kaohsiung
(KS), where spawning occurs; and the Kaoping Estuary
(KP), a tropical system located in southwestern Taiwan.
Sampling locations, dates of collection, sample sizes for
microsatellites analyses, mtDNA lineage (highlighted
either by sequencing or multiplex COI haplotype-speci-
fic PCR), mean fork length (mm) and gonadosomatic
index (GSI) data for the M. cephalus from Taiwan are
shown in Table 2. Muscle tissues were preserved in 95%

ethanol prior to DNA extraction. Genomic DNA was
extracted from muscle tissue using a DNA Purification
Kit (Bioman, Taipei, Taiwan), preserved in TE buffer
and then quantified and diluted to 1 ng/μl for PCR.

Mitochondrial DNA analysis
Partial mtDNA COI gene sequences (627 bp) were
amplified by polymerase chain reaction (PCR) using the
universal primers FishF1 and FishR1 [26]. To identify
M. cephalus cytochrome b lineages [17], cytochrome b
gene was also sequenced for 20 individuals belonging to
three COI lineages using the cytochrome b primers
MCglu-1.F: GGCTTGAAAAACCACCGTTG and
MCcytbR: AGTACTGTGGCAGAGCTTGG. PCR was
performed in a Biometra TGradient Thermocycler with
a 15-μL reaction volume containing 0.2 μm dNTPs, 1.5
μL of 10× PCR buffer (Bioman, Taipei, Taiwan), 0.5 μm
each of forward and reverse primer, 0.2 U Taq DNA
polymerase (Bioman, Taipei, Taiwan), and 1.0 μL of
template DNA. MtDNA amplification was carried out
using the following PCR conditions: 35 cycles of dena-
turation at 94°C for 15 s, annealing at 58°C for 15 s and
extension at 72°C for 30 s after heating at 94°C for 5
min. The PCR products were electrophoresed on a 1.0%
agarose gel (Bioman, Taipei, Taiwan) and stained with
ethidium bromide for band characterisation via ultravio-
let trans-illumination. All sequencing reactions were
performed according to the manufacturer’s protocol
(Applied Biosystems, Foster City, CA, USA) using the
same forward primer as used for PCR.
All COI sequences were automatically aligned using

MAFFT version 6 [27] and manually corrected. The char-
acterisation of the genetic variability of the COI gene
sequences and the number of nucleotide substitutions,
including transition/transversions, were conducted using
ARLEQUIN version 3.01 [28]. Phylogenetic trees were
reconstructed using the Bayesian, neighbour joining (NJ),
maximum likelihood (ML) and maximum parsimony
(MP) methods. The Bayesian method was applied using
the program MrBayes 3.0 [29], and NJ, ML and MP were
applied using the program PAUP 4.0 [30]. The transver-
sion model with invariable sites HKY + I + G (I = 0.097,
G = 0.244, Ts/Tv ratio = 5.4465) was selected for con-
struction of the phylogenetic tree using Mugil curema as
an outgroup (GenBank accession numbers: EU715464,
[31]) and the Akaike information criterion (AIC) in
MODELTEST 3.7 [32]. Nodes with bootstrap values ≥
70% were considered well supported [33].
The fixation index (FST) for all pair-wise comparisons

among different populations was calculated to investi-
gate genetic diversity among M. cephalus populations,
and a permutation test (10 000 permutations) was per-
formed using ARLEQUIN version 3.01 [28]. Population
genetic diversity was measured within each of the
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Table 2 Summary of the collected data and sample sizes of Mugil cephalus used in microsatellite (MS) and mitochondrial (mtDNA) COI gene analyses

Country code Locations/Habitat Sampling date Long. - Lat. N indiv. % mtDNA Lineage Fork length GSI GSI mean ± se/

microsat COI/RS 1 2 3 mean ± se (mm) mean ± se mtDNA 1 mtDNA 2 mtDNA 3

Taiwan 05 KL Keelung/ Dec. 2005 25°11’N 121°47’E 50 50/50 92 8 0 464.80 ± 37.89 15.67 ± 5.97 15.91 ± 5.82 12.86 ± 7.94 -

06 KL Coastal waters Dec. 2006 48 11/48 98 2 0 478.77 ± 32.81 15.16 ± 7.80 15.32 ± 7.81 7.49 -

07 KL Dec. 2007 47 47/47 77 19 4 484.6 ± 68.37 10.60 ± 6.45 12.31 ± 5.55 5.87 ± 6.58 1.03 ± 0.27

05 KS Kaohsiung/ Dec. 2005 22°37’N 119°30’E 44 36/44 100 0 0 475.73 ± 34.55 20.61 ± 0.68 20.61 ± 0.68 - -

06 KS Offshore waters Dec. 2006 50 20/50 100 0 0 489.25 ± 25.37 19.75 ± 4.23 19.75 ± 4.23 - -

07 KS Dec. 2007 57 49/57 100 0 0 526.01 ± 38.07 18.03 ± 1.44 18.03 ± 1.44 - -

05 KP Kaoping River/ Dec. 2005 22°28’N 120°25’E 45 36/45 0 49 51 289.34 ± 19.58 0.81 ± 1.97 - 1.01 ± 1.52 0.73 ± 2.37

07 KP Estuary Dec. 2007 49 39/49 14 63 23 501.07 ± 55.12 8.30 ± 7.50 7.31 ± 5.94 6.73 ± 6.19 13.37 ± 7.65

08 KP Jan. 2008 38 37/38 13 71 16 481.69 ± 39.00 0.01 ± 0.01 0.02 ± 0.03 0 0.01 ± 0.01

Japan OK Okinawa Nov. 2005 26°24’N 127°54’E 48 13/48 27 73 0 - - - - -

YK Yokosuka Jan.-Feb. 2005 36°16’N 139°41’E 43 8/43 35 65 0

AS Ariake Sea Nov. 2007 33°00’N 130°26’E 21 19/21 100 0 0 - - - - -

China HN Hainan Apr. 2010 18°65’N 110°37’E 32 32/32 0 41 59 - - - - -

PR Pearl River Feb. 2005 22°45’N 113°37’E 30 16/30 0 90 10

ST Shantou Jan. 2008 23°20’N 116°44’E 48 7/48 0 91 9 - - - - -

QD Qingdao Feb. 2006 36°02’N 120°21’E 32 10/31 100 0 0 - - - - -

Philippines PH Philippines Feb. 2007 18°21’N 121°37’E 14 14/14 0 100 0 - - - - -

Russia RU Russia Jun. 2007 42°53’N 132°44’E 4 4/4 100 0 0 - - - - -

Jul.-Aug. 2009 13 0/13 100 0 0 - - - - -

Total 713 448/712

RS: rapid PCR screening of different lineages. The ratio of different lineages in each sample, their fork length and Gonadosomatic index (GSI) are also shown.
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populations based on the number of distinct haplotypes,
gene diversity (h) and mean nucleotide diversity (π),
using ARLEQUIN version 3.01 [28].
The divergence time for the M. cephalus COI gene was

estimated using Bayesian Evolutionary Analysis Sampling
Trees (BEAST) ver. 1.5.2 [34] with 20 million steps in a
Monte Carlo Markov Chain (MCMC) simulation (2 mil-
lion step burn-in time). COI sequences of M. cephalus
samples from disjunct locations in the western Atlantic
(South Carolina: GenBank accession numbers: HQ149710
and Florida: GenBank accession numbers: HQ149711) and
eastern Pacific (Peru: GenBank accession numbers:
HQ149714 and Mexico: GenBank accession numbers:
HQ149715) were used for the calibration, and assuming
that the divergence of these populations corresponds to
the closure of the Isthmus of Panama, 2.8 MY ago [35]. A
strict molecular clock was assumed for this final run. The
effective sample sizes (ESS) of parameters sampled from
the MCMC were > 500 (acceptable ESS is >200). The
results were viewed using TRACER 1.4 [36]. Historical
demographic/spatial expansions of M. cephalus were
explored using two different approaches. Tajima’s D [37]
and Fu’s FS [38] tests were used to test population equili-
brium. Deviations from the sudden population expansion
model were tested using the Harpending’s raggedness
index RI of mismatch distributions [39].

Rapid screening of the different mtDNA lineages
A multiplex COI haplotype-specific PCR (MHS-PCR)
was designed following the recommendations of pre-
vious studies [40,41] to develop a rapid screening
method capable of detecting different mitochondrial
lineages of M. cephalus. Specific mutations of the differ-
ent M. cephalus mtDNA lineages were identified using
448 COI sequences of M. cephalus produced in this
study. NWP1,2F (5’ GCTTTTCCCCGAATAAAT 3’)
was the forward primer for both lineage 1 and lineage 2,
while NWP3F (5’TACTGCCCTAAGCCTACTC 3’) was
the forward primer for lineage 3. NWP1,3R (5’
CGATCTGTTAGGAGTATGG 3’) was the reverse pri-
mer for lineage 1 and lineage 3, while NWP2R (5’
CTCATACGAAAAGGGGTGTT 3’) was the reverse
primer for lineage 2. PCR was performed using a Bio-
metra TGradient Thermocycler with a 15-μL reaction
volume containing 0.2 μm of each dNTP, 1.5 μL 10×
PCR buffer (Bioman, Taipei, Taiwan), 0.5 μm forward
and reverse primers, 0.2 U Taq DNA polymerase (Bio-
man, Taipei, Taiwan), and 1.0 μL of template DNA.
MtDNA amplification was carried out using the follow-
ing PCR program: 35 cycles of denaturation at 94°C for
15 s, annealing at 55°C for 15 s and extension at 72°C
for 30 s after heating at 94°C for 5 min. The PCR pro-
ducts were electrophoresed in a 1.0% agarose gel (Bio-
man, Taipei, Taiwan) and stained with ethidium

bromide. Lineage 1 had a PCR product of 362 bp, while
lineage 2 and lineage 3 had PCR products of 283 bp and
549 bp, respectively (Additional file 1, Figure S1). The
rest of the samples that were not sequenced were all
rapidly screened to determine their lineages.

Microsatellite analysis
Ten microsatellite loci were used to screen the genetic
diversity of the M. cephalus samples [42]. Reverse pri-
mers for each locus were labelled with fluorescent dyes
(6-FAM, HEX and TAMRA), and multiplex PCR was
performed in a 15-μl reaction volume containing 0.1 ng
DNA, 1.25 pmole each of the three reverse primers
labelled with different fluorescent dyes, 1.25 pmole of
each forward primer, 5 mM dNTP, 1.5 mM MgCl2 and
0.5 U of Taq polymerase (Bioman, Taipei, Taiwan).
Amplification was conducted as follows: initial denatura-
tion at 95°C for 4 min, followed by 35 cycles at 94°C,
54-58°C and 72°C for 30 sec each. Locus polymorphisms
were screened using an ABI PRISM 377 auto DNA
sequencer (Applied Biosystems, Foster City, California,
USA). Lengths of microsatellite alleles were determined
using a TAMRA-labelled 100 bp standard (Perkin-
Elmer, Waltham, Massachusetts, USA).
The calculation of the number of alleles, estimated

(HE) and observed heterozygosities (HO) for each locality
and for all samples, the genetic differentiation index (θ
an estimator of f analogues of Wright’s fixation indices
[43]) among samples, locus-by-locus AMOVA and the
exact test for deviations from Hardy-Weinberg equili-
brium at every locus for each locality were performed
using ARLEQUIN version 3.01 [28] and GENETIX soft-
ware [44]. The significance level for multiple simulta-
neous comparisons was adjusted using the sequential
Bonferroni technique [45]. The allelic richness of the
minimum population size by a rarefaction method and
Fis was estimated with FSTAT 2.9.3 [46]. The signifi-
cance of the differences in allelic richness was tested by
the Wilcoxon signed-rank test for paired observations
(see [47] for power analysis). The program GENEPOP
version 3.1 [48] was used to test for linkage disequili-
brium among the ten loci analysed in this study (10 000
permutations, 1 000 dememorisation steps).
The presence of intraspecific genetic structure was

tested using the model-based clustering method [49], as
implemented in STRUCTURE VER. 2.1. For each value
of K, which is the number of genetically distinct popula-
tions, the Markov chain Monte Carlo scheme was run
with a burn-in period of 10 000 steps and a chain length
of 100 000 replicates following the non-admixture model.
Twenty runs were performed to evaluate the reliability of
the results, with the number of populations being deter-
mined from posterior probabilities of K calculated as K =
{1 ~ 6}. The K values could be incorrectly estimated if
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the migration rates between populations are not equal, so
the values of ΔK were also calculated for each value of K
[50]. Individuals were regarded as correctly assigned to a
population when their q-value (i.e. the posterior probabil-
ity) was at least 80% after subtracting the posterior prob-
ability assignment of another population [47].

Results
Mitochondrial DNA
A total of 627 nucleotides of the COI gene were obtained
from 448 individuals. In these sequences, 54 positions
were variable (Additional file 2, Table S1), defining 36
haplotypes (Genbank accession numbers GU260664-
GU260697, HQ149082-HQ149083). Phylogenetic trees
reconstructed using either COI (Figure 2) or cytochrome
b (Additional file 3, Figure S2) sequences [17] all sup-
ported the existence of three highly supported monophy-
letic lineages in NW Pacific M. cephalus. Seventeen COI
haplotypes were found in lineage 1, including 15 nucleo-
tide transitions and three nucleotide transversions. Of
these, HT2 was the most frequent haplotype, being
shared by the samples from Taiwan, Japan, Qingdao and
Russia, and it was connected to the other 16 haplotypes
(HT1-HT15, HT35-HT36) by one to two steps in a “star-
like” haplotype network (Figure 3a). The other 16 COI
haplotypes were minor and mainly found in Keelung and
Kaohsiung. Fifteen COI haplotypes were found in lineage
2, including 11 nucleotide transitions and two nucleotide
transversions. Two major haplotypes (HT17 and HT25)
were shared by samples from Keelung, the Kaoping
River, Okinawa, Yokosuka, the Pearl River, Shantou and
the Philippines. These two main haplotypes had only two
nucleotide differences and were mainly found at the
Kaoping River site. Lineage 3 consisted of only four COI
haplotypes, with the main haplotype (HT32) occurring at
the Kaoping River and Hainan sites and in a few samples
from Shantou and Keelung. The fixation index (FST)
showed significant differentiation among the three
lineages (FST = 0.973, P < 0.001). The pair-wise FST

values were 0.960 (P < 0.001) between lineage 1 and line-
age 2; 0.956 (P < 0.001) between lineage 2 and lineage 3
and 0.994 (P < 0.001) between lineage 1 and lineage 3.
Fifteen variable sites were found within the amplified
627-bp COI fragment (2.5% of sites) between lineage 1
and lineage 2, with approximately 6.7% of the inferred
changes being transversions. While 24 and 30 variable
sites were found between lineages 2 and 3 (3.8%) and
between lineages 1 and 3 (4.8%), respectively, with
approximately 21% and 13% of the inferred changes
being transversions. The calibrated mean mutation rate
of the COI gene in M. cephalus was 1.6% mutations/
site/MY. Therefore, the calibrated divergence time using
BEAST was 1.607 MY (HPD 95% confidence interval
were 2.383-0.892 MY, ESS = 1475) between lineages 1

and 2 and 4.200 MY (HPD 95% confidence interval
were 5.708-2.801 MY, ESS = 876) between lineage 3 and
the ancestor of lineages 1 and 2. BEAST also suggested
that lineage 3 is much older than the others, even com-
pared to M. cephalus populations present in the eastern
Pacific and western Atlantic, and does not share the
most recent common ancestor of lineages 1 and 2.
The mismatch distributions of lineage 1 and 3 were

unimodal, with almost no pair-wise differences between
them (Figure 3b). Lineage 3 exhibited a more uneven
mismatch distribution compared to lineage 1. By con-
trast, the mismatch distribution of lineage 2 was bimo-
dal (Figure 3b), with peaks at zero and two
substitutions. RIs were not significant for any lineage.
On the other hand, both Tajima’s D and Fu’s FS were
negative and highly significant for lineage 1. For lineage
2, Tajima’s D values were all negative, but only signifi-
cant for the control region, while Fu’s FS were all nega-
tive and significant for all genes. Finally, both Tajima’s
D and Fu’s FS were negative, but not significant for the
lineage 3 for any gene considered (Table 3).

Microsatellites
A total of 180 alleles with an average of 18.0 alleles per
locus were observed across the ten microsatellite loci
(Additional file 4, Table S2). All loci were polymorphic,
except for locus Mce-8, which was monomorphic in
some of the samples. Twenty-one of 180 sample-locus
combinations deviated significantly from Hardy-Wein-
berg proportions after Bonferroni correction. However,
the deviations of these loci were not significant in most
locations (including Kaoping and Hainan) when indivi-
duals were sorted according to one of the three mtDNA
lineages, suggesting a Wahlund effect, which is the
reduction of heterozygosity in a sample due to the mix-
ture of genetically differentiated populations. No linkage
disequilibrium was detected within the M. cephalus
populations (P > 0.05).
AMOVA indicated that the genetic differentiation of

M. cephalus among 18 spatial and temporal samples
was highly significant (θ = 0.060, P < 0.001). A locus-by-
locus AMOVA indicated that all loci could detect popu-
lation differentiation among the samples. However, no
temporal variation was observed in allelic frequencies
among the KS, KL and KP locations where the temporal
samples were obtained. During three to four years of
sampling, no genetic heterogeneity was observed among
the temporal samples collected at the same location,
except in KP, and the genetic differentiation between
locations remained stable (Table 4).
The results from the STRUCTURE assignment test

supported three clusters based both on the log probabil-
ity of the data [L(K)] and the statistic ΔK, as described
in [49,50], respectively (Additional file 5, Table S3).
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With K = 3, almost all individuals were clearly assigned
to one of the three clusters (Figure 4). The posterior
probabilities corresponding to the assignment of indivi-
duals to cluster 3 (red bar, hereafter denoted as NWP3)
were all unambiguous, while the assignments to one of
the two other clusters (green bar for NWP1 and blue

bar for NWP2) included several ambiguous individuals
(7 over 645 individuals belonging either to NWP1 and
NWP2). The individuals from Kaohsiung, Qingdao, the
Ariake Sea and Russia were mostly assigned to NWP1;
the individuals from the Philippines were all assigned to
NWP2, while at least two clusters coexist in Keelung
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and the Kaoping River of Taiwan (NWP1, NWP2 and
NWP3), Hainan, the Pearl River and Shantou of China
(NWP2 and NWP3) and Okinawa and Yokosuka of
Japan (NWP1 and NWP2) (Figure 5a). According to
their occurrence areas, NWP1 is mainly observed in the

north of our sampling area (Figure 5b, North China
Seas and Japan), whereas the NWP3 is mostly found at
southern stations (Figure 5d, South China Sea). NWP2
has the widest range; it is present from the north to the
south of the sampling area (Figure 5c).
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Genetic variability in mtDNA and microsatellites
There was congruence between the two molecular mar-
kers when the results of the assignment test were com-
pared to the COI sequence data (Figure 4). The results
indicated that 385 of 390 individuals assigned to NWP1
harboured mtDNA representing lineage 1, 253 of 255
individuals assigned to NWP2 harboured mtDNA of
lineage 2, and all 68 individuals assigned to NWP3 har-
boured lineage 3 mtDNA. This resulted in a successful
assignment rate of 99.0%. Although there were seven
ambiguous individuals in NWP1 and NWP2 below our
assignment criteria, the mean q-values of assignment
test for these two clusters were still over 0.99 (Addi-
tional file 6, Table S4).
In each location sampled, individuals belonging to the

same mtDNA lineages were grouped together to further
investigate the genetic structure of the three Operational
Taxonomic Units (OTUs). Genetic variability analysis
showed that only two of the 30 combinations, loci Mce-

3 and Mce-8 of NWP3, deviated significantly from
Hardy-Weinberg proportions after Bonferroni correction
(Additional file 7, Table S5). The allelic richness per
locus based on the minimum sample size (68 individuals
of NWP3) was significantly lower at NWP3 than NWP2
(P < 0.001) and NWP1 (P < 0.001) and slightly lower at
NWP2 than NWP1 (P < 0.05) for the ten microsatellite
loci (HO was lower at NWP3 than the other two clus-
ters). The genotypes at Mce-14 of NWP2 and Mce-10
of NWP3 were all homozygous.
Population genetic differentiation among these three

clusters was highly significant (θ = 0.179, P < 0.001).
Pair-wise θ comparison indicated that NWP3 was the
most differentiated (θ NWP3-NWP1 = 0.296, P < 0.001; θ
NWP3-NWP2 = 0.305, P < 0.001), while level of differentia-
tion was lower but still highly significant between
NWP1 and NWP2 (θ = 0.115, P < 0.001). In addition,
no genetic heterogeneity was detected among samples
belonging to any one of the three OTUs, with the

Table 3 Summary of the genetic diversity of Mugil cephalus

Species Marker n Na/H h/HO +/- se π +/- se RI Tajima’s D Fu’s Fs

NWP1 CR1 79 79 1.0000 +/- 0.0020 0.0095 +/- 0.0050 0.008 -2.793*** -24.76***

Cytob2 35 6 0.2689 +/- 0.0982 0.0003 +/- 0.0003 0.285 -2.007** -5.866***

COI 250 17 0.1316 +/- 0.0295 0.0002 +/- 0.0004 0.581 -2.439*** -3.4 × 1038***

Microsatellite 390 17.2 0.6097 +/- 0.2751 - - - -

NWP2 CR1 47 47 1.0000 +/- 0.0040 0.0364 +/- 0.0180 0.003 -1.962* -23.263***

Cytob2 43 24 0.9513 +/- 0.0176 0.0030 +/- 0.0017 0.028 -1.68 -16.53***

COI 138 15 0.6525 +/- 0.0264 0.0021 +/- 0.0015 0.149 -1.169 -7.212**

Microsatellite 255 13.2 0.5745 +/- 0.2702 - - - -

NWP3 CR1 0 - - - - - -

Cytob2 17 11 0.9044 +/- 0.0572 0.0052 +/- 0.0030 0.08 -0.783 -1.875

COI 60 4 0.2989 +/0.0737 0.0006 +/- 0.0006 0.245 -0.361 -1.617

Microsatellite 68 5.8 0.3310 +/- 0.2991 - - - -

Number of individuals (n), number of haplotype (H) or alleles (Na), haplotype diversity (h ± standard deviation) or observed Heterozygosity (HO ± standard
deviation), nucleotide diversity (π ± standard deviation) for each group of samples. Tajima’s D and Fu’s Fs, the corresponding P value, and the raggedness index
(RI) of these lineages were also indicated.
1 data from [14], 2 data from [17]. *P < 0.05, ** P < 0.01, ***P < 0.001

Table 4 Temporal pair-wise θ test, using microsatellite loci between different sampling locations and years in Taiwan

KL KS KP

Location Year (n) 2005 2006 2007 2005 2006 2007 2005 2007 2008

KL 2005 50 - 0.000 -0.003 0.003 0.004 0.001 0.131*** 0.068*** 0.061***

2006 48 - 0.004 -0.001 0.002 0.000 0.150*** 0.087*** 0.079***

2007 47 - 0.003 0.007* 0.007** 0.116*** 0.055*** 0.047***

KS 2005 44 - 0.001 0.000 0.157*** 0.090*** 0.080***

2006 50 - 0.001 0.154*** 0.088*** 0.085***

2007 57 - 0.165*** 0.099*** 0.091***

KP 2005 45 - 0.021* 0.041**

2007 49 - 0.003

2008 38 -

KL:Keelung; KS:Kaohsiung; KP:Kaoping River.

* < 0.05, ** < 0.01, *** < 0.001 in bold significant values after bonferroni correction [45].
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exception of the Ariake Sea, which had some genetic
heterogeneity among the samples of NWP1 (Table 5).

Discussion
Historical demography and phylogeography
Since the Plio-Pleistocene, successive periods of sea-level
regression have directly impacted the species connectivity
of the marginal seas of the NW Pacific. This has clearly
been demonstrated by previous phylogeographic studies
(Table 1), which have identified Pleistocene refugia in all
marginal seas. Our results argue for the existence of
three mtDNA lineages of M. cephalus in the NW Pacific
but only two, NWP1 and NWP2, are of Pleistocene ori-
gin. The NWP3 lineage diverged from the NWP1 and
NWP2 common ancestor during the Miocene or the
Pliocene epoch, and we assume that the origin of NWP3
does not relate to geological events in the NW Pacific
because this lineage is also observed in the southwestern
(SW) Pacific (in Fiji and New Caledonia Islands; Durand,
pers. com.). While it appears likely that the refugium of
the NWP2 lineage was located in the South China Sea,
the location of the NWP1 refugium is more difficult to
assess. The closure of the Tsushima Straits (between
Korea and Japan, Figure 1), which isolated the Japan Sea,
may have been the powerful vicariant event that was at
the origin of the NWP1 lineage. Reconstruction of the

history of the Tsushima Current [9] demonstrated that
during the interval between 3.5-1.7 MY, the current only
flowed into the Sea of Japan periodically and the volume
and salinity of water was lower than at present. After 1.7
MY, the Tsushima Current flowed throughout almost all
interglacial periods and, more importantly, with a volume
and water salinity similar to the present day. This date
matches the calibrated dates of divergence estimated
between NWP1 and NWP2, suggesting that the NWP1
ancestor was not able to enter in the Japan Sea before 1.7
MY. During each glacial episode, ancestors of the NWP1
lineage that were trapped in the Japan Sea probably
experienced several demographic crashes due to
decreases in surface water temperatures [51-53]. This
hypothesis is consistent with the observed genetic diver-
sity and Tajima’s D and Fu’s FS indices, which indicate
bottleneck events in NWP1 (Table 3). Climatic oscilla-
tions during the Pleistocene epoch were probably less
marked in more southerly latitudes, where the influence
of the Kuroshio Current was still exerted, which would
explain why NWP2 presents a higher genetic diversity
than NWP1. Similar trends can be observed in the
genetic diversity pattern of other NW Pacific species,
such as Chelon haematocheilus and Odontamblyopus
lacepedii sensu lato, suggesting that this scenario may
have affected all species inhabiting the area [15,16].
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Figure 4 Correspondence between mtDNA lineages and nuclear Structure clusters. First row is the distribution of the 3 mtDNA lineages
(green: lineage 1, blue: lineage 2, red: lineage 3) in 18 samples of Mugil cephalus in NW pacific. Second to forth row are the results of the
assignment test using STRUCTURE [49] for M. cephalus microsatellite data. Each cluster (K) is designated by a different colour with vertical bars
representing individuals and the proportion of a bar assigned to a single colour representing the posterior probability that an individual is
assigned to that cluster. Assignment results are shown with K = 3, 4, 5 and 6.

Shen et al. BMC Evolutionary Biology 2011, 11:83
http://www.biomedcentral.com/1471-2148/11/83

Page 11 of 17



Lastly, the East China Sea, which was exposed during
the Pleistocene glaciations, seems to be a post-glacial
contact zone for M. cephalus. While the Yellow Sea was
recolonised by NWP1 from a northern route of disper-
sion through the Tsushima Strait, the Ryukyu Islands
and East Japan were recolonised by both NWP1 and
NWP2 from southern routes that followed the Kuroshio
Current (but see below). If the East China Sea experi-
enced a post-glacial colonisation wave from the Japan
Sea, it appears that in species such as Chelon haemato-
cheilus and Eriocheir sensu stricto, older colonisation
waves were also possible, which allowed the emergence
of a specific East China Sea lineage in these species
[16,54].

Cryptic M. cephalus species in the NW Pacific
It has previously been hypothesised that M. cephalus is
a species complex rather than a unique panmictic unit.
To date, however, this has not been proven, due to
inadequate sampling schemes with samples separated by

thousands of km, or the use of only maternally inherited
markers [14,17,25,31,55-57]. The present study demon-
strates that M. cephalus is indeed composed of at least
three genetically divergent species in the NW Pacific.
While COI inter-lineage divergence in M. cephalus
exceeds intra-lineage divergence (0.4 to 0.2%) by a ratio
greater than 10, which is an indicator of cryptic species
according to the 10× rule [58], the nuclear bi-parentally
inherited markers provide the most definitive evidence
of cryptic species. The assignment tests strongly sup-
ported the existence of three groups where 99% of M.
cephalus were significantly assigned (posterior probabil-
ities <10% and >90%). Furthermore, the complete con-
gruence between nuclear groups and mitochondrial
lineages suggests that lineage sorting of ancestral poly-
morphisms has been completed. Lastly, further to the
argument that the M. cephalus mitochondrial lineages
are true species, the gene flow estimated with microsa-
tellite loci appeared to be more limited among sympatric
individuals belonging to different mtDNA lineages than
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Table 5 Pair-wise θ test, using microsatellite loci between different sampling locations under the same or different mtDNA lineages
Lineage 1 (L1) Lineage 2 (L2) Lineage 3 (L3)

Locations (n) QD AS KL KS KP YK OK KL KP YK OK ST PR HN PH KL KP ST PR HN

RU 17 -0.002 0.008 0.003 0.001 -0.003 -0.001 -0.002 0.096*** 0.121*** 0.113*** 0.099*** 0.122*** 0.102*** 0.130*** 0.107*** 0.268*** 0.390*** 0.311*** 0.258*** 0.279***

QD 32 0.011* 0.004 0.002 -0.002 -0.011 0.007 0.103*** 0.116*** 0.117*** 0.101*** 0.117*** 0.102*** 0.133*** 0.109*** 0.271*** 0.372*** 0.310*** 0.261*** 0.268***

AS 21 0.011** 0.016*** 0.008 0.000 -0.003 0.086*** 0.102*** 0.098*** 0.087*** 0.100*** 0.087*** 0.112*** 0.090*** 0.247*** 0.367*** 0.290*** 0.239*** 0.255***

L1 KL 129 0.001 -0.006 -0.003 -0.001 0.107*** 0.120*** 0.121*** 0.103*** 0.119*** 0.100*** 0.133*** 0.114*** 0.261*** 0.322*** 0.296*** 0.246*** 0.248***

KS 151 -0.002 -0.003 0.001 0.112*** 0.124*** 0.124*** 0.107*** 0.122*** 0.106*** 0.138*** 0.119*** 0.273*** 0.330*** 0.309*** 0.261*** 0.257***

KP 12 -0.010 0.002 0.108*** 0.121*** 0.125*** 0.103*** 0.124*** 0.101*** 0.139*** 0.111*** 0.270*** 0.399*** 0.317*** 0.258*** 0.275***

YK 14 0.002 0.108*** 0.115*** 0.117*** 0.100*** 0.114*** 0.100*** 0.133*** 0.108*** 0.269*** 0.395*** 0.315*** 0.258*** 0.274***

OK 14 0.098*** 0.125*** 0.122*** 0.100*** 0.123*** 0.105*** 0.137*** 0.109*** 0.265*** 0.395*** 0.313*** 0.253*** 0.276***

KL 14 -0.001 -0.002 -0.004 0.004 0.005 0.005 -0.013 0.274*** 0.403*** 0.324*** 0.268*** 0.290***

KP 80 0.000 0.000 -0.002 0.001 0.009 0.002 0.273*** 0.342*** 0.313*** 0.268*** 0.261***

YK 29 0.000 0.000 0.002 -0.002 0.002 0.286*** 0.381*** 0.329*** 0.282*** 0.284***

L2 OK 34 -0.002 -0.004 0.000 -0.004 0.264*** 0.365*** 0.312*** 0.263*** 0.267***

ST 44 -0.005 -0.002 0.001 0.280*** 0.355*** 0.316*** 0.269*** 0.264***

PR 27 -0.002 -0.002 0.255*** 0.355*** 0.299*** 0.246*** 0.253***

HN 13 -0.008 0.289*** 0.390*** 0.327*** 0.267*** 0.282***

PH 14 0.251*** 0.379*** 0.303*** 0.242*** 0.267***

KL 2 0.026 -0.049 -0.095 0.006

KP 40 -0.026 -0.026 0.019*

L3 ST 4 -0.118 -0.003

PR 3 -0.017

HN 19

See Table 1 for the complete name of locations.

* < 0.05, ** < 0.01, *** < 0.001 in bold significant values after bonferroni correction [45].
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between geographically remote individuals sharing the
same mtDNA lineage. These results reveal the marked
genetic isolation of the three M. cephalus species in the
NW Pacific.
If, as suggested earlier, the genetic differentiation of

these cryptic species is related to past physical barriers
to gene flow, the absence of genetic introgression sug-
gests active reproductive isolation where they coexist
sympatrically. Previous studies have reported various dif-
ferent reproductive behaviours in M. cephalus in the
NW Pacific. While some individuals migrate over large
geographic scales, others appear to be year-round resi-
dents of estuaries [59-64]. Migration was observed over
the winter solstice (middle of December-early January),
individuals of of 3-4 years of age (FL = 43-55 cm)
migrate with the cold North China Coastal Current
from the Eastern China Sea to south of the Taiwan
Strait to spawn offshore of Kaohsiung, Taiwan [59-61].
The newly hatched larvae drift with the coastal currents
and then recruit into the estuaries of the western coast
of Taiwan at one to two months post-hatching
[59,62-64]. The presence of M. cephalus juveniles in
Taiwanese estuaries earlier in the year (end of autumn)
was interpreted, therefore, as evidence of the existence
of a resident M. cephalus population [22].
In this study, all individuals sampled from the sup-

posed spawning ground of migrant M. cephalus (off-
shore waters of Kaohsiung) in the spawning season (end
of December), over three successive years, belonged to
NWP1. The high GSI of these individuals suggested that
they were spawning or would spawn soon. By contrast,
M. cephalus collected in estuarine or coastal waters in
the same period belonged to NWP1, NWP2 and NWP3,
but all exhibited low GSI (Table 2). This suggests that
genetic isolation among M. cephalus species is main-
tained by spatial and temporal differences in spawning
migration patterns.

Population structure and contemporary gene flow
No nuclear genetic heterogeneity was recorded within
the cryptic M. cephalus species among the locations
sampled within the NW Pacific. This findings contrast
with those of Liu et al. [23], who documented up to
four regional groups of M. cephalus along the Chinese
coast. However, because we analysed samples from the
same locations (Hainan, Shantou and Qingdao, which is
a station close to Lianyungang), it is evident that the
population structure revealed using AFLP [23] relied
mostly on the abundant difference of the three cryptic
species. Whereas the Hainan, Shantou and Qingdao
samples were characterised by high abundances of
NWP3, NWP2 and NWP1, respectively, Liu et al. [23]
described them as belonging to 3 populations: IV, II and
III, respectively. If there was no experimental artefact,

according to Liu et al. [23], a northern population of
NWP2 is expected to be isolated in the Bohai Sea
(population I), as this population is genetically close to
population II.
Finally, if all cryptic M. cephalus species revealed in

this study are able to disperse and migrate at sea, low
genetic structuring is not surprising because large ocea-
nographic current systems in the NW Pacific are
expected to greatly facilitate larval dispersal over consid-
erable distances. However, dynamic oceanographic sys-
tems can also profoundly restrict connectivity among
groups, genetic heterogeneity is generally increased in
marine zones with predictable oceanographic fronts
[65-67].
The distributional range of the three NW Pacific M.

cephalus species appears mainly to be shaped by three
major oceanographic current systems, namely the South
China, North China Coastal and Kuroshio Currents.
The range of the NWP2 species appears to match the
circulation pattern of the Kuroshio Current, which
brings warm tropical water northeastward from the
Luzon Straits, past both the west and east coasts of Tai-
wan and, finally, to Japan, where a branch of the current
(the Tsushima Current) enters the Japanese Sea [68,69].
As the world’s second-largest ocean current, the Kur-
oshio has a major effect on other current systems in the
area. It, however, mainly remains offshore, whereas the
other currents are located on the Taiwanese and North
China shelves, and are more coastal. Thus, the South
China Current, which flows northward from the South
China Sea to the Taiwan Strait, brings warm water
which mixes with cold water from the North China
Coastal Current flowing southward from the Yellow Sea
and East China Sea. The NWP3 distribution range
seems to follow the warm water of the South China
Current, while the NWP1 species appears to be
restricted to the cold waters of the North China Coastal
Current, which flows southward (with the northeastern
monsoon) during the winter. Such close relationships
between oceanographic current systems and fish species
distributions presumably reflect temperature prefer-
ences, because differences between the Kuroshio Cur-
rent and the China Coastal Current can range from 6 to
11°C ([70], Figure 5a). While the Kuroshio Current
remains warm throughout the year (23-26°C), the China
Coastal Current exhibits a wide variation in tempera-
ture, from 12°C in March to 20°C in September. In this
context, NWP1 may provide a particularly good indica-
tor species for global warming. NWP1 individuals are
assumed to spawn at the front (19-21°C) between the
cold southward flowing North China Coastal Current
and a warm branch of the northward flowing Kuroshio
Current, with the front shifting according to the
strength of the North China Coastal Current [20,59,60].
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Conclusions
This study successfully identified three cryptic M. cepha-
lus species in the NW Pacific Ocean, using both micro-
satellites and mitochondrial genetic markers. The
genetic architecture and current distribution ranges of
these species suggest a complex interaction of contem-
porary and evolutionary factors. Allopatric and adaptive
speciation probably occurred during the Pliocene and
Pleistocene epochs, when the Sea of Japan was periodi-
cally isolated and influenced by cold northern oceano-
graphic currents. After the last glacial maxima, species
range expansions were probably facilitated by changes in
the oceanographic current structure and the species’
temperature preferences. Currently, these species over-
lap in their distribution ranges, and it is likely that the
genetic integrity of each is maintained by temporal and
spatial isolation during the spawning period. This study
emphasizes the importance of historical separations of
marginal seas, in conjunction with fluctuating tempera-
tures, in creating aquatic biodiversity in the NW Pacific.
Isolation and demographic fluctuations are expected to
constitute a powerful evolutionary force that increases
speciation processes in the marine environment. These
regional results also shed new light on the potential
genetic diversity of M. cephalus worldwide.

Additional material

Additional file 1: Table S1. Variable positions in the 627 bp
mitochondrial COI gene segment of Mugil cephalus from 12 locations in
the northwestern Pacific. Dots represent identical nucleotides relative to
haplotype 1. Frequency of each haplotypes for each lineages (NWP1,
NWP2 and NWP3) are also shown. Different color means the locations of
the lineage specific nucleotides.

Additional file 2: Table S2. Genetic variability at ten microsatellite loci
of Mugil cephalus collected in the northwestern Pacific for spatial and
temporal genetic structure test. Table-wide significance levels were
applied using the sequential Bonferroni technique [45].

Additional file 3: Table S3. Log probability and ΔK [50] for each
number of clusters in the Bayesian assignment test as implemented in
STRUCTURE [49].

Additional file 4: Table S4. The mean q-values and standard deviations
(sd) for assignment test of 3 Mugil cephalus cryptic species (NWP1, NWP2
and NWP3) as implemented in STRUCTURE [49].

Additional file 5: Table S5. Genetic variability at ten microsatellite loci
of Mugil cephalus among 3 cryptic species. Table-wide significance levels
were applied using the sequential Bonferroni technique [45].

Additional file 6: Figure S1. Ethidium bromide stained 2% agarose gel
showing the multiplex COI haplotype-specific PCR (MHS-PCR) for the
rapid screening of three Mugil cephalus cryptic species in the NW Pacific.
1-13: unidentified individuals belonging either to lineage NWP1 (2),
NWP2 (3, 8, 12, 13) or NWP3 (1, 4-7, 9-11). M: 100-bp DNA ladder.

Additional file 7: Figure S2. Phylogenetic relationships within Mugil
cephalus recovered from 1140 bp of the cytochrome b sequences
according to the neighbour-joining tree using Kimura 2 parameter
distance. Leaves of the tree correspond to haplotypes of M. cephalus
observed by Ke et al. [17] (H1-H43) and this study (H44-H55, in bold). The
values above the branches are bootstrap support (500 replicates).
Bootstrap supports higher than 50% are displayed.
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