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Abstract: The rise of three-dimensional (3D) printing technology has changed the face of dentistry
over the past decade. 3D printing is a versatile technique that allows the fabrication of fully auto-
mated, tailor-made treatment plans, thereby delivering personalized dental devices and aids to the
patients. It is highly efficient, reproducible, and provides fast and accurate results in an affordable
manner. With persistent efforts among dentists for refining their practice, dental clinics are now
acclimatizing from conventional treatment methods to a fully digital workflow to treat their patients.
Apart from its clinical success, 3D printing techniques are now employed in developing haptic
simulators, precise models for dental education, including patient awareness. In this narrative review,
we discuss the evolution and current trends in 3D printing applications among various areas of
dentistry. We aim to focus on the process of the digital workflow used in the clinical diagnosis
of different dental conditions and how they are transferred from laboratories to clinics. A brief
outlook on the most recent manufacturing methods of 3D printed objects and their current and future
implications are also discussed.

Keywords: dentistry; digital diagnosis; 3D printing; additive manufacturing

1. Introduction

Three-Dimensional (3D) printing, also known as rapid prototyping (RP) or additive
manufacturing (AM), involves the actual layer by layer addition of a material to fabricate
an object or a structure using computer-aided designs and computer-aided manufacturing
(CAD/CAM) technology or using advanced imaging and scanning [1]. This results in the
development of custom-made products and devices for various fields, including medicine
and dentistry. Although 3D printing has been used in industrial manufacturing for decades
now, the technique and equipment used were fairly expensive and laborious in the past [2].
With improvements in technology, such as increased precision, high-resolution imaging,
and state of the art 3D printers, 3D printing has now become a mainstream technique
used across different fields today [3]. The rise of 3D printing in dentistry has been parallel
with CAD advancements and enhanced imaging techniques like cone beam computed
tomography (CBCT) and magnetic resonance imaging (MRI) to plan and print dental and
maxillofacial prosthesis to restore and replace lost structures [4]. Previously, dentistry was
mainly influenced by the process of subtractive manufacturing, also known as milling [5].
However, it did not take into account the internal structure and hence could not reproduce
the complex models in its entirety [5]. Nowadays, modern CAD software is available,
which uses intricate algorithmic designs and artificial intelligence to aid in modelling any
object or tissue and reproducing it exactly as the clinician desires [6].
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3D printing has been used for a number of clinical applications in medicine and
dentistry. In the field of medicine, the use of 3D printing to synthesize customized scaffolds
for bone regeneration is perhaps its most important use [7]. With the advancement in
its technology, nowadays it is possible to fabricate 3D printed scaffolds for tissue engi-
neering with tailored architecture, shape, cellular response and mechanical strength [7].
There has been an increase in the use of 3D printing for various dental applications and
our review summarizes this information exactly. In dentistry, diagnosing the patient is
equally, if not more important than the treatment itself. Digital dentistry has evolved
as a boon in this aspect, which assists the dental practitioners in quickly and precisely
recording and evaluating the dentofacial structures [8]. This allows us to bypass several
manual techniques and replace them by using automated devices such as intra-oral scan-
ners and advanced imaging, thus minimizing the chance of errors. Today, most dentistry
disciplines utilize digital scanning, designing and layered manufacturing techniques to
provide patient-specific custom-made prosthesis and restorations [9]. This review dis-
cusses how this digital workflow materializes into the fabrication of diverse dental and
orofacial prosthesis across various disciplines in dentistry. We have searched PubMed,
OVID and MEDLINE databases for clinical studies and cases reporting the use of 3D
printing technology in dentistry using combination of multiple keywords that included
‘dentistry’, or ‘Endodontics’ or ‘Prosthodontics’ or ‘Orthodontics’ or ‘Endodontics’ or ‘Oral
surgery’ or ‘Periodontics’ or ‘dental implantology’ and combined with ‘3D printing’ or
‘CAD/CAM’ or “Additional manufacturing” and combined with ‘digital dentistry’ or
‘diagnosis’ or ‘scanning’. We identified the techniques used, current trends in treatment
protocol, the challenges faced, and their future within dentistry.

2. Digital Workflow from Clinical Diagnosis to Treatment Delivery

Digital dentistry is an umbrella term for various digital technologies such as the use
of precise intraoral scanners, 3D imaging aids, CAD/CAM software and 3D printers that
can enhance and increase efficiency as compared to traditional analog techniques such as
impression making, 2D imaging, and conventional subtractive manufacturing techniques.
These technologies can be incorporated into many procedural workflow stages and can
be used in combination with traditional methods. Virtual planning is increasingly being
used in tandem with 3D printing during the pre-treatment/pre-surgical phase to improve
patients’ treatment outcomes [10]. The virtual planning process starts with an accurate
capture of a patient’s anatomy by using 3D intraoral scanners (Figure 1). While different
intraoral scanners may vary in performance, clinically acceptable accuracy has been shown
to be consistently achievable [11]. Alternatively, traditional impressions/plaster models
can be sent to dental labs and scanned with desktop optical scanners. The patient data
obtained by scanners can then be transferred to CAD software for treatment planning and
digital design of 3D models. Today’s dental software can employ highly visual interfaces
and familiar design processes for virtual setups, such as for smile design [12].

After the treatment design, 3D models can be exported for manufacturing with ease
using CAM software and subsequently sent to a 3D printer. By working in tandem with
the precision of digital 3D models, 3D printers can be employed by both clinical practices
and labs to create a variety of products for treatment, such as dentures, surgical guides and
splints, aligners, retainers, and mock-ups [13].
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Figure 1. Digital workflow of dental diagnosis and treatment using CAD/CAM and 3D printing technology.

3. 3D Printing Techniques Used in Dentistry

Currently, the availability of several printing techniques and machines allows a wide
range of applications of 3D printing both in the industry and medicine. However, in den-
tistry, the most commonly used 3D printing methods include stereolithography (SLA),
fused deposition modelling (FDM), selective laser sintering (SLS) and digital light process-
ing (DLP) [14].

• Stereolithography (SLA/SLG) (Figure 2A) is a 3D printing process that uses mirrors
and, by motorizing them, selectively moves an ultraviolet (UV) light beam to fuse
surfaces that contain photoreactive liquid resin [15]. The process is followed by a wiper
recoating the cured surface and another fusion step with the possibility of staining or
infiltrating the specific areas [15]. The advantages and limitations of different printing
techniques are displayed in Table 1.

• Extrusion-based methods rely on a continuous (no droplets) deposit of material driven
out of the nozzle by either pneumatic or mechanical forces creating 3D constructs at
the centimeter scale [16]. FDM, (Figure 2B) is an extrusion-based printing technique
in which thermoplastic materials are subjected to melting to develop filaments which
are deposited to fabricate the desired objects [17]. They are used for quick, low cost
printing of basic less intricate models which are typically machined.
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• Selective laser sintering (SLS) uses a high-power pulsed laser to fuse thermoplastic
polymer (or metal, ceramic and glass) particles. It creates surface layers that will be
refreshed using a roller or blade. A roller or blade then refreshes each sintered surface
layer using powder material. One benefit of the 3D printed models using SLS is that
they are thermoplastic in nature and can be autoclaved therefore can be handled safely
during dental treatments [15].

• Digital light processing (DLP) uses similar concept as SLG to create 3D prints; however,
instead of a set of moving mirrors, a digital micromirror device creates the cross-
sectional UV image [15]. In dentistry, use of photocurable resins are highly suited an
DLP utilizes this aspect for fabrication of single layer 3D objects using UV or white
light. The final print properties can be modified as desired by simply manipulating
the resin characteristics [19].

Table 1. Advantages and disadvantages of the most commonly used additive manufacturing (AM) methods utilized in
dentistry [18,20–23].

Type of Printing
Technique Advantages Disadvantages

SLA

- Adaptable to variable material selection
- Highest resolution and accuracy
- Suitable for fine details and

functional prototyping

- High cost per part
- Complex post processing
- Biohazardous materials are used
- The final part is mechanically and

vertically weak
- High maintenance laser

SLS

- Low cost for parts
- Mechanical properties maintained for

functional prototyping,
- Wide range of materials

- Polymer must be in powder
- Not suitable for large parts
- Designs with thing walls (<1 mm) have

difficulty for print
- High maintenance due to potential hazard

DLP

- Simple components for the machine
- One of the smoothest finishes on parts is

created by DLP

- Larger parts would have lower resolution
- Not suitable for surgical guides requiring high

accuracy
- Resolution only increases if the available build

area is limited, (only visible on highly detailed
models) small vertical voxel lines are created

FDM

- Low cost
- No flammable material hence no risk of

explosion
- Suitable for complex structures
- Wide range of materials

- Low accuracy and resolution
- Parts would need smoothening process after

the print

4. Biomaterials used in Dental 3D Printing

Various 3D printing methods exist in the field of dentistry, as described in the previous
section. However, along with these methods, the fabrication of 3D dental materials has
been explored heavily in the literature. A wide range of biomaterials exist for 3D printing,
such as hydrogels, metals, ceramics, resins, and thermoplastics. The compatibility of dental
materials and their reproduction accuracy based on the 3D printing technique is described
in Table 2 [24,25].
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Table 2. A list of additive manufacturing (AM) technologies based on the biomaterials utilized in the field of dentistry [25–28].

AM Technology Type Compatible Dental Materials Approximate Accuracy *

Inkjet Printing (IJP) Low viscosity cell slurries or polymer hydrogels 35 to 40 µm

Polyjet Printing (PJP) Photopolymers 20 to 85 µm

Multi-Jet-Printing (MJP) Ceramic, Metal or Plastic 25 to 35 µm

FDM Acrylonitrile butadiene styrene (ABS), Polyesters,
Polypropylene or Polycarbonate 35 to 40 µm

SLA Ceramics, Acrylate photopolymers or Plastic 50 to 55 µm

SLS Ceramic, Metal, Thermoplastics or Plastic 45 to 50 µm

Direct Metal Laser Sintering (DMLS) or
Selective Laser Melting (SLM)

Cobalt, Titanium, Aluminum, Steel Bronze
or Nickel 20 to 35 µm

Colour-Jet Printing (JCP) Gypsum 23 to 30 µm

Electron Beam Melting (EBM) Metal, such as titanium 40 to 50 µm

Laminated Object Manufacturing (LOM) Metal or Plastic 60 to 70 µm

* Approximate accuracy indicates how accurate printed models reproduce the anatomy of a patient.

4.1. Hydrogels

Hydrogels have been viewed as one of the ideal materials for 3D printing. Hydro-
gels are porous, crosslinked polymers with hydrophilic characteristics, causing them to
retain water [28–30]. This represents an advantage as it resembles the characteristics of the
native extracellular matrix (ECM). Also, hydrogels have high tunability in their biological,
chemical, mechanical and rheological properties, demonstrating an elastic characteris-
tic [31]. The printability of polymer hydrogels is defined by its viscosity. They need to be
fluid enough to eject from nozzles and be viscous enough to form and support structural
layers. In addition, the biological and mechanical properties of polymer hydrogels can
be further advanced when combined with other approaches, including ionic interactions,
light exposure and pH stimulation, further broadening their applications [31]. For exam-
ple, to balance polymer hydrogels’ viscosity at an optimal state, alginate hydrogels are
cross-linked with calcium ions before being ejected from the nozzle. Several combinations
of hydrogels are available today such as photocrosslinkable gels, which can be generated
or degraded by the exposure to ultraviolet (UV) light. Reinforced-composite or polymer-
composite hydrogels, which incorporate natural or synthetic polymers or secondary poly-
meric networks such as, interpenetrating polymer networks (IPNs) are other examples of
combined hydrogels. Other types include nanocomposite-based hydrogels which incorpo-
rates mineral, polymeric or metallic nanoparticles containing specific physical properties
to the hydrogels to further reinforce the structural state of hydrogel systems [25,29,32].
In addition to naturally derived hydrogels, synthetic hydrogels, including polyacrylamide
(PAM), poly (ethylene glycol) (PEG), poly (2-hydroxyethyl methacrylate) (PHEMA) and
poly (vinyl alcohol) (PVA), are used in 3D printing due to their controllable properties in
degradation and high mechanical characteristics.

4.2. Polymers and Thermoplastic Materials

Polymer-based 3D printing accounts for the most commonly used material among
the variety of options available for additive manufacturing. Most 3D printers available at
the dentist’s disposal today accommodate a wide range of polymeric substances which
are used in the fabrication of dental implants, crowns and bridges and other 3D tissue
structures [33]. Among the techniques used for utilizing resin or polymeric materials
in dental 3D printing, photopolymerization is highly plausible [33]. Since dentistry is
already a field utilizing photopolymerization process when manipulating patient com-
patible materials due to its ease and time efficiency, it provides similar advantages in 3D
printed models such as better build resolution, smoother surfaces, good chemical bonds
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and mechanical strength [33]. Thermoplastic polymeric materials are extensively utilized
in the field of 3D printing. These polymers are made from filaments that are heated as
they are deposited through the nozzle, allowing the materials to be tunable for specific
structures [26,34]. A variety of these materials including, polylactic acid (PLA), acryloni-
trile butadiene styrene (ABS), polypropylene (PP) or polyethylene (PE) are considered
suitable for oral cavity. PLA has been viewed as a more favorable material than ABS due
to its high resistance against impact and non-toxic properties against oral cavity [26,35].
More recently, thermoplastic filament materials with higher melting temperatures like
PEEK (polyether ether ketone) and PMMA (polymethylmethacrylate) have been used in
dental 3D printing [36]. Overall, an improvement in both polymeric material properties
regardless of their form as resin, powder form or filament complements with the advances
in device technology in fabricating 3D printed objects in dentistry.

4.3. Ceramics

Ceramics represent another common material for 3D printing approaches, especially in
the field of prosthetic dentistry. Ceramics are often utilized in SLA and SLS, in which specific
ceramic powder or pre-sintered ceramics are targeted to create strong bonding [25,26,37,38].
Studies have also shown that incorporating calcium and phosphate mineral phases like
hydroxyapatite and β-tricalcium phosphate provides ceramics an ability to form a bio-
compatible microenvironment. This can further allow the ceramics to develop cell-to-cell
interactions and promote cell differentiation and proliferation, making them favorable for
craniofacial applications [39,40]. However, due to challenges present with post-processing
to high density, ceramic powder can only develop porous structures through SLS. In addi-
tion, additive manufacturing techniques themselves create limitations as sintering ceramics
can lead to anisotropic shrinkage and fabricating leads to stair-step effects on surfaces.
Thus, 3D printing for ceramic restorations has been limited, only being viewed in re-
search [26,28,41].

4.4. Metals

Metal is another common material used in dentistry. Its popularity has been further
viewed in the field of 3D printing as well, mainly in the use of SLS. In dentistry, metal-
lic materials that were considered included titanium, cobalt-chromium (CoCr) and nickel
alloys. However, researchers no longer consider nickel alloy, specifically nickel-chrome
(NiCr), as a suitable material for dental prostheses due to possible nickel allergic reactions
in the oral cavity. Like ceramics, fabricating metallic dental prostheses using SLS resulted in
porous structures and led to using varying diameters and laser strengths. Recent research
has led to further improvements of SLS techniques, such as including a vacuum during
fabrication processes of metallic dental prostheses [26,42–44]. Titanium and CoCr are
highly favourable metallic materials for 3D-printed dental prostheses. Due to their unique
physical properties, including favourable levels of strength and ductility, titanium alloys,
specifically Ti6Al4V, have demonstrated their capability as maxillofacial prostheses in vari-
ous clinical trials [26,37,45]. Yet, research on their use has been limited due to the cost of
titanium alloys, turning the focus to CoCr alloy, which present numerous advantages. Com-
pared to other metallic materials, CoCr alloy presents lower density, higher hardness and
good corrosion resistance and bonding characteristics to porcelain [26,46–49]. A study by
Barazanchi et al. (2020) demonstrates that CoCr materials fabricated by SLS have a higher
bonding capacity with porcelain compared to CoCr materials fabricated by soft milling.
These properties further indicate the alloy’s good stability in the oral cavity and tolerance
against loads, representing it as a preferred material for 3D-printed dental prostheses in
long term applications [50].

Furthermore, the use of Direct Metal Laser Sintering (DMLS) on CoCr alloy to pro-
duce dental prostheses has demonstrated the elimination of issues present during milling
on CoCr alloy, including the shrinking of CoCr materials during casting. This further
concludes that CoCr alloy fabricated from 3D printing techniques demonstrates higher
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biocompatibility in the oral cavity than other metallic materials, such as NiCr alloy, used as
alternatives to gold alloy in dental prostheses. Moreover, in vitro studies have demon-
strated that CoCr materials fabricated by SLM still had clinically acceptable marginal
gap between ceramic and metal frameworks and metal-ceramic bond strength even after
ceramic firing. This further highlights CoCr alloy as a promising material for 3D printed
dental prostheses using 3D printing techniques, such as SLM [26,47,49,51,52].

There are various 3D printing methods and materials that can be used commonly in
clinical settings. Ceramics, such as zirconia, and metal alloy, such as CoCr, represent ideal
materials to form 3D dental prostheses through SLA or SLM. Further research should be
conducted to understand better the use and effectiveness of these 3D printing methods and
materials in clinical settings.

5. 3D Printing in Endodontics

Since the late 80s, the diverse applications of 3D printing techniques have revolu-
tionized the scope of design possibilities for creating new restorations, dental models and
surgical guides, increasing the success rate of conventional surgeries dramatically [53].
Although use of 3D printing in endodontic treatments are yet to be explored, there are
several reports and pre-clinical studies that describe the improvements brought in guided
access, maneuvering obliterated pulp canals, auto transplantation, but most importantly in
endodontic and general dental education [54].

Using a CAD/CAM-guided surgical template in endodontic surgery allows surgeons
to target the root apex, especially in teeth with problematic anatomies [55]. Guided os-
teotomy and apex localization had been achieved using these templates in cases such
as a mandibular molar with a thick buccal bone template [53]. In CBCT, the use of
CAD/CAM has leveraged the data regarding the objects used in surgical or nonsurgical
endodontics [54]. The anatomically challenging cases have also been defined using tar-
geted endodontic microsurgery (EMS) using 3D printed guides, and trephine burs [55].
When estimating control of depth, diameter and angle of root-resection, targeted EMS
mainly benefits osteotomy more than traditional approaches [55]. Irreversible pulpitis,
pulp necrosis or apical periodontitis can now be dealt with using nonsurgical root canal
treatment and EMS, which consequently relinquishes better outcomes (about 35% higher
success rate) compared to the traditional techniques allowing for superior visualization,
magnification and illumination [55].

Fabrication of intricate 3D features to mimic a functional extracellular matrix is another
application of 3D printing in recreating craniofacial and dental tissues [55]. Even though
the demand for regenerative construction is still present, the biomanufacturing methods
are still limited [55]. When it comes to root canal treatments, the pulp evoked bleeding
combined with the body’s clots determines the remodeling after a procedure; however,
biofabrication-inspired methods such as novel bioinks had demonstrated promising re-
sults [56]. Use of decellularized extracellular matrix (dECM) as novel bioinks have been
suggested as an ideal matrix structure by several authors owing to their natural composi-
tion. For example, Athirasala et al. described the synthesis of a novel bioink, Alg-Dent,
using printable alginate hydrogels which are blended with different concentrations of
dentin matrix. They found that high levels of alginate and insoluble dentin matrix was
most suitable for cell viability and increasing the concentrations of soluble dentin matrix
molecules will further improve the odontogenic differentiation potential and thus can act
as ideal biomaterial in regenerative dentistry [56]. Among the techniques attentive on root
canal filling approaches, filling simulated C-shaped canals have been entertained using
3D printed resins [57]. The simulated root canal model has been used to get passive and
active sodium hypochlorite to remove Enterococcus faecalis biofilms and compare agitation
levels [58]. Although use of advanced 3D printing technology is in its budding state in
endodontic surgeries, careful utilization of this tool can improve the outcome of EMS and
root canal treatments in patients.
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6. 3D Printing in Prosthodontics
6.1. Crowns and Bridges

Restorations using crowns and bridges are among the common clinical procedures in
prosthodontics. Traditionally, they were fabricated using the lost-wax technique, which is
labour intensive and prone to human errors. Understandably, comparative studies for
evaluating various dental restorations parameters like crowns and bridges have been
performed in light of the current popularity of 3D printing technologies to predict their
reliability. Mai et al. (2017) reported that milling and additive manufacturing showed
more accurate results regarding marginal fit compared with manual techniques. Moreover,
3D printed crowns had the most accurate occlusal fit and least internal discrepancies [59].
Lower marginal gaps were reported by Alharbi et al. (2018) amongst all finish line designs
when the models were 3D printed [60]. Similar results were obtained in other studies
which are evidences that conclude that 3D printed crowns had significant marginal fit [61].
In a systematic review, the performance of CAD/CAM systems was influenced by the
restorative material. Thus, the outcomes varied with inconclusive evidence of 3D printing
technologies’ superiority over casting techniques and milling [62]. Prechtel et al. (2020) eval-
uated the mechanical properties of restorations fabricated using different techniques [63].
The study compared the fracture load of 3D printed indirect PEEK inlays with conventional
milling, direct composite restoration and chewing stimulation of sound human molars
with thermal cycling. Results showed that both 3D printed, and direct restorations showed
superior fracture load when compared to physiological chewing forces, but sound molars
had the highest load resistance. However, they also concluded that all 3D printed inlays
remained intact after fracture load test and showed a more significant success as compared
to conventional direct restorations [63]. Several dental materials with varying mechanical
properties have been used in fabricating dental crowns. Amongst them, ceramic materi-
als, including alumina (AlO3) and zirconia (ZrO2) ceramics, have gained popularity in
3D printing due to their high bond strength, providing unique mechanical properties
to crowns and bridges. A previous study has reported that when DLP technique was
used to print zirconia implants, they demonstrated sufficient dimensional accuracy [64].
Moreover, an earlier in vitro study revealed that 3D printed zirconia crowns demonstrated
similar trueness of the CAD/CAM crowns. This demonstrates that zirconia is a useful
material for 3D printing in the field of prosthodontic dentistry [65]. Nevertheless, the final
verdict of their clinical success versus the cost involved still requires more systematic and
comparative studies [63].

6.2. Fabrication of 3D Printed Dentures

The exponential growth of using digital technologies in the field of prosthetic dentistry
can be mainly attributed to their application in the fabrication of removable prosthesis,
such as complete and partial dentures [66]. In recent years, dentures fabricated by digital
techniques have become increasingly popular. Because there is a variety of different
CAD/CAM programs and protocols, the procedures for the digital manufacturing of
dentures can vary, with some requiring only two appointments with the dentist [67].
In addition to the reduced chair time for patients, digital dentistry allows for the storage
of electronic data, enabling technicians to precisely duplicate a denture in a matter of
hours. Furthermore, variability in quality can be minimized [68]. A disadvantage of a fully
digital approach is the lack of a wax try-in. This is an essential step in evaluating a denture
before it is finalized. However, some approaches developed to work around this limitation,
such as try-in dentures can be 3D printed or milled using low-cost materials for the patient
to try on and make modifications if necessary [69]. Another approach is a virtual try-in,
whereby a face scan is combined with an intraoral scan and the digital tooth set up [70].

Digitized impressions serve as the first step in a digital workflow. This can be done
directly via intraoral scanning or indirectly by extraoral scanning of impressions or models
made from impressions [71]. The conventional impression method involves applying algi-
nate impression materials, which may cause mucosal irritation, gagging, and discomfort for
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the patient. In comparison, digital impressions have been shown to be more comfortable
and require a shorter amount of time to complete and have fewer errors [72]. The digitized
scan creates a digital file, such as a standard tessellation language (STL) file, that can be
quickly sent to CAD software to design the denture [73]. Despite the benefits of intraoral
scanning, a few disadvantages limit its application. For example, difficulties in obtaining a
clear scan could arise due to saliva and blood inside the mouth [74]. Moreover, some intrao-
ral scanning devices are not suitable for capturing soft-tissue morphology or recording the
extension of mobile tissues [72]. One study analyzed the capability of intraoral scanners
to reproduce accurate edentulous arches. The results showed that the digital impres-
sions appear to be feasible, but the scanners’ accuracy differs significantly [75]. As new
scanners are regularly developed and brought to market, digital scanning is expected to
continue improving reliability and accuracy and eventually replace conventional impres-
sions. The digitalization of the conventional impression is followed by CAD design of the
denture using one of the plethora of CAD software programs available. The CAD software
then helps with the positioning of teeth and modelling the denture base with high-level
accuracy and detail. Teeth can be chosen from a vast digital library of existing denture
teeth to suit the patient [69]. Once the design is complete, the denture can be fabricated.

Until recently, subtractive manufacturing was the primary method for the commercial
production of dentures. However, a disadvantage of the milling process is the material
wasted as a result of removing material from a block to fabricate the denture [76]. In con-
trast, 3D printing technology is an additive process using powder substrates that involves
adding layer atop layer of light-sensitive material to produce the denture. The residual
powder can be recycled for future fabrications, promising a more sustainable additive
approach by reducing waste [68,76]. Usually, CAD/CAM fabricated dentures require
milling or printing of the denture base first, followed by adhesion of the printed den-
ture teeth with a bonding agent [77]. However, one in vitro study found that bonding
denture teeth to conventional heat-cured denture bases produced significantly higher
fracture toughness, and bond strength than teeth bonded to milled and 3D printed denture
bases [78]. However, with recent developments, it is now possible to fabricate both the
denture teeth and the denture base together in a single step [69]. Several studies have been
conducted to evaluate dentures fabricated by CAD/CAM. In one study, patients reported
that CAD/CAM dentures were more comfortable, more aesthetic, better fitted, and allowed
for improved eating and speaking [79]. When asked to compare digitally made dentures
and conventional compression-molded dentures, patients consistently gave higher scores
for the digitally produced dentures [80]. Some authors found that digitally fabricated
dentures offered better accuracy, reproducibility, and retention [81]. When comparing
denture bases fabricated by milling or traditional compression molding, the denture bases
produced by the digital technique were once again found to have a better fit [66].

Nowadays, improvements in oral health maintenance have resulted in fewer miss-
ing teeth, leading to a greater need to treat partially edentulous patients compared to
completely edentulous [82]. The removable partial denture (RPD) is commonly used in
clinical applications to restore lost teeth [83]. In some situations, a well-designed RPD
is the only choice, such as in cases of long edentulous spans, lost or severely resorbed
residual ridges, or absence of posterior abutments [84]. Despite advances in dental ma-
terials and technology, conventional cast partial dentures are still fabricated using the
lost-wax technique. The conventional lost-wax technique is limited by dependency on a
technician, time required, procedural errors, and multiple adjustments [85]. Conventional
RPD frameworks are often fabricated from CoCr, which has many drawbacks, such as
allergic reactions and biofilm plaque formation [86]. The relatively large casting shrinkage
of the alloy also requires the expansion of the investment materials to compensate [87].
The development of CAD/CAM technologies has facilitated the production of metallic RPD
frameworks [83,88]. A clinical report from 2017 reported the successful use of 3D printing
to fabricate a pure titanium metal framework for an RPD of the maxillary arch [83]. A case
report by Wu et al. (2020) demonstrated the use of more than one 3D printing technology
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to fabricate an RPD with a distal extension. Stereolithography 3D printing, which uses a
UV-sensitive liquid resin as a substrate, was employed to print custom trays for a patient.
In the same study, SLM was used to fabricate the metallic framework [89]. In vitro studies
have found a similar fit accuracy of SLM manufactured frameworks compared to those
made by the conventional lost-wax technique [84,86]. Even when compared to milling,
SLM manufactured frameworks have been shown to provide a better fit [76].

While there are advantages and disadvantages to traditional and digital methods of
fabricating dentures, the rapid advances taking place in the field are paving the path for
digital dentures to become the standard. However, many clinicians and technicians still
fabricate prostheses using analog methods because of the high cost of digital equipment
and the time required to train staff to use it [83]. During this transitional phase between
analog and digital techniques, incorporating both will be useful moving forward.

7. 3D Printing in Oral and Maxillofacial Surgery

The craniofacial area is considered an esthetic zone and can be affected by trauma,
tumors, congenital abnormalities, facial deformities and many other diseases and oddities.
Surgical reconstruction is the gold standard approach used in these situations. However,
the maxillofacial region is anatomically and functionally complex and is encompassed
with hard and soft tissue innervated profusely with nerves and blood vessels. Thus,
the reconstruction of any defect or deformity in these regions becomes highly challenging
and perplexing for the surgeon.

The initial use of 3D printing in OMFS dates back to a few decades [90]. However,
their use in clinical applications boomed over the past decade owing to the evolution in tech-
nology and accessibility to low-cost 3D printers [90]. Conventional methods chiefly used
autologous grafts from other parts of the body and used techniques like fibula free flap (FFF)
and iliac osteocutaneous flaps to correct the defects surgically [91,92]. These techniques
were effective and have shown good success in reconstructing mandibular defects [93].
However, in reconstructive surgery, bone remodeling is of utmost importance and re-
quires precise techniques and planning to maintain the jaws and facial structures’ correct
shape and anatomy. To some extent, traditional techniques can be indefinite regarding
the angles, shapes or osteotomy sites and thus increase the chances of error [94]. More-
over, studies have shown a high percentage of donor site morbidity in autologous graft
extraction sites leading to several complications, including graft loss, wound dehiscence,
cellulitis and abscesses [95].

Today, many oral surgeons are using virtual planning and 3D printing technology to
provide better care and treatment outcomes to their patients. According to a systematic
analysis by Jacobs et al. (2017), four categories use 3D printing for craniomaxillofacial
surgery in patients, which includes contour models (Type I), surgical guides (Type II),
splints (Type III) and implants (Type IV) [96]. Developing contour models is the most
common and is called a positive space model as it involves direct printing of the object
based on patients’ external anatomy based on imaging [96]. These models can be developed
using in-house printers and are hence more economical and time-saving in emergencies
like fractures [97]. 3D printing assists in developing precise surgical guides and recon-
struction plates in cases where autologous bone grafts are the primary choice of treatment
to replace lost structure (Figure 3) [98]. These guides are designed and manufactured
using CAD/CAM technology and are 3D printed. They act as precise tools in harvesting
hard and soft tissues from donor sites to be transplanted to the deformity [99]. Type III
are splints used in orthognathic correction, such as alignment of the jaws and occlusion.
This is a more virtual negative space model; that is, they are constructed by virtually
planning the future positions and orientation of the bone and teeth, requiring advanced
3D modelling to obtain right end results [96,97]. Implants are within the type IV category
and are less commonly developed as 3D printed objects due to grander demands in the
fabrication process. They are highly specific in their structural, functional and biological
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aspects. They are used in cranial and condylar repairs and in jaw reconstruction to provide
adequate support and form.
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The extent of utilizing 3D printing in oral and maxillofacial surgery is mainly de-
termined by their application in different surgical procedures as classified earlier. In a
systematic review by Louvrier et al. (2017), they graphically represented the critical areas in
maxillofacial surgery, which utilized 3D printing technology the most. It showed that most
surgeons used the technology to manufacture surgical guides for reconstructive surgery
and implant placement [90], followed by use in mid-face and mandibular reconstruction,
with orthognathic and cranial surgery being the next common procedures utilizing 3D
printing technology [90]. After evaluating the recent literature, we came to a similar conclu-
sion regarding the trend of authors using 3D printing in the most common areas in OMFS.
Table 3 depicts the different studies using 3D printing based on clinical applications.
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Table 3. Clinical studies using 3D printing for patient specific applications.

Surgery/Application Prosthesis/Treatment Using 3D Printing Ref.

Mandibular reconstruction

- Two-tiered structure device for mandibular repositioning using FFF. [100]

- 3D surgical modelling using open software for improving precision and
reproducibility in mandibular reconstruction with FFF. [99]

- 3D fabrication of guides and templates for mandibular ramus and
condyle reconstruction using autogenous costochondral grafts. [101]

- Using an in-house approach for 3D printed customized cutting guides in
mandibular reconstruction after cancer using osteocutaneous free flaps. [102]

- Mandibular reconstruction using patient specific mandible
reconstruction plates (PSMP) using CAD/CAM fabricated transfer keys. [103]

- Comparison of two types of mandible reconstructive operations with
scapula and FFF procedures using 3-D models fabricated from
thermoplastic materials and conventional planning surgeries.

[104]

Mandibular distraction
Osteogenesis (MDO)

- 3D fabrication of precise osteotomy guides for mandibular distraction in
infants with obstructive sleep apnea. [105]

Implants
- Surgical reconstruction of mandibular defect. [106]

- Additively manufactured sub-periosteal jaw implant (AMSJI). [107]

Orthognathic Surgery
- Occlusal splint fabrication [108]

- POSG (Personalized orthognathic surgical guide) [109]

- 3D printed models and templates to assist in orthognathic surgery and
mandibular contour osteoplasty for treating craniofacial deformities. [110]

Temporomandibular Joint
reconstruction (TMJ)

- Fabrication of a 3D printed “Melbourne” prosthetic joint for complete
TMJ replacement due to end stage osteoarthritis. [111]

Facial Asymmetry
- Fabrication of a re-positioning instrument for genioplasty. [112]

- Fabrication of 3D osteotomy guide for correcting
hemimandibular hyperplasia. [113]

Auto transplantation
- Construction of 3D printed replica of donor mandibular 3rd molar tooth

for replacing heavily damaged premolars. [114]

Most OMF surgeons in these clinical studies emphasize the improved precision of
the procedure and better time efficiency as the key advantages of using virtual planning
and 3D printing in maxillofacial surgeries. Many report the improvement in esthetics
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after reconstructive surgery and better post-operative facial symmetry [115]. Also, surgi-
cal guides and the development of presurgical templates provide lesser comorbidity to
the donor sites. However, although the CAD/CAM technology saves valuable operating
time, preoperative virtual planning takes up more time. The surgeon’s ability to use and
understand the modern software and computer programs is always put in the line of
question when planning surgery. This said, 3D printing is an exceedingly useful tool in
dentofacial surgery. When combined with a surgeons’ skill, it can create extraordinary
results in the human body’s most esthetic zone.

8. 3D Printing in Periodontal Surgery

Numerous attempts, often successful, have been made in the regeneration and healing
of periodontal defects using guided tissue regeneration. However, many areas remain
challenging like non-contained defects, namely, walled intrabony defects and horizontal
bone resorption. Lack of support and site protection for grafted materials limit the treatment
options and bring down the clinical success rate. Computer-aided rapid prototyping
(CAPR) allows better visualization of the surgical site and aids in treatment planning.
CAD/CAM is increasingly being used to generate patient models, enabling simulation
of idiosyncratic contours of the tissues and defects, including clinically unapproachable
areas. Computer-assisted designs offer more accurate models over which transplantation
of grafts can be planned. This methodology was used by Lei et al. (2019), for contouring
the graft consisting of Platelet-Derived Growth factor (PRF) over a 3D printed model of
the patient [116]. They used Advanced-PRF (A-PRF), which is known for its abundance of
osteoinductive and antibacterial factors, as well as Injectable PRF (I-PRF), which accelerates
the solidification of A-PRF, thus providing a plastic structure conforming to the defect [116].
The use of computer-assisted devices to serve as surgical guides has been immensely
used in the medical field. Yin et al. (2017) prepared such a surgical guide to rebuild the
marginal contours in the anterior esthetic zone. They pre-surgically designed 3D gingival
curves by using reverse engineering software. Further, they designed the crowns using the
Tarnow principle [117] to induce the bone and gingiva’s structural reformation. Given the
importance of gingival biological width, which, if encroached, leads to bone resorption,
the proper planning leads to highly esthetic and successful outcome [118].

An impressive example of full mouth restoration using CAD/CAM technology in a
patient with severe periodontitis and alveolar ridge atrophy is described by Wang et al.
(2018) (Figure 4). They restored the atrophic arches by fabrication of 3D printed customized
titanium framework over which implants were supported, leading to restoration of function
as well as esthetics [119].

Autotransplantation of a tooth involves replacing a decayed/lost tooth using the
patient’s own tooth with less developed roots and intact crown, usually the third molar.
The underdeveloped roots ensure the development of periodontal structures naturally
and aid in its integration. Quite often, the root morphologies of the replaced and the
replacement tooth differ, due to which the socket shapes are different as well. Computer-
assisted technologies have enabled clinicians to view, plan and prepare the surgical site to
simulate and align to the intricacy of donor tooth, thus making it possible to have a less
traumatic and better-adjusted tooth vs. bone interaction [120,121]. Rasperini et al. (2015),
pioneered in clinical use and development of a 3D scaffold for periodontal regeneration.
Inspired by in vivo studies that used polycaprolactone (PCL) scaffold for periodontal
ligament (PDL) formation, they developed the scaffold by integrating SLS technology.
The 3D design was created digitally to fit the defect best, further modified to contain
perforations for fixation, an internal port for delivery of recombinant human platelet-
derived growth factor (rhPDGF-BB) and pegs (160–380 µm) oriented perpendicularly to
the root to simulate PDL formation. Although the case’s long-term follow-up did not
show clinical success, it remains a commendable effort to clinically translate a novel tissue
engineering strategy. The authors suggested improvements in the scaffold design, such as
using fast resorbing materials to synchronize with the natural healing, greater surface area
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and more porosity to ensure higher interconnectedness of the graft with natural tissue [122].
This remains a solo effort in the clinical application of modelling and designing of 3D
printed scaffold clinically to the best of our knowledge.
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There is a widespread and popular role of computer-assisted diagnostics and treat-
ment planning, while the digital designing of scaffolds in periodontal repair is still in
the preclinical developmental pipeline. The clinical usage has been translated in limited
areas, namely modelling to contour grafts in required topology, auto-implantation of tooth,
partial or full mouth restoration using implants. This indicates that 3D printing technology
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offers promising treatment options, but clinical translation requires more consorted efforts
inspired by medical and other emerging bioengineering technologies.

9. 3D Printing in Orthodontics and Dentofacial Orthopedics

With 3D printing becoming more readily available and more research showing its
accuracy, it may cause a paradigm shift in diagnosing and planning orthodontic treatment.
Digitization has not only allowed us to shorten treatment time but has also provided for
opportunities to customize treatments, further allowing dentists to improve diagnosis and
treatment planning abilities.

Firstly, in terms of diagnosis and treatment planning in all aspects of dentistry, includ-
ing orthodontics, dental models that give an accurate measurement of spacing, crowding,
arch form, and dimensions are of high importance. Traditionally, these models have been
poured in plaster through alginate impressions. However, with digital impressions gaining
more traction, 3D printed models are becoming more useful. A study showed that digital-
light processing is a technique that allows for printing accurate 3D models and has shown
high reproducibility [123]. In another study, it was shown that digital printing using digital
light processing and polyjet printing techniques produced clinically adequate models
with high accuracy [124]. Digital services are also easily accessible through smart phones.
In a study by Morris et al. (2019) it was shown that the Dental Monitoring smartphone
application could be used to create 3D digital dental models by integrating photographs
and videos, and these models are accurate enough to be used for clinical applications [125].

Using virtual surgical planning and 3D templates for orthognathic surgeries has
gained more popularity due to their ease of use, feasibility, and predictable outcomes [126].
Using 3D CT imaging can help diagnose facial asymmetry and help surgeons evaluate
the severity of the asymmetry as well [127]. This can help construct 3D printed surgical
templates to carry out the appropriate treatment to guide the osteotomy line and increase
the accuracy and predictability [128,129].

However, there are limitations to using 3D printing and 3D models, and therefore,
they should be used with care. A study showed that printed digital models with stere-
olithography with a horseshoe-shaped base could not replace conventional models due to
their transversal contraction [130]. Another study showed that teeth 3D setup printed with
fused deposition modelling are not comparable to conventional setup techniques [131].
Hassan et al. (2017) showed that models constructed using Z printer 450 were not compa-
rable with conventional models in terms of measuring crowding, regardless of the degree
of crowding [132]. 3D printing has also allowed orthodontic treatment to shift in terms of
orthodontics devices. For example, clear aligners for orthodontic correction use a series of
computer-generated custom plastic aligners to gradually guide the teeth into proper align-
ment [133]. Clear aligners have been used for mandibular prognathism correction in both
surgery-first and after approaches [133]. Literature evidence show that resin-based clear
dental aligners not only were more geometrically accurate but also had better mechanical
properties as compared to the conventional thermoplastic-based aligners [134].

Moreover, in the future, we may be able to offer better treatment through customized
appliances and individualized orthodontic treatment. Detailed scans and records can be
taken and uploaded into a software which can then simulate treatment virtually [135].
Subsequently, individualized appliances can be constructed, including aligners, brackets,
and archwires. In a study by Yang et al. (2019) they described a customized ceramic bracket
system that were made digitally through 3D printing to give patients a unique color and
shape to suit their needs, which optimized not only esthetics but also mechanics [136].
Individualized orthodontic archwires can be easily fabricated using digital models and
are clinically accurate [137]. This digital technology can also be used for fabricating space
maintainers in a more precise, quick and easy matter with more accuracy [138]. CAD/CAM
approaches are now used to create a combined prosthetic restoration with orthodontic appli-
ance (PROA), allowing clinicians to obtain better results with more controlled orthodontic
movements [139]. These approaches also allow the fabrication of 3D metal printed mini-
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implant orthodontic appliances and decrease appointments [140]. They can simply transfer
information to the laboratory in the form of a digital file, which reduces time and increases
efficiency. However, there is still a need for more research and more progress in this area to
determine their accuracy and effectiveness than standard orthodontic treatment.

3D printing has also allowed for advances in orthodontic surgery. In order to re-
duce orthodontic treatment time, techniques such as corticotomy accelerate orthodontics,
or periodontal accelerated osteogenic orthodontics are often used [141,142]. Piezoinci-
sion is another technique that is used more recently to achieve rapid tooth movements
with no trauma to periodontal support or extensive surgical trauma [143,144]. In order
to make more accurate microincisions in this technique, surgical guides manufactured
by the CAD/CAM technology can be used and have shown to have increased visibility,
rigidity for enhanced stability and support, buccal slots for precision in location, depth and
angulation, and patient comfort to aid in a minimally invasive procedure [145,146]. Us-
ing computer-based nasoalveolar moulding devices allowed for better control of the force’s
magnitude and direction and minimize the time it takes to produce such devices [147]. In a
study, split-type 3D printed presurgical nasoalveolar moulding was used for unilateral cleft
palate patients to reduce the cleft gap and overall morphology of the nose [148]. Studies
have shown that palatal plates can be digitally constructed accurately by taking digital
impressions on cleft-lip babies in a non-invasive and safe manner [149]. In conclusion,
3D printing is gaining popularity due to its ease of use, time-efficiency, and accuracy.
However, more research is still needed in order to determine if it can replace traditional
orthodontic treatment.

10. 3D Printing in Dental Implantology

Tooth loss is a common problem, and the preferred treatment of choice currently
is dental implantation [150]. A dental implant is placed in the jaw bone through a sur-
gical procedure, and it is anticipated that it will anchor itself via osseointegration [151].
Osseointegration is a process through which the opposition of the bone occurs between
the bone-implant interface [152]. The osseointegration process is dependent on several
factors, including the patient’s age, sex, medical history, smoking behaviors, and implant
dimensions [153]. The survival rate of dental implants is relatively high, although failure
is also not very uncommon, occurring mostly in the elderly with negotiated bone condi-
tions [154]. The use of metallic implants to replace lost teeth is widespread in dentistry.
However, there are various issues with these implants such as the long osseointegration
process, and partial osseointegration [150]. Here it should be understood that to promote
osseointegration, the implant should have a porous and rough surface. This property is
not present in the currently available implants in the market [155].

10.1. 3D Printing Process and Dental Implantology

The introduction of 3D printing allows the fabrication of precise and economical
dental implants [156]. The 3D printing process involves designing a 3D model which is
constructed by computer-aided design software. The obtained 3D model is then changed
into cross-sectional parts and then directed to the 3D printer, which deposits coating after
coating of the selected material to yield an item [157]. Concerning dental implants, 3D print-
ing is usually performed to obtain a surgical guide for the future accurate placement of
implants. However, scientific literature reports 3D printing to manufacture osteosynthesis
plates and mandibular reconstruction as well [90].

10.2. Pros and Cons of 3D Printed Implants

The 3D printing process has several advantages, such as having a better analysis and
outcome (due to easy manipulation of digital 3D models), the possibility of duplication of
the process whenever needed, and cutting off on the additional operative times. The 3D
printing process has certain limitations, also including the need for a skilled professional
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with good computing skills, immaculate planning is usually required, and an occasionally
higher risk of infection for some individuals [157].

10.3. Materials Used for 3D Printing of Dental Implants

The literature reports several different materials (Table 4) used in various studies to
fabricate 3D printed dental implants.

Table 4. Summary of materials used in 3D-printed dental implants.

S. No. Materials Used for 3D Printing of Dental
Implants Studies in the Literature

1 Plastic (MED690 VeroDentPlus) Kalman, 2018 [158]

2 Stainless Steel (Duraform 316L) Kalman, 2018 [158]

3 Zirconia Osman et al., 2017 [64]

4 Titanium Tedesco et al., 2017 [159]

5 Acrylic Resin Mangano et al., 2020 [160]

6 PEEK Xingting et al., 2019 [161]

7 Amorphous Magnesium Phosphate (AMP)
blended with PEEK Sikder et al., 2020 [162]

8 Cobalt-Chromium (Co-Cr) Alloy Bae et al., 2020 [163]

10.4. Evidence of the Success of 3D Printed Dental Implants in Various Settings

The scientific literature gives evidence about the success of 3D printed implants in
various clinical settings. Osman et al. (2017) previously reported that 3D printed zirco-
nia implants produced with digital processing technique (DLP) have good dimensional
accuracy and mechanical properties similar to those of the conventionally produced ce-
ramic implants [64]. Tedesco et al. (2017) compared 3D printed implants’ biocompatibility
post-insertion in the tibial metaphysis of rabbits [159]. It was reported in their study that
3D printed implants demonstrated profitable bone growth and acceptable biocompatibil-
ity [159]. Chang et al. (2020) used 3D printed Bio-ActiveITRI dental implants (produced via
laser-sintered 3D printing method) in the femur of white rabbits to analyze their perfor-
mance in a large bone defect area [164]. It was reported in their study that ITRI implants
demonstrated active bone formation on histomorphometric analysis [164]. Mangano et al.
(2020) placed 3D-printed subperiosteal titanium implants fabricated through DMLS in the
mandible of ten edentulous patients for future prosthetic restoration [160]. They reported
a 100% survival rate of these implants at a one-year follow-up with minimum complica-
tions [160]. Park et al. (2020) reported a case in which a 3D printed implant was placed in a
patient with an atrophic mandible due to osteoradionecrosis who received radiation treat-
ment post squamous cell carcinoma resection [165]. Their results revealed that 3D printed
implants with a pre-mounted dental implant resulted in a better mandibular function [165].

Considering all the advantages of 3D printed dental implants, it can be said with au-
thority that they can lead towards better restoration, esthetics, and functionality. Their use
in the past few decades has increased dramatically due to their unparalleled benefits. It is
anticipated that their use would further increase in the future. They would be readily
available in the clinics, and many more patients would be able to take advantage of their
expedient properties.

11. 3D Printing in Dental Education

To prepare dental students for their first living patient, extensive hands-on training is
required in a preclinical setting [166]. With computerized dentistry becoming an essential
fragment of dental learning and dental practice, 3D printing has started to enhance compo-
nents of dental education [167]. Regardless of progress in 3D printing, only straightforward
tooth models have been available for dental students to enhance their manual skills [167].
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Fortunately, recent studies have been conducted to try to satisfy the need for more natural
tooth and intraoral facial models for hands-on preclinical and clinical dental training with
promising results. Some of these emerging applications of 3D printing in dental education,
ranging from endodontics to oral surgery training, will be discussed in this section.

Crown preparations in prosthodontics with patients are a common part of clinical
preparation and standard in dental practices. Since commonly used model teeth are too
uniform in color and hardness, training for a preparation technique adapted to real tooth
substance is often neglected in preclinical training [168]. A study conducted by Hohne et al.
(2019) from the University of Wuerzburg aimed to design and establish a 3D printed tooth
with realistic differences in hardness, color, and different layers for enamel and dentin
with a realistic pulp for education purposes in crown preparation [168]. To evaluate their
model’s benefits, 30 experienced dentists and 38 fourth-year dental students completed a
questionnaire after using their 3D printed model teeth and standard model teeth. Both the
students and experts rated a positive learning experience with the 3D model tooth [168].
Hohne and Schmitter also developed another realistic tooth with carious lesions and pulp
cavity through 3D printing for preclinical training [167]. In this study, the tooth was used
by 47 dental students for preclinical training in caries excavation, direct capping of the
pulp, crown preparation and core-build-up in 2018. Similarly, a questionnaire was given
for participants. The authors concluded that the 3D-printed tooth had many features to
help train dental students, and participants saw the importance of such a tooth in dental
education [167]. Recent studies have also explored the possibility of 3D printed models
for educational training purposes for craniofacial traumas and in dental traumatology.
One study conducted by Remus et al. (2018) aimed to assess the feasibility of making
a realistic 3D printed model for training in dental traumatology [166]. Their model was
designed with several traumatic dental injuries based on the CBCT of the maxilla from a
real patient and was reproduced using a stereolithographic printer. The authors concluded
that the model was deemed relatively inexpensive and was highly useful for instructive
hands-on training for undergraduate dental students [166]. Another study conducted by
Nicot et al. (2019) introduced a 3D printed model to undergraduate students of an oral
and maxillofacial surgery teaching program to improve the mechanical comprehension
and educational aspect of craniofacial trauma [169]. The facial features were designed
with data from Data Imaging and Communications in Medicine. New lesions on the
Standard Tessellation Language file were created using the Computed Aided Design
and Manufacturing freeware. This study concluded that their 3D printed model appears
to help support craniofacial trauma education of undergraduate dental students and is
relatively low-cost [169].

Furthermore, 3D printed models may also have the potential for aesthetic surgical
training. In East Asia, intraoral facial skeletal contour surgeries (intraoral FSCSs) have
increased in popularity to achieve an oval face. However, no intraoral FSCS simulator
exists, and its existent could be beneficial for training since they are technically challeng-
ing to perform, and severe complications could arise [170]. To increase the exposure to
the complicated surgery for training professionals, Fu et al. (2019) developed the first
intraoral FSCS simulator and evaluated its effectiveness. The simulator was created with
3D printed skulls based on CT data of intraoral FSCS patients, and the skull was covered
with elastic headcloth. The authors had 20 residents who have all previously participated
in intraoral FSCSs and had them fill out questionnaires before and after practicing with
the authors’ intraoral FSCS simulator. This study concluded that their intraoral FSCS
simulator is effective and economical from the data collected. They also concluded that the
simulator is highly realistic and has helped participants feel more confident in performing
intraoral FSCSs [170].

Although 3D printed models for dental training are currently in its infancy, many mod-
els have been created using 3D technology with promising potentials. From the studies
discussed, 3D models for training dental students can be used for various dental specialties
and procedures while also being relatively low-cost. Compared with the uses of series
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models, commonly used by many universities for preclinical training, 3D printed models
provide more realistic simulations [171]. However, it is essential to note that many studies
on 3D printed models are new and require further testing with more participants before
they may be used globally. Nevertheless, 3D printed models have proven their effectiveness
in improving future and current dental professionals’ understanding and skills.

12. Current Challenges and Future Directions

3D printing is a technique gaining popularity in dentistry and is different from conven-
tional subtractive computer-aided manufacturing techniques. In comparison, 3D printing
is an additive process with little material waste, is more accurate, and can operate using sev-
eral materials such as plastics, metals, and ceramics, which are applicable to dentistry [172].
While 3D printing has changed the workflow and has allowed for innovation in several
aspects, it still faces some challenges. For example, in surgery, computed tomography and
3D printing are paving the way to produce surgical guides; however, some of the materials
used may not be autoclavable and sterilizable, thus limiting their use [173]. In addition,
accuracy is often dictated by the quality of the original scan taken by intraoral scanners,
which remain inaccurate when taking full arch scans or surfaces with irregularities [174].
Due to the increased popularization and accessibility of 3D printing and intraoral scan-
ners, the dental workflow is experiencing a shift to the digital realm, with many practices
digitizing their patient data. The 3D printers allow dentists to print models when needed
and work digitally on other cases that permit it. This shift allows a decrease need for
storage space in offices. However, it increases ethical issues such as data privacy, protection,
and confidentiality, especially since digitizing patient data can make it more accessible for
research use [175].

13. Conclusions

Today, a dentist’s main challenge will be shifting to a digital workflow and integrating
these new technologies and equipment into their routine practice. These tools will allow the
dentist to be more creative and perform more predictable, less invasive and cost-effective
treatments. However, with the addition of a new technology comes a new responsibility.
New standards using the equipment will have to be defined to ensure that the patient’s
standard of care, health and safety are not compromised.
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