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A large percentage of the world’s population is affected by gastric diseases ranging from

erosion and ulcer to serious ailments such as gastric cancer, which is mainly caused

by Helicobacter pylori(H.pylori) infection. While most erosions and ulcers are benign,

severe cases of gastric diseases can still develop into cancer. Thus, early screening

and treatment of all gastric diseases are of great importance. Upper gastroscopy is one

such common screening procedure that visualizes the patient’s upper digestive system

by inserting a camera attached to a rubber tube down the patient’s digestive tracts,

but since the procedure requires manual inspection of the video feed, it is prone to

human errors. To improve the sensitivity and specificity of gastroscopies, we applied

deep learning methods to develop an automated gastric disease detection system that

detects frames of the video feed showing signs of gastric diseases. To this end, we

collected data from images in anonymous patient case reports and gastroscopy videos

to train and evaluate a convolutional neural network (CNN), and we used sliding window

to improve the stability of our model’s video performance. Our CNN model achieved

84.92% sensitivity, 88.26% specificity, and 85.2% F1-score on the test set, as well as

97% true positive rate and 16.2% false positive rate on a separate video test set.

Keywords: medical image, gastrointestinal disease, CNN, image classification, real-world video

1. INTRODUCTION

There are a variety of gastric diseases that affect the health of a large fraction of the world’s
population, ranging from mild erosive gastritis to advanced cancer. A gastritis is characterized by
the presence of map-like redness or diffuse redness in the stomach, with or without atrophy and the
presence of erosion within the mucosal layer. Peptic ulcers are defects in the gastric or duodenal
mucosa that extend through themuscularis mucosa. A gastric carcinomawith infiltration no deeper
than submucosal layer can be considered early gastric cancer, while precancerous lesions include
gastric ulcer, atrophic gastritis, intestinal metaplasia, and gastric polyps that may eventually develop
into a gastric adenoma (1, 2). It was reported in Søgaard et al. (3) that the absolute 1–5 year risk
of any GI cancer was 2.1% for patients with a gastric ulcer and 2.0% for patients with a duodenal
ulcer. Other studies show that the malignancy rate in gastric ulcers spans a wide range between
2.4 and 21% (4, 5). Geographically, gastric cancer occurs at a very different rate in different parts
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of the world, with approximately half of all new cases occurring
in East Asia (6). It is of great importance to develop a system
that can detect gastric diseases, especially those with potential to
become malignant, to help improve the screening and diagnosis
of gastric cancer.

To reduce the potential for human error, a number of
studies have been carried out to explore the use of machine
learning to automatically classify gastrointestinal diseases. By
replacing traditional feature engineering with convolutional
neural networks (CNN) based deep learning models such as
GoogleNet (7) and AlexNet (8), these studies achieved much
better results on the task of classifying between images showing
healthy tissues and images showing signs of various diseases.
However, these models are often trained on images that are
carefully selected during endoscopy procedures, with a stringent
inclusion criteria that filters out blurry and low-contrast images,
as well as images with visual obstructions such as bleeding and
surgery instruments (9, 10). Furthermore, all currentmethods are
either only evaluated at the image level or can only identify one
or two specific types of diseases and are therefore unsuitable to be
applied to the real-time video feeds in clinical settings.

Recently, there has been a large surge in applying deep
learning to detect and classify gastric diseases, including ulcer,
erosion, and cancer. Shichijo et al. (10) trained a 22-layer
GoogleNet to classify helicobacter pylori infection. Takiyama
et al. (9) used Single Shot Multibox Detector (SSD) (11) to
detect gastric cancer, including images with standard white
light, narrow band imaging, and chromoendoscopy using indigo
carmine spraying, while excluding magnified or poor quality
images. Khan et al. (12) proposed a deep learning based method
to detect ulcer and classify several gastrointestinal diseases,
using a modified mask regional CNN (Mask R-CNN) (13)
model to segment detected ulcers. In classification, they fine-
tuned a pretrained ResNet-101 through transfer learning and
derived deep features from the training data, then supplying the
features to a Multi-class Support Vector Machine (MSVM) for
final classification. Luo et al. (14) developed a Gastrointestinal
Artificial Intelligence Diagnostic Systems (GRAIDS), based on
DeepLab-v3+ with one input and two outputs, to perform
classification and segmentation on upper gastrointestinal cancer.

FIGURE 1 | Disease category: (A) erosive, (B) ulcer, (C) early caner, and (D) advanced cancer.

Horie et al. (15) developed an esophagal cancer diagnosis system
using Single Shot Multi-Box Detector. The closest work to our
paper is done by Byrne et al. (16). The authors proposed a deep
learning-based automated polyp detection system based on the
Inception network architecture (17), which can achieve real-time
assessment of colorectal polyps. The video segments used in
the study are captured under the NBI mode by Olympus video
recorders, and contain polyps of different sizes.

Despite the abundance of prior work, none of them except
the last one can be used on the video level, either due to large
models that cannot keep up with real-time video feeds or only
being trained using clear images that are unsuitable for real-world
videos, and all these works focus on image-level classification.
The last work does achieve video-level inference, but it can only
be used for NBI images.

In order to address these problems, we collected data of
four types of diseases commonly screened for during upper
endoscopy (erosion, ulcer, early cancer, and advanced cancer,
visualized in Figure 1) from both patient reports and direct
samples of endoscopy videos to train our models to handle the
various complications arising from real-world videos. After that,
we compared the performance of a variety of lightweight CNN
models to distinguish gastric diseases from healthy images. We
then built an gastroscopy video processing system to identify
video segments containing signs of gastric diseases by combining
our trained image-level model with a separately trained blurry
image classifier to filter out blurry frames and the sliding window
algorithm to improve stability. To the best of our knowledge, our
method is the first effort which can distinguish aforementioned
common gastric diseases from healthy images and be used
in real-time.

Throughout our experiments, we also employed class
activation mapping (CAM) (18), which highlights specific
regions of an input image used by the trained models to generate
their classifications, to verify that our model had actually learned
meaningful features, instead of artifacts of the training data
that are correlated with the image labels. This extra layer of
sanity check allowed us to identify and correct several problems
with our training data, which we document in this article for
instructive purposes.
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FIGURE 2 | Dataset composition.

2. MATERIALS

2.1. Data
We collected the data and generated accurate labels to train and
evaluate our models, taking care to protect patient privacy by
anonymizing all personal information. Our data is composed of
two parts: one from 2,477 digital patient reports and one from
real-world upper endoscopy videos.

2.1.1. Data Collection From Patient Reports
From the electronic medical records (EMR) of the hospital,
we extracted endoscopy images from patient reports between
March 2015 and August 2020 using relevant keywords and
saved them alongside the original reports, which contain detailed
information about the operation, such as the date of the
operation, equipment used, location of the sampled images,
written description by the operating physician, lesion sizes and
types, etc. All images extracted from a patient’s record are
displayed on a web page. Our collaborating endoscopists select
the images for each specific disease, namely, erosion, ulcer, early
cancer, and advanced cancer. The selected images are saved to
our database with the corresponding labels, and are later used
to train and test our model. Altogether, there are 1,798 erosive,
3,606 ulcer, 882 early cancer, 704 advanced cancer, and 4,805
healthy images. In our study, we group the different diseases into
a single disease category, resulting in a total number of 6,990
disease images. For healthy class, we collect images from patient
reports that do not have any disease label, creating a set of 4,805
images. The aggregation of the disease and healthy images is
called dataset A.

2.1.2. Data Collection From Endoscopy Videos
We collected an additional 280 real-world upper endoscopy
videos, also from Xiangya Hospital, between October 2019 and

January 2020. We asked doctors from Xiangya Hospital to review
each video, logging all time slots where the signs of diseases
are within view of the camera along with the type of disease.
Afterwards, we sample from the logged time slots for disease
images and from untagged time slots for healthy images, yielding
2,060 disease images and 6,019 healthy images. Among these are
1,312 erosive, 299 ulcer, 95 early cancer, 354 advanced cancer,
and 6,019 healthy images. These images form dataset B and
supplement dataset A with important samples from real-world
videos that greatly improve our classifier’s clinical performance.
An overview of the datasets can be seen at Figure 2, and we
provide a side-by-side comparison between example images in
dataset A and dataset B in Figure 3. As we can see, the image from
dataset B is blurrier and has less contrast, which supplements
dataset A’s higher quality images to help our model deal with
the real-world video images, which often suffer from a variety of
artifacts such as motion blur and overexposure. We also collected
a separate set of upper endoscopy videos and processed them
similarly to evaluate our model’s video level performance. We
specifically asked the doctors to label 10 of these videos second
by second to provide a better ground truth for video evaluation.
In total, we have 3,110 erosive images, 3,905 ulcer images, 977
early cancer images, 1,058 advanced cancer images, and 10,824
healthy images.

2.1.3. Sample Size Calculation
We use the following sample size formula (19) to calculate the
number of positive samples and negative samples:

n =
Z2P(1− P)

12
,

where Z represents the z-score, P represents the expected
prevalence, and 1 is the margin of error. We adopt the z-score as
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FIGURE 3 | Example erosive images from datasets (A,B) red box indicates the location of erosive lesions.

1.96 (corresponding to 95% confidence interval), P value as 90%,
and 1 as 0.01, to determine the required sample size as 3,458.
In our training dataset, the numbers of positive and negative
samples are 9,050 and 10,824, respectively, both larger than the
required sample size.

3. METHODS

Our pipeline consists of two classifiers: a blur classifier that
filters out uninformative blurry images and a binary disease
classifier that detects frames with diseases. We then create a video
processing system using these models to classify the video frame
by frame, smoothing out the predictions using a sliding window.
We present an illustration of the pipeline in Figure 4.

3.1. Blur Classifier
Blurry images are a major problem for endoscopy aid software
in clinical settings. Existing applications that work well on clear
test images usually struggle to accurately classify real-world
video feeds, which are full of noise and blur. In our work, we
design and attach a blur classifier to the front of our disease
classifier to filter out blurry images and mitigate their impact.
We manually selected 348 blurry images and 292 clear images to
construct the dataset to cover most blurry scenes in real-world
scenarios, including motion blur and out-of-focus blur caused by
the camera moving or flushing of the intestines and stomach. We
then trained our blur classifier using ResNet-50, achieving 94.7%
accuracy on a test set composed of 229 images. We also increased
the classification threshold to 0.7 to only remove very blurry
frames and accept images with slight blurs for the next step.

3.2. Disease Classifier
The CNN-based classifier has dominated among computing
vision areas during the past decade (20). From the original
AlexNet to the most recent EfficientNet (21), the networks
become more accurate and faster at the same time. For our
diagnosis system, quick response and accuracy are both critical.
In the compact network field, SqueezeNet (22) consumes a
low amount of memory while maintaining the competitive
performance. ResNet-50 and its variants also achieved fast
inference speed among the ResNet family. For the more recent
EffcientNet, the B4 version is most suitable for our task. We
conduct an ablation study among those networks to find the best
performing one for our study. Finally, we choose the ResNeXt-
50 (23), a variant of Res50, as our classifier due to its highest
accuracy on our datasets and short repose time.

We explored a variety of different lightweight classifier
architectures for our disease classifier, including ResNet-
50, ResNeXt-50, ResNet-101, SqueezeNet, and EfficientNet-
B4. Based on their performance, we selected ResNeXt-50 for
our video-level experiments. It is a variation of the classic
ResNet, using a split-transform-merge strategy with a cardinality
parameter to learn more abstract features with similar numbers
of parameters. Its identical path design as ResNet also makes it
easier to adopt and faster to inference from than InceptionNet.

3.3. Sliding Window
Random noise is inevitable in real-world videos. Although we
have added a classifier to filter out blurry images, we cannot
guarantee that all frames fed into the disease classifier are
informative enough to make a correct prediction. The sliding
window is a standard technique for limiting interference from
outlier frames and reducing the false positive rate during video
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FIGURE 4 | Overview of our gastroscopic disease classification system.

level inference. Instead of making decisions based on each
individual frame, we consider the classifier’s label of the past
k frames, where k is the window size, and use a majority-vote
mechanism to determine the actual inferred label. In experiments
with more than two classes, if no particular label forms a majority
at a given window, we default to the healthy class. A larger
window size reduces false positive rate but also masks over more
true positive cases, so we tune k to balance the two metrics.

4. EXPERIMENT

4.1. Evaluation
We evaluate the performance of our proposed approach using
both standard image-level evaluation metrics and video-level
metrics that we specifically designed for this purpose. The image-
level metrics include precision, recall and F1 score, defined
as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
,

F1 = 2 ·
precision · recall

precision + recall
,

(1)

where TP, FP, and FN stand for the number of true positive, false
positive, and false negative outcomes, respectively.

Note that precision is the ratio of true positives to the total
number of predicted positives, and recall is the number of true
positives divided by the number of real positives in the dataset.
Combining these two measures into a single metric, F1-score is
the harmonic mean of the precision and recall, primarily used to
compare the performance of two classifiers.

Our metric for evaluating video levels needs to reflect the
performance of our system in real-life scenarios. It is critical for
our system to identify disease instances as soon as possible after
they appear on camera and send a warning to the physicians.
With the help of this warning message, the physicians can

avoid missing inconspicuous diseases and locate these disease
areas more easily. However, it is still important to continue
catching the disease while it is still visible. Additionally, for
an optimal user experience, the system should send as few
false positive notifications as possible. To capture these aspects
of evaluation, we considered three different metrics for real-
world video evaluation: true positive rate, coverage, and false
positive rate.

The true positive rate (TPR) is calculated as follows. Within
each disease period in the ground truth video, an alarm window
is established at the beginning. If a positive prediction is made
within the alarmwindow, we consider this as a hit, and the overall
true positive rate is calculated as the ratio of hits to the number
of ground truth disease periods. The size of the alarm window is
a hyperparameter that we tune to evaluate how fast diseases can
be detected by our model. For our experiments, we settle on an
alarm window of 5 seconds.

Coverage rate (CR) is calculated by counting how many
positive frames our model predicts during each ground truth
disease period, and divide it by the number of frames within the
disease period. The higher this rate, the fewer positive predictions
our model misses.

The false positive rate (FPR) is the ratio of the number of
positive predictions outside any ground truth disease period over
the number of healthy frames in the video. This rate shows how
many wrong positive predictions our model makes.

4.2. Model Training
We use both dataset A and B to train our disease classifier. We
split dataset A into train and test sets case-wise to ensure that we
do not have images from the same patient in both the train and
test sets. For dataset B, we consider each video as one instance and
split them instance-wise for the same reason. The train-test split
ratio is 7:3. We use an Adam optimizer and a cosine scheduler
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TABLE 1 | Image-level classification performance of different models on Dataset A+B.

Precision Sensitivity Specificity F1 score Kappa MCC

MobileNetV2 84.16%± 0.3% 83.16%± 0.4% 87.07%± 0.3% 83.64%± 0.5% 70.31%± 0.8% 70.34± 0.2%

SqueezeNet 82.23%± 0.8% 82.57%± 1.1% 85.07%± 0.3% 82.31%± 0.3% 67.68%± 0.4% 67.89± 0.4%

VGG16 84.19%± 2.3% 85.24%± 2.9% 86.67%± 2.8% 84.60%± 0.1% 71.83%± 1.1% 71.95± 0.2%

GoogleNet 83.99%± 1.4% 82.32%± 0.5% 87.02%± 0.4% 83.12%± 0.6% 69.47%± 1.1% 69.52± 0.2%

ResNet-50 85.59%± 0.4% 84.01%± 0.6% 88.28%± 0.5% 84.72%± 0.2% 72.40%± 0.3% 72.47± 0.3%

ResNeXt-50 85.64%± 1.2% 84.92%± 1.8% 88.26%± 1.4% 85.26%± 0.6% 73.22%± 1.1% 73.25± 1.1%

ResNet-101 85.25%± 1.5% 84.26%± 0.9% 87.92%± 0.4% 84.69%± 0.4% 72.26%± 2.6% 72.34± 0.6%

EfficientNet-B4 86.69%± 0.2% 84.69%± 0.4% 89.21%± 0.1% 85.66%± 0.1% 74.09%± 0.2% 74.13± 0.2%

TABLE 2 | Precision, recall, F1-score of all multi-class classification experiments.

Healthy Mild-

disease

Severe-

disease

Erosive Ulcer Early

cancer

Advanced

cancer

{Healthy, mild-disease, severe-disease} Precision

Sensitivity

Specificity

F1-score

89.5%

86.9%

82.1%

88.2%

73.4%

76.9%

88.1%

75.1%

56.1%

57.1%

96.3%

56.6%

N/A N/A N/A N/A

{Healthy, erosive, ulcer, early cancer, advanced cancer} Precision

Sensitivity

Specificity

F1-score

91.7%

85.2%

79.1%

88.3%

N/A N/A 57.4%

67.4%

95.1%

62.1%

61.8%

70.6%

93.6%

65.9%

38.5%

45.5%

97.4%

41.7%

73.2%

52.7%

97.9%

61.3%

TABLE 3 | Video-level performance using ResNeXt-50 trained on datasets A, B,

and A+B, no sliding window, alarm window = 5 seconds.

TPR CR FPR

Dataset A 97% 54.5% 27.2%

Dataset B 89% 34.3% 6.6%

Dataset A+B 97% 52.7% 16.2%

TABLE 4 | ResNeXt-50 on fine-tuned annotated video.

TPR CR FPR

Fine-annotated 92% 63% 14.1%

Original-annotated 87% 61% 18.8%

TABLE 5 | Performance comparison with different sliding window sizes with a

threshold of 0.5.

Window size TPR FPR

Size 20 89.4% 13.2%

Size 30 88.5% 12.8%

Size 40 87.7% 12.4%

Size 50 87.7% 12.1%

to adjust the training, with an initial learning of 0.001 and a 10-
epoch time cycle for the scheduler. Each model is trained for 60
epochs, and we select the one with the best F1 score to use for
video evaluation.

TABLE 6 | Performance comparison with different thresholds with a window size

of 20.

Threshold TPR FPR

0.5 89.4% 13.2%

0.6 88.6% 11.1%

0.7 87.7% 9.5%

5. RESULTS

We explore a few different architectures for the disease classifier
on dataset A+B, with results shown in Table 1. The performance
of multi-class classification is presented in Table 2. Based on the
overall performance, we choose ResNeXt50 for further video-
level experiments.Table 3 presents the performance of ourmodel
trained on dataset A, dataset B, and datasets A+B without
applying sliding window. We also test our system on ten finely-
annotated videos, and report the result in Table 4. To reduce the
false-positive rate, we investigate the effect of different sliding
window sizes and thresholds, with results shown in Tables 5, 6.

5.1. Image Level Result
According to Table 1, ResNeXt-50’s F1 score is 85.26% ± 0.6%,
which is superior to ResNet-50 because of the design of
Cardinality Residual Block. Furthermore, ResNeXt-50
outperforms the lightweight SqueezeNet, MobileNetV2,
conventional VGG16 models, while achieving comparable result
with heavyweight models EfficientNet and ResNet-101. The
sensitivity and specificity of ResNeXt-50 are 84.92 ± 1.8%,
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FIGURE 5 | ROC curve of ResNeXt-50 on Dataset A+B.

88.26 ± 1.4%, respectively. In terms of the Kappa score and
Matthews correlation coefficient, they all fall within the range
of 61 to 80%, indicating that the prediction and the observation
are highly concordant. Our further experiments are conducted
using the ResNeXt-50 architecture, which provides the overall
best performance. Figure 5 plots the ROC curve of the best
performing ResNeXt-50 model, with an AUC score of 0.948.

To explore the potential of our datasets, we also carry out
additional multi-class (three-class and five-class) classification
experiments. For the three-class experiments, we consider erosive
and ulcer images as a mild disease class while early cancer and
advanced cancer are combined into a severe disease class. For
the five-class experiments, we treat each disease as a separate
class. Table 2 shows the result of these multi-class experiments.
The F1 scores for three- and five-class experiments are around
70 and 60%, respectively, which are much lower than the binary
classification due to the similarity between different classes. For
example, milder forms of early cancer have similar texture and
color to ulcers; severe early cancer or even ulcer may look similar
to advanced cancer; milder erosive and healthy images are also
hard to distinguish. The confusion matrices and PCA analyses
for these experiments presented in Figures 6, 7 further confirm
the these observations.

5.2. Video Level Result
Performance on video is our primary concern, as this is the
real application setting. We evaluate our models over 121 real
gastroscopic operation videos, of which 46 of the them consist of
labeled diseases. We calculated our three metrics—true positive
rate, coverage, false positive rate—on models trained using
dataset A, dataset B, and datasets A+B without applying sliding
window, shown in Table 3. Although dataset A produces the
highest TPR of 97%, its FPR is also the highest amongst the
three. Without noisy images captured from actual videos, the
model trained on dataset A is too sensitive with real-world videos.
In contrast, the model trained on dataset B achieves 89% true
positive rate. The model trained using datasets A+B balances the
advantages of the two other models, lowering FPR to 16.2% while
still maintaining a 97% TPR and 52.7% CR. Thus, we use the
model trained on datasets A+B for all future experiments.

We further apply sliding windows to balance TPR and
FPR. We explore a variety of window sizes and classification
thresholds, which are the proportions of images in a given
window that need to be predicted as disease for the frame
to actually be considered a disease frame, in Tables 5, 6. As
expected, increasing the threshold lowers both TPR and FPR,
and increasing the window size lowers both TPR and FPR. To
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FIGURE 6 | Confusion Matrices, (A) confusion matrix of 2-class experiment, (B) confusion matrix of 3-class experiment, and (C) confusion matrix of 5-class

experiment.

FIGURE 7 | 2D PCA analysis scatter for image classification experiments, (A) shows the 2-class experiments, and we also plot the disease from different data source

with different colors, (B,C) represent the 3-class and 5-class experiments.

compromise between the two, we use a window size of 20 and a
threshold of 0.5. With the sliding window, the TPR drops from
97 to 89.4%, the CR drops from 52.7 to 50.9%, and the FPR
drops from 16.2% to 13.2%. We see a significant drop in TPR in
exchange for a 3% decrease in FPR, which is more significant than
one might think, the total denominator of FPR is the number
of healthy frames, which is much larger than the number of
disease frames.

The inference time of our system is about 19ms, and our
experiments are ran on Intel i7 CPU and GTX 1080Ti GPU.
The blur classifier takes about 10.6ms, The disease classify costs
about 8.4ms, and the sliding window process time takes less
than 1ms which can be ignored. The corresponding speed of our
system is about 50 frame-per-second, which satisfies the real-time
requirement of the system in gastroscopy.

In order to demonstrate intuitively how our models perform
on real endoscopy videos, we plot the ground truth and our
model’s inference (with all techniques applied) in Figure 8. As we
can see, the model effectively identifies each disease period with
no false positives in the example.

6. DISCUSSION

We apply several techniques to gain a deep understanding

of our results. Figure 6 shows the confusion matrices of best

ResNeXt-50 model in the experiments. For 3-class classification,
we observe that there are much more incorrect predictions

between “adjacent” classes (i.e., between healthy andmild-disease
and between mild-disease and severe-disease) than between
“faraway” classes (i.e., between healthy and severe-disease),
indicating that while severe diseases (early cancer, cancer) share
some similarities with mild diseases (erosive, ulcer), they look
quite different from healthy ones. Healthy images are more likely
to be mistaken for mild diseases than for severe diseases. Similar
observations can be made for 5-class classification result.

We also conducted a principal component analysis (PCA) to
visualize how the data are separated in two-dimensional space,
shown in Figure 7. Specifically, we flatten the output features
of the final convolutional layer in the model and select basis
components with largest eigenvalues as the two dimensions,
effectively projecting the feature vectors onto two dimensions.
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FIGURE 8 | Video prediction and ground truth of ResNeXt-50, trained on datasets A+B, with sliding window.

FIGURE 9 | Activation map of an erosive image with GradCam. (A) Original image. (B) Heatmap (GradCam) on the corrected lesion location. (C) Flawed heatmap

focused on irrelevant image corners.

We labeled diseased images from dataset A and B with different
colors to highlight the different feature representations from
different data sources. We observe from Figure 7A that for 2-
class classification, the diseased and healthy images are well
separated in the 2-dimensional PCA plot, and the images from
dataset A and B also fall in different regions. For 3-class and 5-
class cases, images of different classes become more overlapped,
consistent with their degrading performance as shown inTable 2.
To further explore the results of different models, the repeated
measures ANOVA test is performed over 50 samples. The results
of the ANOVA test indicate that there is a significant between-
model effect for the overall performance of the model, and there
is a significant interaction of the model by the different results
from performance metrics such as precision.

For data from different equipment, the brightness, contrast,
color, and even the border of the images exhibit distinct patterns.
To ensure that our model is learning relevant features instead
of induced artifacts to classify diseases, we apply GradCam (18)
to generate heatmaps that highlight important regions of input
images used by our model to generate its inferences. We choose
the last layer of Layer-4 from ResNeXt-50 to create our activation

maps, shown in Figure 9. From Figure 9C, we found our model
overfitted to the black borders on the corners of the original
image shown in Figure 9A, which have slightly different sizes
depending on the equipment used to capture the image. This
prompted us to modify the image preprocessing to additionally
apply a uniform mask to ensure that each image has the same
border dimensions. The corrected result is shown in Figure 9B,
where the model now focuses on relevant features on the image.

During the evaluation of our system on the endoscopy video,
we found three major issues with the disease section labeling.
First, some parts of the videos exhibiting diseases were missed.
Second, the timestamp of labeled disease periods are not very
accurate, most of them deviating 1-3 seconds from the actual
window. Finally, many labeled disease periods contain non-
disease frames as the cameramoves, which results in low coverage
rates (CR).We selected 10 videos for our doctors to label at a finer
granularity to improve the quality of ground truth, addressing the
first two concerns. We ignored the third concern, since correctly
identifying diseases is much more important than high coverage
rate in our case. Table 4 shows that the model’s TPR and FPR
both improve with the finer annotation.
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While our model performs well on both image and video
levels in our experiments, there are still a few limitations that
must be addressed in the future. Since our method is based on
whole image classification, it is more sensitive to the inherent
image characteristics that vary with different equipment than
object detection or segmentation methods. Also, although we
can show the approximate location of lesions using GradCam
heatmap, the exact location of lesions cannot be determined as
accurately as using object detection or segmentation methods.
Moreover, since our current system focuses on distinguishing
images of healthy and unhealthy conditions, it lacks the ability
to discriminate between different gastric diseases. Additionally,
like other deep learning approaches, the blackbox nature of CNN
makes the model outputs difficult to explain. Last, but not least,
considering our study was based on data from a single hospital,
the generalizability of the findings needs to be confirmed in a
larger study.

By utilizing our automatic gastric disease detection model,
the endoscopists would be less likely to miss-diagnose precursor
lesions for gastric cancer at an early stage, thus, reducing the
economic burden associated with cancer treatment.

7. CONCLUSION

In this article, we designed and constructed an entire system
for gastric disease classification, from early stage data collection
to a final system that is evaluated against real-world videos.
We explored a range of CNN architectures and studied the
different performances on real-world videos with models trained
from various data sources. Different sliding window filters were
applied to balance the true positive and false positive rates. By

combining clear images from patient reports and images sampled
from real operation videos, our system is able to achieve 97% true

positive rate, 52.7% coverage, and 16.2% false positive rate. By
adding a sliding window, we can further reduce false positive rate
to 9.5% while maintaining an 87.7% true positive rate.

As our dataset is labeled with rich class annotations that
distinguish between different diseases, we can further optimize
multi-class classification on top of binary classification in
the future. We can also add instance level annotations to
our dataset and train object segmentation models like Faster-
RCNN (24) and SSD (25), which would allow our system to
generate more precise highlighting of lesions and cancers for
physicians.
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