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Abstract

Phthalic acid esters (phthalates) are male reproductive toxicants, which exert their most

potent toxicity during fetal development. In the fetal rat, exposure to phthalates reduces tes-

tosterone biosynthesis, alters the development of seminiferous cords and other male repro-

ductive tissues, and induces the formation of abnormal multinucleated germ cells (MNGs).

Identification of MNGs is a time-intensive process, and it requires specialized training to

identify MNGs in histological sections. As a result, MNGs are not routinely quantified in

phthalate toxicity experiments. In order to speed up and standardize this process, we have

developed an improved method for automated detection of MNGs. Using hand-labeled his-

tological section images with human-identified MNGs, we trained a convolutional neural net-

work with a U-Net architecture to identify MNGs on unlabeled images. With unseen hand-

labeled images not used in model training, we assessed the performance of the model,

using five different configurations of the data. On average, the model reached near human

accuracy, and in the best model, it exceeded it. The use of automated image analysis will

allow data on this histopathological endpoint to be more readily collected for analysis of

phthalate toxicity. Our trained model application code is available for download at github.

com/brown-ccv/mngcount.

1. Introduction

Phthalates (phthalic acid esters) are used to make a variety of industrial products and con-

sumer goods, most notably to plasticize polyvinyl chloride for use in products such as vinyl

sheeting and medical tubing [1]. Human exposure to phthalates is nearly universal, and their

potential toxicity to male reproductive tract development raises concern for male reproductive

health [2, 3, 4, 5, 6, recently reviewed by 7, 8]. In rat models with in utero exposure to certain

phthalates, decreased testosterone production is observed [9, 10, 11, 12, 13, 14]. However,

quantification of male reproductive toxicity is complicated by lack of concordance between

this effect on steroidogenesis and other adverse testicular development outcomes, as histologi-

cal effects on the testis can occur regardless of a reduction in measured testosterone [4, 3, 2, 15,

16]. One effect of phthalate exposure on fetal testis development that is consistent across
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species is an increase in multinucleated germ cells (MNGs), germ cells which contain two or

more nuclei [9, 17]. Di-n-butyl phthalate and di-(2-ethylhexyl) phthalate induce MNGs in rats

and mice in utero and in rat, mouse, and human tissue xenograft models, to levels much

greater than the background rate of MNGs found in control testes [16, 2, 3, 18, 19], which has

led researchers to conclude that, despite differences in the anti-androgenic response, rats are

an appropriate model in which to study the effects of phthalates on germ cells [18]. The long-

term impact of MNG induction on testis health is unclear. Phthalate-induced MNGs are

degenerative cells that are lost through p53-dependent apoptosis in the early postnatal period

[20, 21, 9, 22]. However, induction of MNGs is clearly a reproducible indicator of phthalate

effect on the fetal testis. Although this is a quantitative endpoint with the potential to be used

as a biomarker of seminiferous cord-mediated phthalate toxicity, thorough studies on the

dose-response for induction of MNGs by most phthalates have not been conducted in any spe-

cies [19].

The primary drivers of the low quantity of MNG count data are the time required for per-

forming the count and the training needed for an expert to be able to confidently identify the

MNGs [19]. Additionally, there is error inherent in recognizing an MNG in a histological sec-

tion, or especially a two-dimensional image of a histological section. This is due at least in part

to the high density of germ cells in seminiferous cords, the large germ cell nuclei and low ratio

of cytoplasm area to nucleus area in cross-section, and the sometimes indistinct germ cell

membrane. As a result of these features, different experts are able to reach different conclu-

sions about some fraction of the cells that are identified as MNGs [19] began the process of

addressing these issues through the creation of a semi-automated counting pipeline. Using

hematoxylin-stained thin sections of fetal rat testes and a scripted process though the NIH

ImageJ software [19], identified MNGs based on their image characteristics using computer

vision principles. The primary image criteria used to identify MNGs was size. Without a for-

mal cell segmentation routine [19], used image thresholding, down-sampling, blurring, and

filling to identify connected image components. These connected components were filtered

based on circularity to exclude non-cells, and then they were filtered by size to identify MNGs.

While much of this pipeline was fully automated, several steps required human input, includ-

ing the initial image processing and the identification of the thresholds for each image batch.

Here, we propose to improve on the [19] approach, leveraging recent innovations in convo-

lutional neural networks to build a fully automated MNG identification code.

2. Methods

2.1 Neural network architecture

The base neural network architecture we chose was U-Net. Developed by [23], U-Net was

designed for solving the cell segmentation problem. While many neural networks, when

trained, take an image as an input and produce a classification probability, U-Net produces a

mapped image showing the probability of a certain classification for each part of the image.

For cell segmentation, U-Net produces a map of where the cell boundaries are located.

U-Net takes a 512 by 512 pixel image tile as its input. As the image tile proceeds through

the U-Net, it passes through multiple convolution, max pooling, and ReLU activation function

layers, resulting in an image cube with reduced x and y dimensions and enhanced z dimen-

sions. At this layer, the deepest learning occurs. The image is then up-sampled using up-con-

volution, finally producing an output prediction map with values scaled from 0 to 255. The

ReLU activation function, which sets all negative values to zero, helps the neural network focus

in on specific areas of the image.
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There are several implementations of the U-Net, and we chose a Python and Keras imple-

mentation published by GitHub user zhixuhao (https://github.com/zhixuhao/unet). While we

modified the training, augmentation, prediction, and data management code extensively, we

left the original network architecture unmodified.

Because it was originally designed for solving the cell segmentation problem, the original

implementations of U-Net used a map of cell boundaries as the training data. The cells were

outlined, not filled in. To apply the U-Net to the MNG problem, we structured the training

data somewhat differently. Instead of the outline of each MNG, we used a map of the filled in

area of each MNG. As a result, the trained network produced a prediction heat map with a

likelihood of each pixel belonging to an MNG (Fig 1).

2.2 Data acquisition

Experiments involving animals were performed under a protocol approved by the Institutional

Animal Care and Use Committee of the USEPA National Health and Environmental Effects

Research Laboratory (Laboratory Animal Project Review #19-03-001). Animals were housed

in a facility accredited by the Association for Assessment and Accreditation of Laboratory Ani-

mal Care and maintained at 20–22˚C, 45–55% humidity, and a 12:12 h photoperiod (lights off

at 1800 hrs). Histological section images were obtained from the samples from animals

exposed to diethyl phthalate (DEP), dipentyl phthalate (DPeP), dimethyl phthalate (DMP), di-

(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP),

di-(2-ethylhexyl) tetrabromophthalate (TBPH), dioctyl terephthalate (DOTP), or corn oil vehi-

cle reported previously by [19]. An additional 15 samples were obtained from rats treated with

DPeP (1, 11, 33, or 100 mg/kg/d) or corn oil vehicle as previously described. Briefly, timed

pregnant Sprague Dawley rats were obtained from Charles River Laboratories (Raleigh, NC).

Treatment compounds were administered by daily oral gavage in 2.5 mL/kg body weight corn

oil vehicle from gestation day (GD 17–21). Dams were euthanized by decapitation approxi-

mately two hours after administration of the final dose. Testes were isolated from male fetuses

and treated with a modified Davidson’s fixative for 15 minutes, before being transferred to

70% ethanol.

Fixed testes were dehydrated through a series of graded ethanols, embedded in paraffin

wax, and sectioned at a thickness of 5 μm. Paraffin sections were mounted on glass histological

slides, deparaffinized, rehydrated, and stained with hematoxylin. Hematoxylin stained sections

were scanned at 40x magnification on an ImageScope CS digital slide scanner (Leica Biosys-

tems, Buffalo Grove, IL) and saved in the ScanScope default.svs file format.

Images were down-sampled to 1 micron per pixel and compressed using the NIH’s ImageJ

software, then converted to 24-bit RGB PNG files. We determined that the color ratios did not

contain additional useful information beyond the grayscale values, so we converted the color

images to single-channel 8-bit greyscale images. We then cropped sub-images around each

individual testis slice on the slide. In most cases, each slide contained four testis slices.

2.3 Manual identification of MNGs

For each image, we hand-identified the centers of each MNG by using Leica ImageScope soft-

ware to view digital slide images. In order to ensure consistency, hand-identification was per-

formed by the human reference scorer, who is experienced in identification of MNGs. In

order to quantify the accuracy of human identification, two additional researchers performed

our own hand MNG identification on previously unseen slides. Human test scorer 1 examined

12 testes that he had not previously seen, identifying 44 MNGs. Using the reference human

scorer’s annotations as true MNG identifications, these 44 MNGs consisted of 10 false
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positives, and 34 true positives. There were an additional 11 false negatives. Human test scorer

2 examined fourteen images, identifying 105 MNGs, including 10 false positives, with an addi-

tional 41 false negatives in this dataset.

To quantify the match between human scorers or the model, we utilized the F1 score met-

ric, which is the harmonic mean of the precision and the recall:

precision ¼
true positives

true positivesþ false positives

recall ¼
true positives

true positivesþ false negatives

Fig 1. A schematic showing the different stages of the automated MNG prediction process, as performed on a single panel measuring 512x512 pixels (here 1 pixel = 1

micron): a) The original panel. b) The predictions after the trained model has been applied. (In this case, the fold configuration with Fold 0 as the holdout set is being

used.) The likelihood of a pixel being represented by an MNG has been mapped to the pixel brightness values on an arbitrary 0 to 255 scale, creating an MNG location

heatmap. These brightness values should be seen as relative likelihood, and the exact likelihood depends on the model. Note the clearly visible MNGs and some brighter

pixels around two cells that the model sees as having a possibility of being an MNG. c) The MNG location prediction image after a brightness cutoff threshold has been

applied. For this fold configuration, the brightness cutoff is 240. After applying the brightness cutoff, the two MNGs close together clearly separate, and the not clearly

predicted MNGs become a few specks. d) The final prediction image after a cutoff area threshold has been applied. All shapes with an area below the cutoff, 150 pixels in

this case, have been removed. (We used the Green’s theorem area approximation, not literal pixel areas.) This image shows the final predictions of MNG locations. e)

The “true” MNG locations as identified by the human reference scorer. f) The successful and unsuccessful predictions shown superimposed on the original image.

Correctly predicted MNGs are outlined in green, and the MNG that was missed is outlined in red.

https://doi.org/10.1371/journal.pone.0229967.g001
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F1 ¼
precision� 1 þ recall� 1

2

� �� 1

;

where the true positives are MNGs that were successfully identified; the false negatives are

MNGs that were identified by the reference human scorer, but not by the human test scorers

or the model; and the false positives are MNGs identified by the human test scorers or the

model but not the reference human scorer. For the purposes of these statistics, we treated the

reference human scorer’s identifications as the true identifications, but we understand that

likely they are not perfectly accurate. The F1 scores for human test scorers one and two were

0.764 and 0.788 respectively.

To construct the true data maps, we used the reference human scorer’s identifications.

After the identifications had been made, we manually identified the outlines of the MNG cells,

drawing filled polygons.

2.4 Augmentation and tile selection procedure

In order to increase the number of images on which the network is trained, the training set for

a neural network is typically augmented by passing the true maps and raw images through a

series of transformations. For each MNG, we selected 500 sample panels with the MNG center

located randomly within the panel. As a result, we were able to sample the MNG with a large

number of randomized horizontal and vertical displacements. For each sample panel, we iter-

ated through all eight unique combinations of vertical and horizontal flips and 90˚C and

180˚C rotations. By randomizing the orientation and location of the MNGs, we ensured that

the network would not falsely train on features related to the orientation and location of the

MNG. Randomizing the location also increased the area of negatives to train the model on.

2.5 Training process

We separated the data into five separate “folds” or batches of images. For the training set, we

used three of the folds, with one fold each for the test and holdout sets. The training set was

used for training the model, the test set was used for optimizing parameters, and the holdout

set was used for assessing the accuracy of the model. We used five different combinations of

these folds, with each fold being used once as the holdout set. In order to ensure that the folds

were both representative and fully independent from each other, we used batch stratification.

There were 28 slides, with four testis slices on most slides. To ensure representative batches,

we sorted the slides by the number of MNGs on each slide and separated them into five groups

of five and one group of three, ordered by number of MNGs. We assigned each slide from

every group to a fold, making sure than no fold received more than one slide from each group

and selecting the configuration that minimized the variation in the total number of MNGs in

each fold. Unfortunately, we could not fully equalize the number of MNGs in each fold. One

slide in Fold 0 had 152 MNGs, more than the average number of MNGs per fold, 119.2. In

order to accomodate this outlier slide, Fold 0 had to have 175 MNGs, substantially more than

the other folds, which ranged from 103 to 108 MNGs.

Numbering the five folds 0–4, we ran the model on five configurations. In each case, we

selected the test set to be the fold numerically after the holdout set fold number (looping back

to fold 0 for the test set when the holdout set was fold 4), with the other three folds going into

the training set. We used the data from the training set to train the model, running it for fifteen

epochs and saving the results from each epoch. For each epoch, we pass the model through the
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full set of augmented training data, taking the output of the previous epoch as the starting

model for the next one.

The result of the trained neural network is a map of MNG probability for each pixel scaled

as a brightness with integer values ranging from 0 to 255. To convert it into a binary map of

MNG locations, we used brightness and area cutoffs (Fig 1). All pixels below the brightness

cutoff were removed, and only remaining connected regions of pixels with areas of above the

area cutoff were retained. For reasons of computational efficiency, the areas we used here were

Green’s theorem areas, which are typically slightly lower than literal pixel areas. To calculate

the optimal brightness and area cutoffs, as well as the optimal epoch, we used a grid search,

selecting the combination of values these three parameters that maximized the F1 score (Figs 2

and 3). With the epoch, brightness cutoff, and area cutoff optimized and selected, we arrived at

a final model that could take an image and predict the locations of the MNGs. To measure the

final accuracy, we tested this model on the holdout set and measured the F1 score. By using

these separate training, test, and holdout sets, we avoided overfitting, which would distort our

accuracy scores.

3. Results

We successfully ran our model on all five of the fold configurations. There was little consis-

tency in the optimal parameter values among the different fold configurations. There was espe-

cially great variety in the optimal epoch, with values ranging from 1 to 13 (Table 1). The fold

configuration with Fold 4 as the holdout set led to the lowest holdout set F1 score, 0.622, and

its optimal cutoff area was a rather extreme outlier of 20 pixels. This fold combination used

Fold 0, which had a much larger number of MNGs than the other folds, as its test set. The fold

combination with the second lowest holdout set F1 score was when Fold 0 was the holdout set,

and in that case the optimal cutoff area was 150 pixels, above the outlier of 20 pixels but still

clearly lower than for the other folds. When Fold 0 was not part of the training set, the model

had fewer MNGs to train on, so it makes sense that the performance would be worse.

Our best holdout set F1 score was 0.805, coming in the fold configuration with Fold 3 as the

holdout set (Table 2). This exceeded the accuracy of either human scorer, whose F1 scores

were 0.764 and 0.788. However, the mean holdout set F1 score across all five fold configura-

tions was 0.724, with a standard deviation of 0.07, falling slightly below the scores for the

human scorers. On average, the model reaches near human accuracy, and in the best model, it

exceeds it.

In all except the best performing fold configuration, false negatives exceeded false positives,

with an average false positive to false negative ratio of 0.62. However, in the best performing

model false positives exceeded false negatives 27 to 17, which corresponds to a false positive to

false negative ratio of 1.59. For all the folds, the average false positive to false negative ratio was

0.81.

4. Discussion

Ultimately, the strongest underlying limitation we faced was the training data. The accuracy of

a neural network is only as good as the training data, and it can always be improved with more

training data. Our model is no exception. We can see this clearly in our data because the fold

configurations without Fold 0 and its especially high MNG count in the training set underper-

formed compared to the three fold configurations that had Fold 0 in the training set. More

training data would certainly improve the model.

However, more data may not be enough to reach perfect accuracy. In addition to the lim-

ited quantity of training data, we were also limited by error inherent in the scoring procedure

PLOS ONE Automated identification of multinucleated germ cells with U-Net

PLOS ONE | https://doi.org/10.1371/journal.pone.0229967 July 9, 2020 6 / 11

https://doi.org/10.1371/journal.pone.0229967


used to obtain training data. There are several issues that make manual MNG identification

from a single slide difficult. The thin sections on each slide merely contain 2-D cross-sections

of 3-D cells. While some MNGs can be clearly identified on a slide because multiple nuclei are

clearly visible, in many cases the cross section does not slice through all the nuclei. In some

cases, the second nucleus is only faintly visible, and in others it may not be visible at all, even

though part of the cell is visible on that cross-section. In other cases, two nuclei may be very

close together, and it may not be clear whether they are separated by cell membranes or not.

Many cells contain localized hematoxylin-stained cytoplasmic regions that cannot be easily

distinguished from the edge of a nucleus, even by a highly trained eye.

To develop the most robust possible set of training data would require serial sectioning, a

pseudo-3D approach. Under this approach, three serial thin sections would be taken from

each sample, with the top and bottom layers informing the identification of MNGs on the mid-

dle layer, as in [4]. In this approach, scoring is performed in the central section. Ambiguous

MNG identifications in the central section can often be confirmed on an adjacent section,

because MNGs are significantly larger than the 5 µm diameter of the sections. When an MNG

can be clearly identified in the top or the bottom layer but is unclear in the middle layer, then

we should be able to more confidently identify it in the middle layer. This way, we should be

able to build up a much more accurate set of training data. With those more accurate training

data, we should be able to train a model that may well exceed human accuracy.

The error inherent in human modeling is such that our “true” labels produced by the

human reference scorer are almost certainly at least partially inaccurate. When the model

Fig 2. An example of the grid search over the test set to find the optimal cutoff area, cutoff brightness, and F1 score. This example shows the fold configuration

with Fold 4 as the holdout set and Fold 0 as the test set. Here, F1 score is plotted for every cutoff brightness and cutoff area we simulated. We selected the parameter

combination that maximized the F1 score, a cutoff area of 20 pixels and a cutoff brightness of 210, and we have indicated this particular grid point on the figure it with a

black box around it. The f1 score color bar was scaled between a minimum of 0.65 and the maximum brightness, with f1 scores below 0.65 set to black. The cutoff area

and cutoff brightness parameters convert the output MNG location probability map, scaled as a brightness from 0 to 255, to specific MNG location maps. First the

brightness cutoff is applied, and then any contiguous regions of pixels above the cutoff smaller than the cutoff area are removed.

https://doi.org/10.1371/journal.pone.0229967.g002

PLOS ONE Automated identification of multinucleated germ cells with U-Net

PLOS ONE | https://doi.org/10.1371/journal.pone.0229967 July 9, 2020 7 / 11

https://doi.org/10.1371/journal.pone.0229967.g002
https://doi.org/10.1371/journal.pone.0229967


differs from the “true” labels, it is always possible that the model is correct, and the “true” labels

are not. Additionally, human scorers may be more likely to err in similar ways, and the F1

scores between the scores of human scorers may be somewhat elevated for this reason. For

instance, human scorers may be unusually prone to miss an MNG, compared to a trained

model that will always examine all of the image.

We also note that our model used the same laboratory to produce and process all the slides.

A different group reproducing these results might well wind up with images with slightly dif-

ferent treatment, lighting, and end image conditions. We cannot ensure that our model will

achieve the same level of accuracy on images produced by other groups in other laboratories.

We have, in a sense, overfit the model to the particular researchers and set-up used to produce

the images we have analyzed. By training the model with a much wider array of researchers

and laboratory set-ups, this issue could be ameliorated through future work.

Fig 3. The grid search shown in Fig 2, but with epoch instead of F1 score plotted. The cutoff area and cutoff brightness parameters convert the output MNG location

probability map, scaled as a brightness from 0 to 255, to specific MNG location maps. First the brightness cutoff is applied, and then any contiguous regions of pixels

above the cutoff smaller than the cutoff area are removed.

https://doi.org/10.1371/journal.pone.0229967.g003

Table 1. Results of the grid search to optimize the epoch, cutoff brightness, and cutoff area.

Holdout set

fold

Test set

fold

Optimal

Epoch

Optimal Cutoff

Brightness

Optimal Cutoff

Area

Test Set

Matches

Test Set False

Positives

Test Set False

Negatives

Test Set F1

Score

Holdout Set F1

Score

0 1 13 240 150 78 22 29 0.754 .710

1 2 2 120 700 78 4 25 0.843 .714

2 3 1 246 400 94 17 14 0.858 .770

3 4 5 220 300 73 17 30 0.756 .805

4 0 5 210 20 126 29 49 0.764 .622

https://doi.org/10.1371/journal.pone.0229967.t001
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We were careful to do everything we could to minimize this sort of overfitting. One crucial

step we took was to ensure that each slide would fall in its own fold. We did not split up multi-

ple testes on a single slide and place them in different folds. As a result, we controlled against

overfitting to the particular conditions of an individual slide, such as lighting. Had we split up

the slides, we could have achieved much more equal folds, without large variability in the total

number of MNGs and the types of MNGs in each fold.

The resulting variability among the folds is a major driver of error in accurately assessing

the F1 scores. Even among folds with similar MNG counts, some folds will be easier for the

model to count than others. For instance, in the model with the best holdout set score, where

Fold 3 is the holdout set, the holdout set score, 0.805, is higher than the test set score, 0.756. In

all the other cases, the holdout set score is lower than the test set score, which makes sense

because the model in the test set has been optimized to produce the best possible F1 score for

the test set. So the high F1 score when Fold 3 is the holdout set may be partially driven by Fold

3 being easier to count. When Fold 3 is used as the test set, it produces a slightly higher test set

F1 score than any other fold configuration, which is additional evidence that Fold 3 may sim-

ply be easier for the model to count.

5. Conclusions

The MNG identification problem is a difficult task for humans to perform consistently. We

have shown that a convolutional neural network using the U-Net architecture can approach

near human accuracy and, in the case of the best model, exceed it. This new automated

approach is significantly faster and involves much less human input, which will facilitate the

generation of dose-response data for induction of MNGs by phthalates. The code for applying

the trained model can be downloaded from github.com/brown-ccv/mngcount, and the code

for training the model can be found at github.com/samwbell/train_unet_mng.
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