
Frontiers in Immunology | www.frontiersin.

Edited by:
Pedro Paulo Chaves Souza,

Universidade Federal de Goiás, Brazil

Reviewed by:
Tomoki Maekawa,

Niigata University, Japan
Tarcilia A. Silva,

Federal University of Minas Gerais,
Brazil

*Correspondence:
Bin Shao

sklbshaobin@scu.edu.cn

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 17 July 2021
Accepted: 23 August 2021

Published: 07 September 2021

Citation:
Huang N, Dong H, Luo Y and Shao B

(2021) Th17 Cells in Periodontitis
and Its Regulation by A20.

Front. Immunol. 12:742925.
doi: 10.3389/fimmu.2021.742925

REVIEW
published: 07 September 2021

doi: 10.3389/fimmu.2021.742925
Th17 Cells in Periodontitis and Its
Regulation by A20
Ning Huang†, Hao Dong†, Yuqi Luo and Bin Shao*

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu, China

Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and
bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is
modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th)
17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and
regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players
in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of
Th17 cells are of great clinical potential and worth of discussion. This review aims to
provide an overview of the current understanding of the effect of Th17 cells on
periodontitis, as well as a brief discussion of current and potential therapies targeting
Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between
A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
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INTRODUCTION

Periodontitis, influencing nearly 10%-15% people globally, is a common chronic disease featured by
periodontal inflammation and alveolar bone destruction (1, 2). The pathogenesis of periodontitis
mainly involves disease-associated oral microbiota, host inflammation, as well as environmental
and genetic risk factors (3, 4). Ultimately, chronic and overwhelming inflammation causes
periodontitis, which could only be terminated by tooth loss or therapeutic interventions. Recent
studies have suggested a correlation between periodontitis and other systemic diseases including
obesity, diabetes, hypertension, cardiovascular diseases and Alzheimer’s disease (5–9).

T cells are positioned critically in the pathogenesis of periodontitis, especially Th17 cells. Th17
cells are a lineage of CD4+T cells that are known for producing proinflammatory cytokine
interleukin (IL)-17 (10). Induced by retinoid-related orphan nuclear receptor gt (RORgt, in man-
made homologue RORC), Th17 cells recruit neutrophils, regulate chemokine receptors, initiate
inflammation and bone resorption through pro-inflammatory cytokines such as IL-6, IL-17, IL-23
(11–13). Th17 cells also exaggerate inflammation further by recruiting Th17 cells (14, 15). Although
Th17 cells act against microbial signals, especially in mucosal immunity, Th17 cells are
inflammation enhancers that promote periodontal inflammation and bone resorption in the oral
cavity (16). Accordingly, antibodies targeting IL-17 have protected mice from severe periodontitis,
including diabetic ones (17, 18). Also, modulators of the Th17/T regulatory (Treg) balance, such as
boldine, IL-35, IL-10 secreting B cells, calcitriol, showed efficacy in alleviating periodontitis (19–22).
Beyond the oral cavity, IL-17 blockade also showed promising outcomes in treating immune
diseases like psoriasis (23).
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To restrict excessive inflammation in the oral cavity, the
immune system has developed a set of restricting measures to
attain timely termination of inflammation and maintain the
holistic equilibrium. For example, the ubiquitination system
modulates intracellular homeostasis through covalent
enzymatical post-transcriptional modifications. Ubiquitin-
editing enzymes activate, conjugate, ligate or remove
polyubiquitin chains from their substrates enzymatically, thus
deciding protein fate and regulating immune responses (24). A20
(TNFAIP3) is a ubiquitin-editing enzyme that has established its
role as a potent anti-inflammatory molecule. A20 deubiquinates
key factors of nuclear factor-kB (NF-kB), thereby blocking
NF-kB pathway and arresting immune responses (25, 26). On
the N-terminal of A20, ovarian tumor (OTU) domain enables
A20 to deubiquitinate (27). While on its C-terminal, seven zinc
finger (ZnF) domains confer A20 with ubiquitin-binding ability
(28). In recent years, A20 displayed pleiotropic effects in cell
death, tumorigenesis and autoimmune diseases (29–31).
Hereinbelow, we discuss the regulatory role of A20 in Th17
cell differentiation and IL-17 function.

In this review, we summarized the pivotal role of Th17 cells in
periodontitis as well as their modulation by cytokines and
transcription factors. We also concluded the heterogeneity and
plasticity of Th17 cells. Current therapies targeting Th17 cells are
summarized as well. Moreover, as a team that focus on A20-related
studies, we highlight this article by concluding the negative effect of
A20 on Th17 cell expansion and IL-17 signaling, which could be a
potential tool in treating periodontitis.
DYSBIOSIS AND DYSREGULATED
INFLAMMATION DRIVE PERIODONTITIS

The understanding of the aetiology of periodontitis has gone
through different stages. Originally, it was thought to be a rather
simple bacterial infection attributed to a small group of bacteria.
However, later studies revealed the existence of influential factors
other than microbiota, for example host reaction and
environmental factors (3, 32–34).Put simply, the pathogenesis
of periodontitis starts from gingivitis. The synergy between
dysbiosis (changes or imbalance in the composition and
abundance of oral microbial communities) and aberrant
immune responses is the exact reason why gingivitis develops
into periodontitis (35).

Physiologically, the oral cavity is always in a delicate balance
between local immune activation and suppression (36, 37).
However, under certain circumstances, the overgrowth of oral
commensal microbiota leads to gingivitis, a destructive but
reversible inflammatory disease. Then, depending on host
susceptibility, some patients may suffer from the conversion to
periodontitis, while others maintain long-term stability (38). In
susceptible hosts, sustained gingival inflammation forms
inflamed pockets in which gingival crevicular fluid provides
essential nutrients (including abundant collagen decomposition
products, serum exudates, etc.) for bacteria (34, 39). In addition,
such inflammatory conditions create an anaerobic environment
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where anaerobic bacteria proliferate, finally leading to the
overgrowth of commensal microbiota and dysbiosis (40, 41).
Dysbiosis exacerbates inflammation and conversely, chronic
dysregulated immune responses in turn facilitate dysbiosis by
providing tissue decomposition as nutrients for bacteria, thus
forming a positive feedback loop (35, 40) (Figure 1).

Of note, periodontitis could be independent of microorganisms.
It was reported that germ free (GF) mice did not present alveolar
bone loss even with P. gingivalis infection (42). Also, a combined
application of therapeutic strategies targeting inflammatory
response achieved better results than simple plaque removal,
revealing the key role of host response in periodontal tissue
destruction (43–46). Besides dysbiosis and dysregulation of
immune responses, genetic and environmental factors are also
crucial in the pathogenesis of periodontitis. Genetic
polymorphisms may increase the risk of inflammatory disease
varied by region and race/ethnicity (47). A recent study reported
that in the Asian population, tumor necrosis factor (TNF)-a
G-308A (rs1800629) polymorphism is linked with increased
susceptibility to chronic periodontitis (48). Also, smokers are at
least 50% more likely to develop periodontitis than non-smokers,
with faster progression, severer deterioration, and poorer treating
efficacy (49, 50). Weight gain may also be one of the risk factors for
periodontitis, for clinical evidence suggests that obese people have a
higher risk of periodontitis (51). Long-term psychological stress or
anxiety leads to both worse periodontal conditions and a negative
impact on the effectiveness of periodontal treatment (52, 53). In
summary, periodontitis is a multifactorial chronic inflammatory
disease mainly caused by dysbiosis, dysregulated immune system
along with genetic and environmental factors.
TH17 CELLS AT A GLANCE: BEYOND THE
TH1/TH2 PARADIGM

Currently, Th cells are commonly categorized into five major
subsets: Th1, Th2, Th17, T-follicular helper (Tfh) and Treg cells
(54). All these CD4+ T cells play important roles in host immune
defence against harmful microorganisms as well as in
inflammation diseases (54, 55). Here we will give a brief
introduction on the discovery of Th17 cells.

In 1986, Mosmann and Coffman pioneered the classification
of CD4+ T cells into two subsets: Th1 cells and Th2 cells (56).
Immature CD4+ T cells differentiate into specific lineages of Th
cells under the regulation of local cytokine milieu and
transcription factors. IL-12 and interferon (IFN)-g activate
transcription factors signal transducer and activator of
transcription (STAT)1, STAT4 and T-bet in CD4+ T cells,
which favor the differentiation into Th1 cells (57, 58).
Similarly, IL-2 and IL-4 promote the differentiation of Th2
cells by increasing the expression of STAT6 and GATA-3 (59,
60). The classic Th1/Th2 paradigm preliminarily reveals the
diversity of CD4+ T cells in function. Th1 cells defend against
intracellular organisms while Th2 cells targets extracellular
pathogens (61, 62).Abnormal activation of Th1 cells and Th2
cells is also a key factor in the pathogenesis of many autoimmune
diseases and inflammatory reactions.
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The study of Th1/Th2 paradigm has helped to understand the
pathogenesis of many diseases, including multiple sclerosis,
psoriasis and so on (63, 64). However, a study on experimental
autoimmune encephalomyelitis (EAE) raised certain doubts. EAE is
a disease previously attributed to Th1 cells but blockade of Th1 cells
failed to protect mice from disease progression (65). Consequent
studies discovered a novel lineage of CD4+ T cells characterized by
IL-17 production, beyond the Th1/Th2 paradigm (66–68). H. Park
et al. and L. E. Harrington et al. pioneered the discovery of a new
pedigree of Th17 cells, which filled some gaps in host immune
response and the pathogenesis of autoimmune diseases (10, 69).
Th17 cell subsets were originally named after their main cytokine
IL-17A. IL-17A also comes from gdT cells, natural killer T (NKT)
cells and congenital lymphoid cells after sensing pathogen invasion
or injury signals (70, 71). These cells are collectively called type 17
cells and are characterized by the expression of RORgt and IL-23R
(11, 72). Th17 cells act as important defenders against pathogen
invasion, especially fungal infections. This explains why patients
with congenital defects of Th17 cells have higher susceptibility to
fungal infections such as Candida albicans (73). Also, considerable
studies have shown that Th17 cells play a pivotal role in immune-
mediated inflammatory diseases, including periodontitis, psoriasis,
rheumatoid arthritis and so on (74–76).
TH17 CELL INVOLVEMENT IN
PERIODONTITIS PATHOGENESIS

T cells are the major immune cell population in oral mucosal
compartments both in health and disease. In periodontitis, the level
of Th17 cells rockets, which indicates a close relationship between
Th17 cells and periodontitis (77, 78). However, the complex role of
Th17 cells and IL-17 in periodontitis is still controversial. Yu et al.
found that IL-17RAKOmice exhibited severer alveolar bone loss due
to compromised chemokine expression and neutrophil migration
Frontiers in Immunology | www.frontiersin.org 3
(79). While Dutzan et al. reported the opposite conclusion in
Cd4creStat3fl/fl and LckcreRorcfl/fl mice that defection in Th17 cell
differentiation exhibited significantly reduced alveolar bone
resorption compared with wildtype (17). IL-17 also displayed
gender-dependent effect as female mice are more susceptible to
alveolar bone loss due to impaired P. gingivalis-specific antibody
response and chemokine production (80). Also, patients with
autosomal dominant high IgE syndrome (AD-HIES, present with
congenital poor Th17 cell differentiation) showed reduced
susceptibility to periodontitis and less alveolar bone resorption
(81, 82).

Hereinbelow, we discuss how Th17 cells promote periodontal
inflammation and bone resorption through the secretion of IL-17A,
IL-17F, IL-21, IL-22 and granulocyte-macrophage colony-
stimulating factor (GM-CSF), as well as the interaction between
Th17 cells with other immune cells (12, 16, 83–85) (Figure 2).
Besides, P. gingivalis further amplifies such inflammation-
mediated destruction.

The Functions of Molecules Secreted
by Th17
IL-17A
IL-17A is considered the main cytokine in the pathogenesis of
periodontitis. Although it has a limited ability to induce
inflammation directly, IL-17A could exert powerful inflammatory
effects through synergistic effects with other inflammatory factors
(86–88). IL-17Aacts onnon-hematopoietic cells such asfibroblasts,
epithelial cells and endothelial cells to promote the expression of
many inflammatory cytokines, including IL-1b, IL-6, IL-8,
granulocyte colony-stimulating factor (G-CSF), GM-CSF and
TNF-a (10, 83). Meanwhile, IL-17A upregulates the expression of
C-C motif ligand (CCL) 2, C-X-C motif ligand (CXCL) 1, CXCL2,
CXCL5 and CXCL8 (88).

IL-17A further recruits more neutrophils and monocytes
through these chemokines and enhances their survival and
FIGURE 1 | The pathogenesis of periodontitis. The overgrowth of commensal microbiota triggers gingivitis. Gingival inflammation then provides nutrients and a local
anaerobic environment for periodontal pathogens. The overgrowth and diversity of periodontal pathogens exaggerate inflammation which decides the progression of
gingivitis. Dysregulated inflammation together with microbial dysbiosis lead to periodontitis. Conversely, balanced inflammation leads to quiescent gingivitis.
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activity by releasing more GM-CSF (16, 88). Furthermore, as
inducers of human Th17 cell differentiation, IL-1b and IL-6
cooperate with IL-17A to form a positive feedback loop that
enhances the inflammatory effect of IL-17A (89, 90). Finally, IL-
17A could directly promote the destruction of periodontal
connective tissue and alveolar bone by inducing the production
of prostaglandin E2 (PGE2), matrix metalloproteinases (MMPs)
and NF-kB receptor activator ligand (RANKL) (16). RANKL has
a fundamental role in alveolar bone destruction, as the binding of
RANKL to its functional receptor NF-kB receptor activator
(RANK) on the precursor of osteoclasts could promote the
maturation and activation of osteoclasts. The decoy receptor
osteoprotegerin (OPG) competes against RANKL and binds to
RANK, thus inhibiting osteoclast differentiation and bone
resorption (Figure 3) (87).

The IL-17A signalling pathway initiates a cascade of
inflammation. Specifically, IL-17A acts as a ligand that binds to
the IL-17 receptor complex (IL-17RA/IL-17RC) and recruits the
binding protein Act1 through the SEF/IL-17R (SEFIR) domain of
the tail conserved domain on IL-17R (91). Act1 contains a tumour
necrosis factor receptor-associated factor (TRAF) binding motif and
possesses E3 ligase activity, meaning it could recruit and
ubiquitinate TRAF6. After TRAF6 activation, transforming
growth factor b (TGF-b) activated kinase (TAK) 1 and inhibitor
of NF-kB (IkB) kinase (IKK) complexes were recruited and
activated, which trigger NF-kB and mitogen-activated protein
kinase (MAPK) pathways, eventually promoting the expression of
Frontiers in Immunology | www.frontiersin.org 4
inflammatory mediators and the activation of osteoclasts (92, 93).
At the same time, IL-17RA possesses a unique C-terminal activation
domain, called CCAAT/enhancer binding protein b (C/EBP b)
activation domain (CBAD) that participates in the activation of
transcription factor C/EBP b. C/EBP b not only mediates and
enhances the synergistic effect of IL-17 and TNF signal, but also up-
regulates the expression of inflammatory mediators such as IL-6
(94, 95).

IL-21
IL-21, a member of the IL-2 cytokine family, is another cytokine
secreted by Th17 cell, but its exact role is incompletely understood.
In some experiments, the level of IL-21 in the serum and saliva of
patients with chronic periodontitis significantly increased, and the
level of IL-21 is down-regulated after periodontal treatment,
suggesting that IL-21 may promote periodontitis (96, 97). In the
absence of IL-6, the synergistic effect of IL-21 and TGF-b activates
STAT3 to promote the development of Th17 cells, and inhibits the
expression of Forkhead Box P3 (FOXP3) (98, 99). However, some
studies suggested that IL-21 plays a dispensable role in riving the
inflammatory effect of Th17 cells because IL-21- and IL-21R-
deficient mice were still highly susceptible to EAE (100, 101).
Lastly, a specific study, in which IL-21 induces IL-10 expression in
B10 cells and results in less alveolar bone loss, suggested that IL-21
inhibits inflammation (102). More experiments are needed to
examine whether IL-21 is the driver/inhibitor/bystander
of periodontitis.
FIGURE 2 | The role of Th17 cells in periodontitis. Th17 cells secrete cytokines including IL-17A, IL-22, IL-21 and GM-CSF. (A) IL-17A and IL-22 bind to non-
hematopoietic cells like fibroblasts, epithelial and endothelial cells to generate RANKL, MMPs, PGE2, as well as chemokines. (B) RANKL leads to osteoclastogenesis,
the driving force of bone resorption. (C) MMPs, PGE2 together with neutrophils contribute to periodontal inflammation and alveolar bone loss. (D) IL-17A mediates
neutrophil recruitment in periodontitis via generating chemokines including CXCL1, CXCL2 and CXCL8. (E) Produced by Th17, IL-21 forms a positive loop that
directly promotes Th17 recruitment. (F) Th17 cells produce GM-CSF that promotes monocyte and dendritic cells. (H) Neutrophils and innate type 17 cells like gdT
cells, NKT cells and congenital lymphoid cells could induce IL-17A as well. (G) Chemokines contribute to monocyte and dendritic cells. (I) Monocytes and dendritic
cells generate IL-6 and IL-23 that help Th17 cells differentiate. Th, T helper; IL-, interleukin-; GM-CSF, granulocyte-macrophage colony-stimulating factor; RANK,
receptor activator for nuclear factor-kB; RANKL, RANK ligand; MMPs, metalloproteinases; PGE2, prostaglandin E2; CXCL, CXC motif ligand; NKT, natural killer T.
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IL-22
IL-22 is a member of the IL-10 cytokine family. IL-22 receptor is
composed of the IL-22R1 subunit and the IL-10R2 subunit,
shared with IL-10. Even though IL-10 downregulates pro-
inflammatory cytokine expression, IL-22 often fails to do so.
This is mainly because that the expression of human IL-22R1 is
often limited to epithelial cells and endothelial cells, while
immune cells usually lack the expression of IL-22R1 (103).
Frontiers in Immunology | www.frontiersin.org 5
IL-22 is pro-inflammatory as it enhances the effects of co-
acting pro-inflammatory factors such as TNF-a and IL-17 (104,
105). Specifically, IL-22 binds with IL-22R1 to form a complex
that binds to IL-10R2, which usually activates the Janus kinase
(JAK)-STAT signaling pathway, especially STAT3 as the main
signal transduction pathway (106). In addition, IL-22 could also
directly promote the expression of inflammatory mediators like
MMP-1, resulting in connective tissue destruction and bone
FIGURE 3 | IL-17A drives alveolar bone resorption through the RANKL/OPG axis. The promotion of bone resorption by Th17 cells involves the joint action of a triad
of proteins including RANKL, its functional receptor RANK and its decoy receptor OPG. (A) Cytokines including TGF-b, IL-1b, IL-6, IL-23, etc. promote the
differentiation of Th17 cells and production of IL-17A. (B) Osteoblasts generate RANKL to bind to its receptor RANK on osteoclast precursor cells, as well as OPG to
antagonize RANKL. (C) IL-17A-induced B cells and MSCs activation also promote RANKL production. (D) Osteoclast precursor cells differentiate and fuse into
mature osteoclasts that causes alveolar bone resorption. (E) IL-17A mediates a proinflammatory M1 macrophage response which would be inhibited by IL-10, while
IL-10 promotes M2 macrophage polarization. (F) M1 macrophages induce the production of proinflammatory cytokines such as IFN-g and IL-6 to exacerbate
alveolar bone loss. OPG, osteoprotegerin; TGF-b, transforming growth factor-b; MSC, mesenchymal stem cell; IFN, interferon.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Th17 Cells in Periodontitis
resorption (107, 108). Recent studies have revealed a positive
correlation between the IL-22, RANKL expression and the
severity of periodontitis (109, 110).

GM-CSF
GM-CSF acts on dendritic cells (DCs) and monocytes to promote
the production of inflammatory factors such as IL-6, IL-23,
facilitating differentiation of Th17 cells (111). Particularly, IL-23
in turn promotes GM-CSF production and forms a vicious cycle
(112). Recent studies have shown that the role of GM-CSF in
inflammation and bone loss may be underestimated. In a mouse
model of experimental autoimmune uveitis (EAU), GM-CSF-
driven eosinophil inflammation dominates the development of
EAU without IL-17 and IFN-g (113). GM-CSF expression is
downregulated at the presence of IL-17A, whereas IL-17A
deficiency would lead to the upregulation of GM-CSF and
inflammatory reaction (114). Further experiments confirmed
that IL-17A induced IL-24 through autocrine pathway,
downregulating IL-17F and GM-CSF expression through
suppressor of cytokine signalling (SOCS)1 and SOCS3 (114).
The rise of GM-CSF may explain, to some extent, why the use
of anti-IL-17A monoclonal antibodies alone aggravates symptoms
seen in inflammatory bowel disease (IBD) (115).

Synergistic Effects of Th17 With
Other Immune Cells
Neutrophils
Neutrophils are now considered the vital cellular regulator of Th17
response in periodontitis. Excessive neutrophil accumulation in
periodontium provokes inflammation, as the number of
neutrophils is positively correlated with the severity of periodontitis
(116–118). Neutrophils not only release reactive oxygen species
(ROS) and MMPS to directly damage connective tissue, but also
interact with adaptive immune cells, especially Th17 cells, to induce
bone resorption (119, 120). Chemokine CCL2 and CCL20 produced
by neutrophils recruit Th17 cells and facilitate their chemotaxis to the
inflamed sites (121). IL-17, induced by neutrophils, also cooperates
with IL-1b to increase the expression of CCL20 in human gingival
fibroblasts and further recruit Th17 cells (122). As mentioned before,
Th17-induced GM-CSF recruit neutrophils as well, eventually
forming a feedback loop that leads to mutual recruitment.

Under physiological conditions, mutual recruitment ends up
as the inflammation subsides. Phagocytosis of apoptotic
neutrophils could inhibit the expression of IL-23 of phagocytes
and then down-regulate the production of IL-17 and G-CSF, so
that neutrophils decrease concomitantly with the regression of
inflammation (123). Intriguingly, patients with leukocyte
adhesion deficiency type I (LAD-I) have impaired leukocyte
function but they still have a higher risk of periodontitis. The
underlying mechanism could be the breakdown of the neutrophil
regulation feedback circuit. Due to the lack of inhibition of IL-23
expression in LAD-I patients, excessive accumulation of IL-17 in
periodontium eventually led to alveolar bone injury (124).

APCs
Antigen-presenting cells (APCs) present antigens and drive
differentiation of Th cells, linking the innate immune response
Frontiers in Immunology | www.frontiersin.org 6
to the adaptive immune response (125, 126). Previous studies
have demonstrated that periodontal pathogens stimulate APCs
to upregulate the expression of markers that facilitate the
proliferation of Th17 cells (122, 127). DCs principally mediate
the adaptive immune response in periodontitis. Monocytes and
macrophages are involved in instructing Th17 cell differentiation
as well. Although their concentrations in healthy gingiva are
relatively low, APCs increase significantly in patients with
periodontitis (128).

Monocytes recognize P. gingivalis through toll-like receptors
(TLR)2/4, and then upregulate the expression of IL-1b and IL-23
to induce Th17 cell differentiation (127). Also, Delta-like ligand 4
(Dll-4) expression in monocytes is upregulated by P. gingivalis
lipopolysaccharide (LPS) to promote Th17 cell response (129).
Periodontal pathogens also upregulate CD86 expression and
induce monocyte differentiation into macrophages (127). As
for macrophages, LPS- and IFN-g-activated macrophages were
induced by CCL21 (which shows up-regulation in periodontitis
tissues). These macrophages elevate the expression of both CCR7
and cytokines such as IL-6 and IL-23, which drive the
differentiation of naive T cells into Th17 cells and enhance
osteoblast production (130, 131).

Induction and Enhancement of Th17 Cell
by P. gingivalis
P. gingivalis is a gram-negative anaerobe which has been
implicated as a keystone pathogen that contributes to
periodontitis (132). Previous studies suggested that P. gingivalis
interacts with APCs to induce Th17 cell differentiation (126,
127). It has been demonstrated that the interaction between P.
gingivalis and host DCs induces the production of a series of
inflammatory factors including IL-17, IL-1b, IL-6, IL-23 etc.,
which enhances and stabilizes the differentiation of Th17 cells
(126). In addition, independent of APC activation in vitro, P.
gingivalis-LPS promotes Th17 cell differentiation directly
through TLR2 signalling. It also enhances IL-17-mediated bone
resorption by the up-regulation of transcription factors such as
RORC as well (133, 134).

Differed in their ability to induce Th17 cell differentiation, P.
gingivalis can be classified into virulent (P. gingivalis W83) and
avirulent strains (P. gingivalis ATCC33277) (135). Compared
with avirulent strains, LPS from virulent strains showed a higher
induction of IL-1b and IL-6 as well as higher expression of
RORC and IL-17, promoting Th17 cell differentiation more
effectively (126, 134).
REGULATORS OF TH17 CELLS
DIFFERENTIATION

Regulatory Roles of Cytokines and
Transcription Factors
Similar to that of Th1/2 cells, the differentiation of Th17 cells is
induced by the synergistic action of STAT3 and RORgt which are
regulated by local environment and cytokines (12). A complex
collection including TGF-b, IL-1b, IL-6, IL-23, etc. affects the
September 2021 | Volume 12 | Article 742925
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differentiation of Th17 cells (54, 89, 136). Specifically, TGF-b,
IL-6 and IL-21 act together on immature T cells, inducing the
expression of IL-1R and IL-23R and mediating the initial
differentiation into Th17 cells (98, 137, 138). After that, IL-1b,
IL-6 and IL-23 promote and stabilize the differentiation of Th17
cells through synergism (83). The secreted IL-21 then forms a
positive feedback loop, exaggerating its own production (99).
Meanwhile, there is accumulating evidence that genetic
polymorphisms in these key regulators are associated with host
susceptibility to periodontitis (47).

TGF-b
Although still under debate, the current view is that at initial
differentiation stage, TGF-b drives CD4+ T cells to differentiate
into Th17 cells and Treg, rather than Th1/2 cells, by inducing the
expression of RORgt and FOXP3. Subsequent differentiation
depends on the activation of the mutually antagonistic STAT3
(which promotes Th17 differentiation) and STAT5 (which
promotes Treg differentiation) (11, 137–139).

TGF-b regulates Th17 cells by both canonical (small
mother against decapentaplegic (SMAD)-dependent) and
non-canonical (SMAD-independent) pathways (140, 141).
Members of the SMAD family are the substrates of TGF
receptor signaling and they decide the consequent effect.
TGF-b receptor signaling regulates SMAD2 and SMAD3.
Activated SMAD2/3 then combines with SMAD4, and they
finally bind to DNA together to activate or repress Th17 cell
t r a n s c r i p t i o n , wh i c h d e p end s on t h e d i ff e r e n t
phosphorylation states of SMAD2 and SMAD3 (140, 142).
Phosphoryla ted SMAD2 pos i t ive ly regula tes Th17
differentiation by STAT3 activation and the synergistical
effect between STAT3 with RORgt. While unphosphorylated
SMAD3 binds to RORgt and then inhibits its transcriptional
activity (142). Recent studies found that SMAD4 itself does
not directly regulate Th17 cell differentiation. Instead,
SMAD4 interacts with other transcriptional modulators to
perform regulatory functions. For example, SMAD4 recruits and
mediates SKI which possesses the real suppressive effect in Th17
cell activation (143, 144). Additionally, TGF-b regulates Th17
cell differentiation through SMAD-independent pathways such as
NF-kB pathways and MAPK pathways (140, 141). Recent studies
on the effects of TGF-b on Th17 cells have concentrated more on
the heterogeneity and plasticity of Th17 cells, which we
describe below.

IL-1b, IL-6, and IL-23
IL-1b regulates Th17 differentiation through multiple
mechanisms. ①IL-1b signaling positively regulates Th17 cell
differentiation through the induction of interferon regulatory
factor 4 (IRF4) (145, 146). ②IL-1b promotes Th17 differentiation
by excising FOXP3 exon 7 (147). ③IL-1b affects AKT-mTOR
signaling pathway which is essential for the survival and
proliferation of polarized Th17 cells. AKT, glycogen synthase
kinase 3a (GSK3a) and IKKi form a complex in which IKKi is
negatively regulated by GSK3a. IL-1b activates IKKi and impairs
the function of GSK3a, thus leading to AKT-mTOR activation
(148). ④IL-1b activates DCs and enhances IL-17 secretion by
Frontiers in Immunology | www.frontiersin.org 7
Th17 cells in a CD14-dependent manner (149). ⑤IL-1b
downregulates SOCS3 to enhance the amplitude and duration
of STAT3 phosphorylation induced by IL-6 and IL-23 (150).
⑥IL-1b synergizes with IL-6 to promote Th17 cell differentiation
and proliferation through direct RORgT expression in CD4+ T
cells (89). ⑦In the absence of IL-6, excessive IL-1 signaling
enhances Th17 cell responses by downregulating TGF-b-
induced Foxp3 expression (151).

IL-6 binds to IL-6R (composed of IL-6Ra and gp130) and
phosphorylates the JAK family via gp130 which then activates
STAT3, whereas suppressing the activation of STAT1 which
would inhibit Th17 cell differentiation (152, 153). IL-6 also
induces IL- 23R expression in naive T cells through the
binding of STAT3 to IL23r locus, allowing IL23 to participate
in late Th17 differentiation despite its initial absence due to the
lack of IL-23R expressed on naive T cells (154). After IL-23R
upregulation, the IL-23 signaling pathway activates STAT3 via
the JAK family (155). IL-6 and IL-23-activated STAT3 up-
regulates the expression of Th17 marker gene Rorc, producing
RORgt that interacts with IRF4, BATF and other transcription
factors to up-regulate the expression of Th17 cell lineage markers
such as IL-17A, CCR6 (11, 156). STAT3 also regulates the
expression of Th17 differentiation-related genes including
Il17a, Il17f, Il21 and Il6ra as well as cell survival and
proliferation genes like Bcl2, Fos and Jun (83, 156).

IL-2
IL-2 possesses a suppressive function in Th17 cell differentiation. IL-2
activates STAT5 and then enhances the expression of FOXP3,
impeding the binding of STAT3 to the Il17a promoter and
antagonizing transcription factors such as RORgt and Runt-related
transcription factor (RUNX) 1 via JAK1/3 (157). In addition, higher
FOXP3 mRNA expression was also speculated in periodontitis
accompanied by increased RANKL and Th17-related genes mRNA
levels, suggesting self-restraint of the host inflammatory response
(158, 159). Low-dose IL-2 treatment is reported to be beneficial to the
balance of Th17/Treg cells in other inflammatory diseases like SLE
and arthritis (160, 161). However, it is also noted that IL-2 depletion
resulted in higher levels of apoptosis in Th17, as low levels of IL-2
produced by Th17 cells mainly promote the expansion of Th17 cells
(162). More experiments are needed to explore the mechanisms
underlying the effect of IL-2 on Th17 cell differentiation.

Heterogeneity and Plasticity of Th17 Cells
Intriguingly, not all Th17 cells boost inflammation and not all
Th17 cells exacerbate inflammation through IL-17A. The
molecular underpinning for such biological behaviour is the
heterogeneity and plasticity of Th17 cells. Heterogeneity means
that different Th17 subsets display different levels of
pathogenicity, namely immunoregulatory IL-10+ Th17 cells
and pro-inflammatory Th17 cells (163, 164). Plasticity means
that Th17 cells possess the ability to trans-differentiate into
phenotypes other than IL-17+ Th17 cells and express cytokines
typical of other lineages (164).

Researchers believe that it is the cytokine milieu that determines
Th17 cell phenotype. As previously stated, pathogenic Th17 cells are
induced in IL-1b, IL-6 and IL-23 condition or in IL-6 and TGF-b3
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condition (136, 165). However, non-pathogenic Th17 cells are
differentiated by TGF-b1 or IL-6 (136, 166). Single-cell RNA
sequence technology unveiled the transcriptional signatures of
non-pathogenic and pathogenic Th17 cells. Pathogenic Th17 cells
express more pro-inflammatory genes module including Il23r, IL22,
Il17a, and Il17f, while non-pathogenic Th17 cells upregulate the
expression of immune suppressive genes like Il10, Il4, Ahr and c-
maf (167, 168). Their differences in pathogenicity explain opposite
results shown in clinical trials targeting IL-17A signals in different
diseases (115, 169, 170). Of note, c-Maf is indicative of
pathogenicity because it regulates IL-10+ Th17 cell transcription
via the MAPK pathway (163, 171). In other words, pathogenetic
Th17 cells expresses less c-Maf compared with non-pathogenetic
Th17 cells.

Th17 cells could also be inverted into an anti-inflammatory
phenotype termed Th17-derived Tr1-like cells (exTH17) cells,
which is induced by TGF-b1 via SMAD3 and aryl hydrocarbon
receptor (AHR) (172). The inversion is related to Th17 cells
plasticity, as evidences accumulate that Th17 cells seem to be
unstable terminally differentiated cells (173, 174). Th17 cells are
now considered to have the potential for phenotypic trans-
differentiation into mainly Th17/Th1 cells, Th17/Th2 cells and
even Th17/Treg cells, which may be altered by co-expression of
CD4+ T cell lineage transcription factors (164, 175).

Recently, new breakthroughs have been made in the study of
Th17 cells plasticity. Th17 cells may transform into Th1-like
CXCR3+ Th17 cells (Th17.1 cells) under the regulation of IL-12
and IL-23. Interestingly, the absence of TGF-b1 not only
promotes pathogenic Th17 cells, but also upregulates T-bet
expression and shows much higher plasticity in transitioning
into Th1-like Th17 cells, because early TGF-b1 suppression on
T-bet is relieved (176). The expression of RUNX 1 in Th17 cells
could be enhanced by IL-12 stimulation and then binds to the
Ifng locus in a T-bet-dependent manner, thus showing a
phenotype that secretes IFN-g (177). Namely, classical Th17
cells mainly express IL-17A, while Th17.1 cells develop into
IL-17A+ IFN-g+ cells or IL-17A- IFN-g+ cells (174).

Th17.1 cells show stronger pro-inflammatory properties,
supported by higher proliferation ability in response to T cell
receptor (TCR) signals, higher GM-CSF, CCL20 and IL-22
production (178, 179). A latest study, tracking the plasticity of
Th17 cells in periodontitis model, suggested that the transformation
of classical Th17 cells to ex-Th17 cells occurs during the conversion
from acute inflammation to chronic inflammation (180). The
dysbiosis caused by P. gingivalis may drive this transition through
the increment of IL-17A in the early stage and the dominant
expression of IFN-g in the later stage (180).

Current and Potential Therapies Targeting
Th17 in Periodontitis
Given the essential role of Th17 cells in periodontal
inflammation and alveolar bone loss, it is conceivable that
targeting Th17 cells and related key molecules is of great
potential. Here we briefly describe some experimental therapies
focusing on Th17 modulators, along with their results.

IL-17 acts as the main cytokine in the pathogenesis of
periodontitis, and intervention experiments targeting IL-17
Frontiers in Immunology | www.frontiersin.org 8
achieved positive results. Suppressed IL-17 expression
significantly reduced alveolar bone resorption occurs in mice
(17). Inhibiting RORgt and then down-regulating IL-17
expression via GSK805 or curcumin attenuated alveolar bone
loss (17, 82). Beyond periodontitis, therapies targeting IL-17/IL-
17R to treat autoimmune diseases such as psoriasis have achieved
positive results (181). In a phase III, randomized double-blind
placebo-controlled study using Brodalumab (a monoclonal
antibody against IL-17RA) on moderate-to-severe plaque
psoriasis, more than 70 percent of patients achieved a 75%
reduction in psoriasis area severity index at 12 weeks, which is
much higher than the placebo group (182). As previously
mentioned, however, it was also reported that IL-17RAKO mice
exhibited profound alveolar bone destruction for impaired
chemokine expression and neutrophil migration (79). More
studies targeting IL-17/IL-17R are required to investigate the
exact mechanisms. Also, derived clinical trials aiming at
periodontitis are essential for verifying the therapeutic effects.

IL-6 and IL-23 support the survival and expansion of Th17
cells (154). Tocilizumab (TCZ) is a recombinant humanized
monoclonal antibody which binds to human IL-6R and inhibits
IL-6 signaling (183). TCZ treatment alleviated periodontal
inflammation in patients, compared with those without TCZ
therapy (184–186). As to IL-23, a case report claimed that
systemic usage of ustekinumab, a monoclonal antibody
blocking the p40 subunit of IL-23, resolved inflammatory
lesions in a patient with LAD-I (187). JAK is a pathway
downstream of IL-6. Patients who received tofacitinib, an
inhibitor for JAK, also showed reduced periodontal
inflammation (188).

MicroRNAs (miRs) act as vital regulators of Th17 differentiation
and periodontal inflammation (189, 190). MiR-155 up-regulates
Th17 responses and enhances osteoclastogenesis, while exosomal
miR-155-5p from periodontal ligament stem cells (PDLSCs) could
be transferred into CD4+ T cells and then decrease RORC
expression, alleviating inflammatory microenvironment (191,
192). More studies are needed to explore the exact effects and
mechanisms of miRs on regulating Th17 differentiation
in periodontitis.

Some studies comment deubiquitylating enzymes (DUBs) as
potential modulators of periodontitis progression because DUBs
modulate IL-17 signaling by TRAFs. In particular, A20 is a
protein that possesses DUB and regulates Th17 differentiation
and IL-17 function (27). As several studies have demonstrated
the anti-inflammatory effects of A20 especially via regulating
Th17 differentiation, we consider A20 as a promising therapeutic
target for periodontitis treatment (193–195). Hereafter, we focus
on recent advances and regulatory mechanisms of A20 in
modulating Th17 and IL-17.
A20: NOVEL THERAPEUTIC TARGET BY
TH17 AND IL-17 MODULATION

Ever since it was first identified in 1990 as an inhibitor of NF-kB
pathway in response to TNF, A20 has established its role as a
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potent anti-inflammatory molecule, mainly attributed to its
ubiquitin-editing function (25). On the N-terminal of A20,
OTU domain deubiquinates K48 and K63-linked ubiquitin
chains, the former target substrates for proteasomal
degradation, whereas the latter often save targets from
degradation (27). On its C-terminal, ZnF4 interacts with K63-
linked ubiquitin chains and ZnF7 binds with M1-linked
ubiquitin chains (196, 197). As a ubiquitin-editing enzyme,
A20 restricts excessive inflammation mainly by deubiquinating
TRAF6, thereby blocking NF-kB pathway and arresting immune
responses (26). In recent years, A20 has displayed pleiotropic
effects in cell death, tumorigenesis and autoimmune diseases
(29–31). Hereinbelow, we discuss the role of A20 in Th17 cell
differentiation and IL-17 function.

A20 Inhibits Th17 Cell Expansion Through
Diminished IL-6 Production
It is established that Th17 differentiation is dependent on
cytokines like IL-6, IL-23, IL-17, the production of which relies
on NF-kB signaling pathway that exaggerates inflammatory
signals. As a negative regulator of NF-kB signaling pathway,
the inhibitory role of A20 on cytokine production account for the
increase of Th17 cells observed in A20-deficient models.

NF-kB pathway is a ubiquitous signaling pathway that
modulates cell proliferation, immune responses, necroptosis,
and so forth. Considerable attention has been paid to its role
in tumorigenesis and inflammatory diseases (198, 199). After
being initiated by pathogens, pro-inflammatory cytokines and
others, IKK complex phosphorylates IkB and the latter
undergoes proteasomal degradation (26). The subsequent
translocation of NF-kB into the nucleus then activates NF-kB-
related genes and produces, including but not limited to, pro-
inflammatory cytokines such as IL-1, IL-6 and TNF, growth
factors, chemokines, as well as inhibitors of NF-kB pathway like
IkBa and A20 to avoid excessive inflammation (26).

A20 deubiquinates IKKg (also known as NF-kB essential
modulator, NEMO) and TRAF6, an E3 ubiquitin ligase that
is vital in the activation of IKK complex (200–202). The
activation of IKK complex terminates NF-kB pathway and
dampens NF-kB-mediated inflammation, exaggerating
inflammation and elaboration of pro-inflammatory cytokines
like IL-6, TNF. By the same token, A20 also dampens MAPK
(especially JNK) activation through TRAF6 deubiquitylation
(27, 203). Therefore, A20 depletions in human macrophage-
like cells (THP-1) and in mice bone marrow derived
macrophages lead to increase in cytokine production in vitro
(194). Consistently, partial loss of A20 in mice show severer
alveolar bone loss, more infiltration of immune cells, more pro-
inflammatory cytokines including IL-6, IL-23, IL-17, and these
mice display prolonged NF-kB activation (194).

The postulation that deficiency of A20 leads to a plethora of
inflammatory IL-6 that drives Th17 differentiation has been
confirmed in an arthritis-related study where A20 inhibits
Th17 cell differentiation through IL-6 in mice lacking A20 in
their bone marrow mesenchymal stem cells (BM-MSCs) (138,
204). The fact that A20 restricts IL-17 signaling and the
Frontiers in Immunology | www.frontiersin.org 9
concomitant decrease of its own implicates a negative feedback
loop that maintains an equilibrium between inflammatory
responses and homeostasis, avoiding excessive tissue damage
and autoimmune disorders.

ZnF7 Motif in A20 Restricts Th17 Cell
Proliferation
Hereinbefore, A20 possesses a ZnF7 motif on its C-terminal that
is capable of binding with M1-linked ubiquitin chains (28).
Research has shown that A20 represses inflammatory diseases
through its ZnF4 and ZnF7 motif synergistically in a non-
catalytic way (205). Mouse model A20ZF7/ZF7, harboring a
point mutation in C103 that disabled its ZnF7 motif, displayed
an elevation in IL-17-expressing T cells, compared to its wild
type littermates (205). As an array of studies showed that
commensal bacterium is crucial to Th17 in arthritis,
gastrointestinal tract and skin, A20ZF7/ZF7 were further bred in
germ-free conditions this time to interrogate the relationship
between Th17 cell expansion and commensal microbe
colonization, however results did not show any causal
relationship (36, 205–207). Th17 cell proliferation in the
human gingival oral mucosal barrier is also independent of
commensal bacterium (37). Therefore, ZnF7 motif might be a
plausible target for therapeutic interventions although the
underlying mechanism warrants further investigation at
molecular and cellular levels.

A20 Binds to the C-Terminal of IL-17RA
and Downregulates IL-17 Signaling
The IL-17 family includes ligands IL-17A to IL-17F that bind to
IL-17RA to IL-17RE. IL-17 receptor is a heterodimer composed
of IL-17RA and IL-17RC, both of which contains a SEFIR
domain that is conserved in the IL-17R family (95). Upon IL-
17 activation, SEFIR domain binds with adaptor protein Act1,
which also contains a SEFIR domain, through homotypic
interactions, thereafter, serving as a docking site for TRAF
proteins (208). Specifically, Act1 recruits TRAF6 and triggers
K63- ubiquitylation with the help of E3 ligase activity of Act1
(203, 209). Ubiquinated TRAF6 leads to the activation of IKK
complex, subsequent phosphorylation and degradation of IkB
pave the way for the initiation of canonical NF-kB pathway and
promotes transcription of pro-inflammatory proteins such as
cytokines, chemokines, and A20 (210). On the C-terminal of IL-
17RA, CBAD is indispensable to the activation, translation and
phosphorylation of C/EBPb and negatively controls IL-17-
induced signaling (27). CBAD contains a TRAF consensus site
that helps TRAF3 replace Act1, ultimately mitigating IL-
17R signaling.

It is substantiated that A20 binds to CBAD in IL-17RA,
albeit not SEFIR domain, through anaphase promoting
complex protein 5 (AnapC5 or APC5) which is known for its
role in regulating cell cycle (211) (Figure 4). During this
process, APC5 serves as an adaptor protein that facilitates the
binding of A20 to inhibitory domain CBAD in IL-17RA and
this interaction between A20 and CBAD ceases IL-17
receptor signaling.
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A20 Inhibits the Maturation of IL-1b and
Hinders Th17 Recruitment
Apart from being the end-product of Th17 cell secretion, IL-17
is capable of synergizing with IL-1b to promote CCL20 in
human fibroblasts, consequently recruiting more Th17 cells
and forms a feedback loop (212). As a matter of fact, Th17 cells
also induces CCL20 and exaggerates its own pro-inflammatory
effects (212). A20 mediates this feedback negatively by
restricting IL-1b.

Unlike in GI tract and skin, the differentiation of Th17 cells in
the oral cavity is independent of IL-1b, but IL-1b still appears
critically positioned in the etiology of periodontitis, especially in
immunomodulation and bone resorption (37, 213). IL-1b
activates endothelial cells and promotes the adhesion of
eosinophils, which exaggerates inflammation (214). IL-1b
promotes the production of RANKL, which is vital to bone
resorption as stated before (215). IL-1b also upregulates the
formation and bioactivity of osteoclasts eventually leading to
alveolar bone resorption (216). The secretion of IL-1b could be
Frontiers in Immunology | www.frontiersin.org 10
divided into two steps. Firstly, in response to microbial signals,
pattern recognition receptors (PRRs), normally containing pyrin
and/or caspase activation and recruitment domain (CARD),
secrete pro-proteins like pro-IL-1b and pro-IL-18 through NF-
kB pathway (217). Secondly, PRRs recruit the cysteine protease
caspase-1 directly or indirectly through apoptosis-associated
speck protein containing a CARD (ASC) (217). Caspase-1
cleaves inactive pro-proteins proteolytically and confer them
with bioactivity but this requires a prior activation signal (218).
An array of studies has confirmed that this activation signal is
provided by inflammasomes, a multiprotein signaling complex
assembled by members of the nucleotide-binding domain
(NOD) and leucine-rich repeat containing (LRR) (NLR) family
or the pyrin and HIN-domain (PYHIN) family (219).

In the case of IL-1b, a member of NLR family called NLR and
pyrin domain (PYD)-containing protein 3 (NLRP3), along with
caspase-1 and ASC, assemble into NLRP3 inflammasome (220).
The bioactivity of NLRP3 inflammasome calls for two steps,
priming and activation. The priming of NLRP3 inflammasome
FIGURE 4 | The role of A20 in IL-17A signaling. (A) Upon IL-17A activation, two SEFIR domains respectively in IL-17RA and IL-17RC bind to Act1. Then Act1
recruits and ubiquinates TRAF6. (B) Ubiquinated TRAF6 activates downstream MAPK, C/EBP and NF-kB pathways. (C) Related gene transcription promotes the
production of cytokines, chemokines that not only promote inflammatory responses and osteoclastic resorption but also further recruit monocytes and
macrophages. (D) CBAD in IL-17RA helps TRAF3 replace Act1, which terminates IL-17R signaling. (E) A20 binds to the inhibitory domain CBAD through APC5 thus
ceasing downstream pathways. SEFIR, SEF/IL-17R; TRAF, tumour necrosis factor receptor-associated factor; MAPK, mitogen-activated protein kinase; NF-kB,
nuclear factor-kB; CBAD, CCAAT/enhancer binding protein b (C/EBP b) activation domain; APC5, anaphase promoting complex protein 5.
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requires microbial signals like NF-kB-dependent TLRs or TNF
but there still lacks a unified theory on the secondary activation
signal (219). Current studies suggest that the rise in extracellular
ATP activates P2X7 and this triggers K+ efflux, eventually
activating NLRP3 inflammasome (221).

As a pathological contributor to oral diseases, NLRP3
inflammasome activates caspase-1 and caspase-1 matures pro-
inflammatory cytokines IL-1b and IL-18 (222). Meanwhile,
NLRP3 also induces pyroptosis, a type of inflammation-associated
cell death, by cleaving the N-terminal of gasdermin D (GSDMD)
and forming a pore on the cell membrane (223). NLRP3 also
promotes alveolar bone resorption through osteoclast differentiation
(224). The level of NLRP3 inflammasome mRNA and its related
proteins are increased in periodontitis and gingivitis, which
corroborates a negative role of NLRP3 in the oral cavity (225).
Frontiers in Immunology | www.frontiersin.org 11
Considerable research has focused on the inhibitory role of A20
in NLRP3 inflammasome maturation (Figure 5). First of all, A20
downregulates NF-kB signaling pathway, which directly limits the
production of pro-proteins and microbial components required
for the priming of NLRP3 inflammasome (202). Besides, caspase-8
in A20-deficient cells shows elevated activity and cleaves in more
pro-IL-1b, suggesting a negative role of A20 in mediating caspase-
8 and IL-1b production (217). Also, A20 restricts NLRP3 function
through caspase1-caspase8- receptor-interacting protein kinase
(RIPK)1-RIPK3 complex (217). Apart from that, A20 inhibits
caspase-1-dependent pyroptosis (226). Although the underlying
mechanism remains incompletely understood, this still
substantiates the regulative role of A20. In summary, A20
inhibits the production of IL-1b thereby mitigating downstream
inflammatory responses and bone resorption.
FIGURE 5 | A20 inhibits IL-1b production and downstream periodontal inflammation. (A) On microbial activation, PRRs containing CARD induces pro-IL-1b and
pro-IL-18 production through NF-kB pathway. (B) NLRP 3 inflammasome is assembled by NLRP3, pro-Caspase-1 and ASC. (C) NLRP3 inflammasome is primed
by microbial signals and activated by ROS, hypoxia and K+ efflux. (D) Mature NLRP3 inflammasome confers Caspase-1 with bioactivity. (E) Caspase-1 cleaves and
activates pro-IL-1b and pro-IL-18 that induces inflammation. (F) Caspase-1 also cleaves GSDMD whose active N-terminus forms a pore on the cellular surface and
causes pyroptosis. (G) A20 inhibits NF-kB signaling through IkBa. (H) A20 degrades RIPK1, impedes pro-Caspase-8 production and thus inhibits IL-1b production.
(I) A20 restricts NLRP3 function through caspase1-caspase8- RIPK1-RIPK3 complex. (J) A20 inhibits caspase-1 dependent pyroptosis. PRRs, pattern recognition
receptors; CARD, caspase activation and recruitment domain; NLRP3, NOD (nucleotide oligomerization domain)-, LRR (leucine-rich repeat)-, and PYD (pyrin
domain)-containing protein 3; ASC, apoptosis-associated speck protein containing a CARD; ROS, reactive oxygen species; GSDMD, gasdermin D; IkBa, inhibitor of
NF-kB alpha; RIPK, receptor-interacting protein kinase.
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CONCLUSION

Periodontitis is a multifactorial chronic oral disease affecting a
considerable proportion of the world population. Over the years,
evidence has moved from minimal to substantial that periodontitis is
closely related to an array of systematic diseases like diabetes, obesity,
hypertension, and especially rheumatoid arthritis. Hence, superior
periodontal treatments may lead to improved overall health
conditions. Although modern surgical and non-surgical treatments
against periodontitis have helped patients to some extent, the
underlying mechanism has not been fully revealed. Here we
conclude the pathogenesis of periodontitis and the essential role of
Th17 cells in it. We also summarized some modulators of Th17 cells
for they could be future therapeutic targets.

However, current understanding of Th17 cells and
periodontitis is far from enough. For example, anti-IL-17A
antibody alone could not alleviate periodontitis because of the
concomitant rise in GM-CSF. Would the addition of anti-GM-
CSF antibody be helpful? Also, the heterogeneity and plasticity of
Th17 cells have hinted us that therapies targeting Th17 cells need
revision. Does ex Th17 exhibit bioactivities that we are current
unaware of? Is it possible that we can create a cytokine milieu
that converts pathogenic Th17 cells to non-pathogenic ones?
These questions await further explanation.

Given the outstanding performance of A20 in restricting
Th17 cells, we anticipate that A20 may be a potential target in
Frontiers in Immunology | www.frontiersin.org 12
restricting periodontal inflammation and bone resorption but
there are still many open questions as to whether there are more
explanations for the interplay between A20 and Th17 cell
expansion. For example, the cellular mechanism through
which ZnF7 motif in A20 restricts Th17 differentiation remain
ill-defined and the interplay between IL-17/IL-23 axis and A20 is
yet not understood and this calls for further exploration into the
anfractuous immune system.
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