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Simultaneous gains in grain 
yield and nitrogen efficiency 
over 70 years of maize genetic 
improvement
Sarah M. Mueller1, Carlos D. Messina   2 & Tony J. Vyn   3

The competing demands of increasing grain yields to feed a growing population and decreasing 
nitrogen (N) fertilizer use and loss to the environment poses a grand challenge to farmers and society, 
and necessitates achieving improved N use efficiency (NUE) in cereal crops. Although selection for 
increased yield in maize has improved NUE over time, the present understanding of the physiological 
determinants of NUE and its key components hampers the design of more effective breeding 
strategies conducive to accelerating genetic gain for this trait. We show that maize NUE gains have 
been supported by more efficient allocation of N among plant organs during the grain filling period. 
Comparing seven maize hybrids commercialized between 1946 and 2015 from a single seed company 
in multiple N fertilizer treatments, we demonstrate that modern hybrids produced more grain per unit 
of accumulated N by more efficiently remobilizing N stored in stems than in leaves to support kernel 
growth. Increases in N fertilizer recovery and N harvest index at maturity were mirrored by a steady 
decrease in stem N allocation in this era study. These insights can inform future breeding strategies for 
continued NUE gains through improved conversion efficiency of accumulated plant N into grain yield.

Nitrogen fertilizers created by the Haber-Bosch process have been credited with feeding 48% of the world’s pop-
ulation1, but the negative effects of added reactive N to the environment are a global concern2–5. The competing 
demands of increasing grain yields to feed a growing population and decreasing N fertilizer use and loss to the 
environment poses a grand challenge to farmers and society, and necessitates improved N use efficiency (NUE) 
in cereal crops6–10. Nitrogen use efficiency is defined as the amount of grain produced per unit of N accumulated 
above what is provided by soil N mineralization. The selection for increased yield in maize has resulted in higher 
NUE over time11–13, but an understanding of the physiological determinants of NUE is lacking, and needed, to 
design breeding strategies conducive to increasing genetic gain for this trait. Era studies comparing maize hybrids 
commercially released over multiple decades, in the presence of intentional abiotic stress factors, are especially 
valuable for discerning physiological determinants of yield gains14.

The United States currently produces 36% of the world’s maize supply15. This high production has been possi-
ble because maize farmers in the U.S. began utilizing hybrids when they were introduced in the 1930’s, and over 
time have adopted progressively superior-yielding genetics. Rapid adoption of N fertilizers began in the 1960’s 
concurrently with the introduction of higher yielding single-cross hybrids14. Breeding selection has almost exclu-
sively focused on increasing grain yield and agronomic attributes16, resulting in a 4-fold increase in maize yields 
from 1930 to 201417. Most experiments find that grain yield has increased linearly with hybrid improvement, and 
that the rate of maize yield increase is steeper under optimal conditions compared to stress environments includ-
ing low N11,13,18 or drought19,20. Breeding for higher yields has also increased total biomass and N accumulation 
at maturity, extended duration of green leaf area, improved capture of photosynthetically active radiation, and 
decreased grain N concentration, among other changes11,13,14,18,21. While some of these physiological changes may 
be conducive to higher NUE, a systematic analysis of its determinants is lacking.
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A physiological framework for the analysis of NUE (Fig. 1A) considers two components: how much N is taken 
up by the crop (N recovery efficiency, NRE) and how efficiently N is transformed into grain yield once it has been 
accumulated in the crop (N internal efficiency, NIE). NIE is further broken down into the ratio between:

•	 N content in the grain expressed as percent of the grain mass (grain N concentration) and the nitrogen har-
vest index (NHI), which is the fraction of the total plant N at maturity that is present in the grain22

•	 the ratio between grain mass and total plant mass (harvest index, HI) and the N present in the plant at matu-
rity expressed as percent of total dry matter (total N concentration)23

Nitrogen internal efficiency is genetically controlled and synthesis analyses across diverse environments, man-
agements, and genotypes, have estimated that about 56 kg of grain are produced for every kg of above-ground 
plant N uptake23,24. Nitrogen recovery efficiency is typically below 50%, meaning that much of N fertilizer applied 
is not used by the recipient crop. Nitrogen fertilizers not taken up by the crop, or retained in soil, are lost to the 
environment4,6,23. Improvements in NRE through agronomic management has been a research focus for several 
decades and has resulted in best management practices for N fertilizer including optimized fertilizer source and 

Figure 1.  Applicable NUE component changes in maize hybrids over time. Schematic of the relationship 
between NUE, NIE, and NRE (A) and effects of maize hybrid YOC on grain yield (B), NUE (C), NRE (D), NIE 
(E), grain N concentration (F), and NHI (G). Bars represent standard error. Means denoted with different letters 
are significantly different from each other at p < 0.05. All means are presented as the average of two years and 
five N treatments.
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N application timing22,24. In contrast, research seeking to identify opportunities for genetic improvement in NRE 
and NIE is only recent11,12,25. Understanding how NUE and its components have changed after decades of maize 
breeding provides a first assessment into the opportunities for intentional breeding-driven gains in NUE. Several 
studies have found that NUE has increased with hybrid improvement11–13,26. However, what has not been ade-
quately demonstrated is the source of hybrid improvement in NUE.

As pointed out in reviews by Egli (2015)17 and Duvick (2005a)14, N fertilizer rates for maize production in 
the United States have plateaued since the 1980’s. However, over this same period, grain yields have continued 
to increase. In order to best evaluate changes in NUE, a 0 N control is needed to account for soil N accumulation 
and response to N fertilizer. Two experiments that have included 0 N treatments, Haegele et al.11 and Woli et al.26, 
found contrasting results for NUE change over time with the former noting an increase of 0.16 kg kg N−1 year−1 
while the latter found no trend in NUE. The lack of difference in NUE with YOC reported by Woli et al.26 may 
have been partially due to the different plant populations used for each hybrid. In the absence of a 0 N control, 
partial factor productivity can serve as a substitute for understanding the ability of hybrids to produce grain yield 
per unit of N applied. Chen and Vyn (2017)12 and DeBruin et al.13 both reported a positive relationship between 
partial factor productivity and YOC. Furthermore, the role of NIE has had mixed results showing both improve-
ment with YOC11 and no response. To address the knowledge gap of source of hybrid improvement in NUE over 
time, the objective of this study was to evaluate the mechanisms of NUE gains, through the assement of both NIE 
and NRE, over the past 70 years of commercial hybrid selection.

Methods
Experimental design and site description.  The methods of this experiment are discussed in-depth in 
Mueller and Vyn (2018)27. In brief, a two-year experiment was carried out at the Purdue Agriculture Center for 
Research and Education in West Lafayette, Indiana (40.471, −86.992) in 2016 and 2017. This site consists of silty 
clay loam soil (fine-sily, mixed, mesic Typic Haplaquolls). The site was rainfed and managed in a maize-soybean 
rotation. A split-plot design was used with N treatment as the main plot and hybrid as the sub-plot with three repli-
cations. Nitrogen treatments included a 0 N control and four treatments which all received a total of 220 kg N ha−1  
but varied in timing of N application. Non-0N treatments included the following where the number before the 
underscore indicates the rate applied at V4 and the number after the underscore represents the rate applied at 
R1: 220_0, 55_165, 165_55, and 0_220. These N treatments were intended to create a range of N stress at R1. 
Seven hybrids, representing a subset of the Pioneer ERA hybrids28 and a more recent hybrid were used in this 
experiment. The hybrids ranged in year of commercialization (YOC) from 1946–2015. Hybrid names and YOC 
are listed in Table 1. These ERA hybrids were recommended for this study by Pioneer scientists because of their 
popularity and wide use during their commercial lifespan. Hybrids ranged in crop relative maturity from 111 to 
114 days and the established plant population was 78,500 plants ha−1. Although plant populations changed dur-
ing the decades represented by these hybrids, previous era studies have also utilized a single “modern-era” plant 
population11,19,20. Several authors have attempted to separate the confounding effect of increasing plant density 
relative to genetic contributions to grain yield with conflicting results. While some researchers comparing hybrids 
at multiple plant densities do find that modern hybrids out-perform older hybrids at higher densities13,29–31, oth-
ers find no YOC by plant density interaction32–34. All hybrids in this experiment were similar in silking date and 
the mean anthesis-silking interval did not exceed 2.1 days for any hybrid (Table 1).

The experiments were planted on 20 May 2016 and 18 May 2017 in plots 3.05 meters (4 rows) wide and 17 
meters long. No starter fertilizer was applied at planting, but an in-furrow insecticide [Tefluthrin, (2,3,5,6-tetra
fkuro-4-methylphenyl) methyl-(1a,3a)-(Z)-3-(2 chloro-3,3,3-trifluror-1-propenyl)-2,2- dimethylcyclopropane-
carboxylate] was used at planting to protect all hybrids against corn rootworm (Diabrotica virgifera virgifera). 
Nitrogen fertilizer applications at V4 were applied via coulter-injected 28% urea ammonium nitrate (UAN). At R1 
UAN was hand-applied between rows in surface-bands. Temperature and precipitation were non-yield limiting 
in both years. Detailed weather data, as well as soil fertility information, is provided in Mueller and Vyn (2018)27.

Plant measurements and nitrogen use efficiency.  Whole-plant biomass samples were collected at 
flowering (R1) and at physiological maturity (R6). At each of these sampling times, 10 consecutive plants were 
removed from the field and partitioned into stems (including tassels), leaves (including husks), and ears. At R6 

YOC Hybrid R1 Days ASI KN KW % Leaf Remob % Stem Remob

1946 352HYB 65.0 (±0.5) b 1.9 (±0.3) a 388 (±20) d 223 (±6.0) d 53.5 (±2.3) b 31.6 (±4.6) d

1958 354 A 65.0 (±0.4) b 2.1 (±0.3) a 421 (±16) c 221 (±3.7) d 60.6 (±2.0) a 44.2 (±5.2) bc

1967 3390 66.0 (±0.5) a 0.8 (±0.2) bc 453 (±18) b 219 (±4.7) de 57.9 (±2.4) ab 48.7 (±3.6) b

1976 3382 66.0 (±0.6) a 0.5 (±0.3) cd 507 (±20) a 211 (±3.0) e 47.7 (±2.5) c 36.8 (±4.0) c

1995 3335 63.7 (±0.6) c 0.1 (±0.3) d 465 (±16) b 265 (±5.3) b 57.3 (±2.5) ab 41.7 (±5.3) bc

2003 34N42 62.7 (±0.5) d 1.4 (±0.2) ab 524 (±16) a 252 (±5.2) c 53.8 (±3.0) b 49.8 (±4.7) ab

2015 P1311 64.8 (±0.4) b −0.1 (±0.2) d 494 (±17) a 296 (±6.9) a 55.0 (±3.3) ab 58.2 (±3.0) a

Table 1.  Description of hybrid flowering, yield components, and N remobilization. Year of release (YOC), 
hybrid name, days from planting until 50% silking (days, R1 Days), anthesis-silking interval (days, ASI), kernel 
number as an average of 10 ears (kernels ear−1, KN), kernel weight (mg kernel−1, KW), percent of stem and leaf 
N present at R1 remobilized by R6 (percent, % Leaf Remob, % Stem Remob). All means are presented as the 
average of two years and five N treatments. Values in parentheses represent standard error.
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ears were further divided into cobs and kernels. All biomass sampling zones were pre-selected shortly after seed-
ling emergence. All biomass samples were dried to a constant weight, ground to 1 mm, and analyzed for N con-
centration using the combustion method by Pioneer (Johnston, IA). Grain yield, kernel number per ear, and 
kernel weight were determined from the 10 plants harvested at R6.

Remobilization of N content and dry matter from both leaves and stems were calculated as the differences 
between R1 and R6. We use remobilization to refer only to the N changes in the vegetative organs (i.e. leaves and 
stems).

Nitrogen use efficiency (NUE), N internal efficiency (NIE), and N recovery efficiency (NRE) were calculated 
as:

NUE
GY GY

N rate
fert N0=

−

=NIE GY
R Nc6

=
−

NRE
R Nc R Nc

N rate
6 6fert N0

Where GYfert and GY0N refer to grain dry matter (0% moisture) under the fertilized and unfertilized treatments, 
respectively, and R6Ncfert and R6Nc0N refer to the total R6 N content (kg N ha−1) in the fertilized and unfertilized 
treatments, respectively.

Statistical analysis.  Statistical analysis was conducted using SAS 9.335. For the majority of measured varia-
bles, F-tests based on the mean square between the two years (2016 and 2017) had Pr (F > F0) > 0.0136 indicating 
homogeneity of variance between years. For this reason, the two years were pooled together and the means pre-
sented are the average of both years. Analysis of variance was conducted using PROC MIXED and means separa-
tion was determined using the LSMEANS statement in SAS. The N treatment (whole plot) and hybrid (sub-plot) 
were considered fixed effects. Block was treated as nested within year (block(year)) and year, block(year) and year 
× block(year) × N treatment were considered random effects. Standard error calculations were derived from 
three replications, five N treatments, and two years.

Rate of gain was calculated using the lm function in RStudio37 with YOC as the explanatory variable and mean 
(including all five N treatments) grain yield, NUE, NRE, NIE, grain N concentration, NHI, HI, stover N content, 
stover dry weight, total N concentration, total N content, and total dry weight as the response variables28.

All data are represented as the mean of all N treatements, including the 0N control plots.The interaction of 
YOC × N treatment was rarely significant (p < 0.05) and, therefore, discussion will be based on the average of all 
N treatments unless otherwise specified.

Results and Discussion
Grain yield improved linearly with hybrid improvement.  Over the 70 years of genetic improvement 
in the U.S. Corn Belt represented by the seven hybrids evaluated in this experiment, grain yield increased at a 
rate 0.10 Mg ha−1 year−1, resulting in an 89% increase from 1946 to 2015 when averaged across all N fertilizer 
treatments (Fig. 1B, Table 2) There was no evidence that modern hybrids responded differently to the non-0 N 
treatments and, in all cases, grain yield increased linearly with YOC. The rate of yield gain was much greater when 
220 kg N ha−1 was applied (0.12 Mg ha−1 year−1, average of four treatments) compared to when there was no fer-
tilizer added (0.05 Mg ha−1 year−1) (data not shown).

The increase in grain yield (averaged over all N treatments) was driven by a combination of both higher kernel 
number per ear and kernel weight (Table 1). The increase in kernel number primarily occurred between 1946 and 
1976 while the gains in kernel weight were most notable from 1976 until 2015.

The rate of yield gain in this experiment was similar to previous era studies. The average increase in the non-0N 
treatments of 0.12 Mg ha−1 year−1 is similar to the gains of 0.14 Mg ha−1 year−1 reported by DeBruin et al.13  
and 0.09 Mg ha−1 year−1 found by Haegele et al.11 under similar plant densities (79,000 and 80,000 plants ha−1, 
respectively) and non-limiting N rates. Our finding of a yield increase of 0.05 Mg ha−1 year−1 when no N was 
applied was also similar to the 0 N11 or low N13 gains reported by those authors of 0.06 and 0.06 Mg ha−1 year−1, 
respectively.

Nitrogen use efficiency increased over time.  In parallel with grain yield, NUE increased at a rate of 
0.21 kg ha−1 year−1 (Table 2), resulting in a overall NRE increase of 73% (Fig. 1C) across the evaluated hybrids in 
this study. This increase was due to improvements in both NRE and NIE (Fig. 1D, E). NRE made rapid gains of 
0.26 percent year−1 (Table 2) and this was mirrored by the strong increase in total plant N uptake at R6, which 
increased from 160 kg ha−1 in 1946 to 192 kg ha−1 in 2015 (Fig. 2E).

In addition to the rapid gain in NRE, modern hybrids produced more grain yield per unit of N uptake (NIE, 
Fig. 1E). Nitrogen internal efficiency increased nearly 50% between 1946 and 2015 (average of all N treatments), 
improving at a rate of 0.28 kg kg−1 year−1. This increase in NIE occurred in conjunction with a reduction in grain 
N concentration (numerator in NIE calculation, Fig. 1A), from 1.34 (1958) to 1.07% (2015) (Fig. 1F).

The reduction in grain protein concentration has often been implicated as having a role in improved grain 
yields28,38. However, the simultaneous increase in NHI (Fig. 1G) shows grain yields increased faster than the 
decrease in grain N concentration. Harvest index also increased with YOC (Fig. 2A). The change in both of 
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these indices (NHI and HI) was driven entirely by increased grain N and grain dry matter accumulation because 
there was no change in stover (stems and leaves) N content (p = 0.221) or dry matter (p = 0.956) over the same 
period (Table 2, Fig. 2B, C). In contrast, but consistent with prior studies13,24,25, total N concentration at maturity 
decreased with YOC from 0.90 to 0.83% (p = 0.042, Fig. 2D) indicating that the increase in total N content was 
less than the increase in total dry matter (Fig. 2E, F). These changes suggest that improved maize grain yield has 
not simply been due to greater total biomass accumulation, but rather to a shift in the proportional allocation of 
accumulated N within the plant to the grain and away from the stover in modern maize hybrids.

Leaf versus stem contributions to nitrogen efficiency changes over time.  Because of the different 
biological function of leaves and stems for yield determination, an observed increase in N allocation to the grain 
could be explained by changes in N allocation between these two plant organs in response to selection for yield. 
While leaf N determines rates of photosynthesis that support both vegetative and reproductive growth38, stem 
N is primarily structural and serves as transient storage for N accumulated in excess of that required to support 
plant growth39. The dynamic relationship between the stems and leaves during the growing season can be visual-
ized through the stem to leaf ratio (S:L) of dry matter and N content (Fig. 3).

While experimental results show only small changes in stover dry matter or N content over the 70 years of 
hybrid improvement (Fig. 2B, C), major shifts occurred in S:L ratios for both dry matter and N content (Fig. 3). At 
flowering, stem dry matter was nearly twice that of leaf dry matter, but there was little pattern with YOC (Fig. 3A). 
This is in contrast with Chen et al. (2015a)40 who found higher S:L DM at R1 in Dekalb hybrids released in 1967 
compared to 2005 (2.5 and 2.3, respectively). In the present experiment, by R6, S:L DM generally decreased with 
YOC; however, the change with hybrid improvement was much starker for S:L N content. At flowering, S:L N 
content was greater in hybrids released prior to 1976 (Fig. 3B). However, these differences were small compared to 
the prominent hybrid gradient at maturity when 1946 realized a S:L N content double that of 2015 (0.8 compared 
to 0.4, Fig. 3B). This demonstrates the change among hybrids in the apparent remobilization during grain filling 
of N content present at flowering in the stems versus the leaves. To provide the N needed for the growing kernels, 
maize depends on a combination of N remobilized from the stems and leaves, as well as continued N uptake from 
the soil during grain fill. Modern hybrids remobilized a significantly higher percentage of their stem N content at 
flowering (58.2% compared to 31.6% for 2015 and 1946, respectively, p < 0.001, Table 1). Meanwhile, there was 
no pattern between YOC and the percentage of leaf N present at flowering that was remobilized, as apparent leaf 
N remobilization ranged from 47.7% (1976) to 60.6% (1958) (p < 0.004). These data, except 2015, agree with pre-
vious research showing that most of the total remobilized N originates from the leaves of maize hybrids compared 
to the stems41–43.

The greater stem N remobilization in modern hybrids led to genotypic differences in N allocation among 
the plant organs at maturity (Table 3) and allowed for improved NIE. As previously discussed, total dry mat-
ter at maturity increased in modern hybrids due to the greater grain dry weight while stover dry matter and 
N content remained unchanged (Fig. 2, Table 2). However, there were large differences in N allocation among 
the plant organs. As shown by the NHI results (Fig. 1G), the proportional allocation of N content to the grain 
increased steadily with YOC at a rate of 0.16 percent year−1 (Table 2). The increase in NHI was mirrored by a 
steady decrease in stem N allocation at R6 (Table 3) falling significantly from 17.2% in 1946 to 7.3% in 2015 
(p < 0.001). There was little difference in cob N content among hybrids (representing 3.0–5.9% of the total N 
content, p < 0.001, Table 3) and the variation in leaf N allocation was also minimal (range of 17.2–20.9% of total 
N content, p < 0.001, Table 3). This analysis suggests that the improved NIE in modern hybrids can be attributed 

Variable Slope StdEr R2 p-value

Grain Yield (Mg ha−1) 0.10 0.007 0.98 <0.001

NUE (kg kg−1) 0.21 0.052 0.77 0.009

NRE (%) 0.26 0.056 0.81 0.006

NIE (kg kg−1) 0.28 0.026 0.96 <0.001

Grain N (%) −0.003 0.001 0.77 0.010

NHI (%) 0.16 0.031 0.84 0.003

HI (%) 0.19 0.015 0.97 <0.001

Stover N (kg ha−1) −0.08 0.056 0.28 0.221

Stover DW (Mg ha−1) −0.0004 0.007 0.0007 0.956

Total N (%) −0.0007 0.0003 0.60 0.042

Total N (kg ha−1) 0.55 0.060 0.94 <0.001

Total DW (Mg ha−1) 0.06 0.008 0.94 <0.001

Table 2.  Rate of gain for selected hybrid traits. Rate of gain for selected traits as calculated using linear 
regression with year of commercialization as the explanatory variable and the trait of interest as the response 
variable. Calculations were conducted using the mean of two years and five N treatments. Varibles are grain 
yield (Mg ha−1), N use efficiency (NUE, kg kg−1), N recovery efficiency (NRE, %), N internal efficiency (NIE, kg 
kg−1), grain N concentration (Grain N, %), N harvest index (NHI, %), harvest index (HI, %), stover N content 
(Stover N, kg ha−1), stover dry weight (Stover DW, Mg ha−1), total N concentration (Total N, %), total N content 
(Total N, kg ha−1), total dry weight (Total DW, Mg ha−1).
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Figure 2.  Hybrid improvement influence on end-of-season metrics. The effect of maize hybrid YOC on HI (A), 
stover N content (B), stover dry weight (C), total N concentration (D), total N content (E), and total dry matter 
(F). Bars represent standard error. Means denoted with different letters are significantly different from each 
other at p < 0.05. All means are presented as the average of two years and five N treatments.

Figure 3.  Hybrid effects on stem to leaf biomass and N ratios. The effect of hybrid YOC on the stem to leaf ratio 
for dry matter (A) and N content (B) at the growth stages of flowering and maturity. Bars represent standard 
error. Means denoted with different letters are significantly different from each other at p < 0.05. All means are 
presented as the average of two years and five N treatments.
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to more efficient remobilization of stem N content to the grain to support kernel growth while the proportional 
leaf N allocation remained relatively unchanged.

In conclusion, this research addressed an important aspect of the quandary for producers and society alike of 
simultaneous imperatives to increase grain yields and decrease N fertilizer use and environmental losses. We have 
shown that modern hybrids are meeting this challenge as genetic improvement in the U.S. over the past 70 years 
has resulted in both a 89% increase in grain yields and a 73% increase in NUE. Modern hybrids are better at accu-
mulating a greater percent of applied N fertilizer (NRE), which limits environmentally damaging field nutrient 
losses while more efficiently producing grain yield per unit of accumulated N (NIE). Although previous research 
has suggested that maize grain yield and NUE gains over time have arisen primarily from greater total N accu-
mulation and dilution of grain N concentration, we provide novel evidence that increased stem N remobilization, 
and retention of leaf N during reproductive growth, played key roles in achieving NIE gains. Historically, green 
leaf area development, architecture, and duration have received the focus in maize yield improvement programs, 
but results from this study suggest there are additional prospects for genetic improvement in NIE. Understanding 
the physiological underpinnings of NIE such as the dynamics and form of stem N storage and remobilization, 
and transporter activity during the grain filling period, are warranted to help design breeding strategies to select 
genotypes with increased NRE and NIE.
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