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Abstract

Background: The ability of collections of molecules to spontaneously assemble into large functional complexes is
central to all cellular processes. Using the viral capsid as a model system for complicated macro-molecular assembly,
we develop methods for probing fine details of the process by learning kinetic rate parameters consistent with
experimental measures of assembly. We have previously shown that local rule based stochastic simulation methods in
conjunction with bulk indirect experimental data can meaningfully constrain the space of possible assembly
trajectories and allow inference of experimentally unobservable features of the real system.

Results: In the present work, we introduce a new Bayesian optimization framework using multi-Gaussian process
model regression. We also extend our prior work to encompass small-angle X-ray/neutron scattering (SAXS/SANS) as a
possibly richer experimental data source than the previously used static light scattering (SLS). Method validation is
based on synthetic experiments generated using protein data bank (PDB) structures of cowpea chlorotic mottle virus.
We also apply the same approach to computationally cheaper differential equation based simulation models.

Conclusions: We present a flexible approach for the global optimization of computationally costly objective functions
associated with dynamic, multidimensional models. When applied to the stochastic viral capsid system, our method
outperforms a current state of the art black box solver tailored for use with noisy objectives. Our approach also has
wide applicability to general stochastic optimization problems.

Keywords: Gaussian process regression, Kernel learning, Bayesian optimization, Small-angle scattering, Molecular
self-assembly, Stochastic simulation, Rule-based modeling

Background
As efforts to build predictive quantitative models of com-
plex systems in biology have grown increasingly complex
and comprehensive (e.g., [1, 2]), they have inevitably
had to deal with the challenge of capturing molecular
self-assembly chemistry. Self-assembly chemistry is an
essential part of nearly every important function of a
living cell, yet has long proven exceptionally challenging
due to their large sizes, long time scales, and explo-
sive pathways spaces. Simulations can provide a way
to examine details of assembly unavailable to direct
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experimental observation, but are computationally
demanding for complex assemblies, leading to a body of
specialized simulation methods specifically for simulating
molecular self-assembly chemistry [3–12]. Furthermore,
learning parameters needed by these simulations is itself
a very difficult problem for assembly systems, likewise
requiring specialized methods [13, 14]. See [15] for a
recent review.
We previously showed that it is possible to simulate

realistic scales and parameter ranges of complex self-
assembly reactions, with specific focus on virus capsid
assembly as a model system, by using coarse-grained,
rule-based models [4]. These rule-based models were
originally implemented via Brownian particle models
[4, 5, 8, 11] and later via fast stochastic sampling
algorithms [7, 9, 10], approaches that have since seen
widespread use in modeling capsids and other complex
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reaction systems. Accurately parameterizing such mod-
els from experimental data, though, remains challeng-
ing. Standard methods for model fitting in biochemistry,
particularly the Bayesian model-inference methods that
have become the favored approach in the field [16], are
unusable for non-trivial self-assembly systems due to
their exceptionally high computational cost, large path-
way space, and inherent stochasticity [15]. In past work,
we showed that it was possible to learn detailed quan-
titative parameters of these models via simulation-based
model fitting to static light scattering (SLS) measurements
of bulk assembly in vitro [13, 17], primarily by bringing
to bear specialized optimization techniques from the field
of Derivative-Free Optimization (DFO) [18]. Together,
these contributions made it possible to infer the subunit-
level pathway space of real capsids assembling in vitro,
which in turn can be applied to explore how pathway
usage might differ under more realistic models of the
intracellular environment [19, 20]. The reliability of such
inferences is uncertain, however, due to limits of the data
in precisely and uniquely identifying a specific model and
the difficulty of accounting for model uncertainty with
these classes of methods. The present work focuses on
improving parameter fitting methods in terms of potential
experimental techniques to which one can fit models and
parameter inference algorithms that can be applied for
the fitting.
Computationally, we seek to bring to self-assembly the

advantages of Bayesian model inference in exploring the
space of possible solutions. We approach the problem of
quantifying uncertainty in parameter estimation by con-
structing a probabilistic model of the objective function
using Gaussian process (GP)models [21]. This GPmethod
is a variant of a technique called kriging [22] that has pre-
viously proven valuable in other contexts for solving com-
putationally demanding model inference problems under
uncertainty. GP models are defined by mean and covari-
ance (kernel) functions, and specify a prior on the space
of possible functions. As simulations at successive param-
eter values are completed, the prior is updated, forming
the posterior which is used in prediction. New data points
for sampling are selected based on the current proper-
ties of the process and user-defined trade-offs between
exploration and exploitation of the parameter space. This
iterative non-parametric Bayesian approach is better able
to handle uncertainty in parameter assignments than
our previously used optimization techniques, which were
based on local surrogate functions. The GP formalism
also allows for predictions at test points using global
information about the smoothness and self-similarity of
the objective.
We simultaneously seek to expand the repertoire of

data sources to which these methods can be applied, with
specific focus on moving from the static light scattering

(SLS) of prior work to small angle X-ray/neutron scatter-
ing (SAXS/SANS). SAXS has already proven valuable for
reconstructing kinetics of capsid assembly systems (e.g.
SV40 VP1 pentamers encapsidating short RNAmolecules
[23], and distinguishing closed shells from incomplete
intermediates during P22 assembly [24]) while SANS has
been applied to similar reconstruction problems of other
protein assemblies, such as the Huntington amyloid [25].
Time-resolved SAXS has also been used to study the
dynamics of conformational change in viruses [26–28].
Here, we develop and implement our GP optimization

framework and demonstrate it using synthetic SAXS data
of known ground truth. We implement both stochas-
tic (SSA [29]) and deterministic (ordinary differential
equation (ODE) [3]) models of virus-like assembly sys-
tems of known parameters. We then demonstrate that we
can accurately reconstruct the original models from sim-
ulated SAXS data derived from these systems. While our
stochastic and deterministicmodels are applicable to virus
like assembly systems, the parameter inference framework
is quite general and can be expected to be appropriate
to any system for which model predictions are costly to
evaluate and noisy.

Methods
Overview and objective
The overall goal of our method is to learn a set of model
parameters, specifically kinetic rate constants for distinct
self-assembly reaction events, that define a quantitative
model of assembly that is maximally consistent with a
set of experimental data. We assume the data here to be
SAXS or SANS waveform data, explained below, which we
will canonically reference as SAXS data. We particularly
develop a class of methods designed to learn a stochastic
process, which is utilized to obtain an optimal assembly
model specification. The process probabilistically models
an objective function quantifying the difference between
a ground truth SAXS experiment, for which we have (syn-
thetic) data, and a candidate experiment determined from
a simulation trajectory at a single hypothetical point in
parameter space.
We define our objective function as the root mean

square deviation (RMSD) between the respective sets of
intensity curves over designated time points. We gen-
eralize this objective for use with two model types in
common use in this field, SSA-based stochastic models
andODE continuummodels, each of which can work with
the same basic inference framework with some specialized
modifications. For the stochastic assembly framework, no
two trajectories’ reactions will occur at the same time
points. We can get around this problem because assem-
bly is a Markov process in which the system state remains
unchanged between any two successive reactions. Thus,
for each time point in the ground truth experiment, we
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select the closest later time point from the candidate
experiment when computing the RMSD. Within the con-
tinuous time ODE framework, we can directly specify
the time points to consider via interpolation relative to
a finite difference numerical integration. We note that
we do not generalize to coarse-grained Brownian particle
models despite their widespread use, because they cannot
be parameterized straightforwardly in terms of reaction
rate constants like SSA and ODE models.
Our central task in model inference is to approximately

minimize this objective as efficiently as possible. Note that
our use of stochastic processes to represent the objective
means we are effectively specifying a probability density
over possible rate parameters. This contrasts with our
prior work [13, 14, 17, 19] fitting the rate parameters
directly or with conventional Bayesian optimization that
directly samples over the parameter space. While this may
seem a complicated approach, this complication is the key
to kriging methods gaining the advantages of a Bayesian
model in estimating model uncertainty while simultane-
ously getting the high efficiency needed by the application.
Noise variance in the stochastic case is significant and
no single assembly trajectory, or resulting SAXS experi-
ment, can be taken as representative for a given model
specification. We determine the representative by simu-
lating multiple trajectories, translating each into a SAXS
experiment, and then taking their element-wise mean.
The objective’s empirical noise level is also approximated
by computing the RMSD of each repeated simulation and
calculating their variance directly.

Data sources
Scattering experiments consist of a wave source (x-
rays/neutrons for SAXS/SANS, respectively) directed
towards a sample. After interacting with the sample
medium, some fraction of the incident waves scatter
away while the remainder are absorbed. The intensity
of scattered radiation is measured at a detector as a
function of the scattering vector, q. Small-angle scatter-
ing roughly corresponds to measured intensities at low
q values, allowing the investigation of microscopic fea-
tures with spatial resolution ranging from a few angstroms
to a few microns. Mathematically, the scattered inten-
sity I(q) is the Fourier transform of the electron density
correlation function, therefore signal is observed only if
the contrast in electron density is different from zero.
However, scattering experiments do not provide localized
information about the sizes, shapes and pairwise distances
of the molecular constituents. Instead, the intensity is
representative of the entire sample, providing a spatial
and temporal average over the duration of the measure-
ment (temporal resolution as low as 100ps [30]). Due
to these limitations, scattering provides only bulk, indi-
rect evidence of assembly dynamics. See [30, 31] for

a detailed treatment. There are also numerous exam-
ples of small-angle scattering with other protein systems,
e.g. [32–38].
In silico SAXS experiments are constructed from sim-

ulated assembly trajectories by extrapolating the solu-
tion scattering of a single protein subunit obtained from
CRYSOL. CRYSOL [39] is a program for evaluating the
solution scattering from macromolecules with known
atomic structure and accepts as input PDB structure files.
The present work focuses on fixed structures for the
dimer subunits of cowpea chlorotic mottle virus (CCMV)
formed from the A−B and C−C chains (PDB 1za7, [40]),
as well as a model of the pentamer subunits of generic
dodecamer assembly. Clement et al. [41] examines the
energetic effects of allowing the subunits to come from a
distribution of possible configurations rather than a single
PDB structure.
CRYSOL ouputs a vector of scattering intensities cor-

responding to q values from 0 to 0.5 in steps 0.01. As
the higher q values correspond to observations of smaller
features of the system, possibly beyond experimental reli-
ability, there is a question as to the correct range to
consider. However, in the context of our purely computa-
tional experiments we will not consider the issue and use
the default range returned by CRYSOL.
The full SAXS intensity is determined as a function

of the form factor, F(q), and the structure factor, S(q).
Loosely speaking, the form factor is determined by the
internal structure of the elementary particles in the sys-
tem (i.e. the protein subunits), and the structure factor
provides information on larger scale spatial correlations
among the elementary particles.

ISAXS(q) = �ρ2V 2|F(q)|2S(q) (1)

In Eq. 1, V is the elementary particle volume, and �ρ

the electron density contrast between particle and solu-
tion. These two terms, together with the form factor, are
returned by CRYSOL as the single subunit scattering.
Because our simulators do not directly model diffusion
through space, we do not have any information on the
relative positions of the various intermediates present at
each reaction step. Our mathematical extrapolation of the
subunit scattering to the full system scattering therefore
relies on a dilute assumption, allowing the scattering con-
tributions of each intermediate to be summed. Within the
context of a single intermediate, we do have access to rel-
ative subunit positions and so we calculate a structure
factor for each.

S(q) = 1
N

�j,ke−iq(Rj−Rk) (2)

In Eq. 2, i is the imaginary unit,
√−1, and the summation

is over every pair, (j, k), of the N subunits present in the
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intermediate, located at positions Rj,Rk . The full wave-
form, ISAXS(q), specified as a function of q over a defined
range and step size, serves as the input to our model infer-
ence. One might in principle fit to multiple waveforms for
a given system, for example from monitoring assembly at
distinct concentrations, although for simplicity we assume
here that we are fitting to a single SAXS experiment.

Stochastic simulation model
The simulation-based data fitting approach used here
depends on fitting a model to a data set through an inter-
mediate simulation. That is, one assesses quality of fit of
a parameter set based on how well the true experimen-
tal data matches simulated experimental data, derived by
simulating assembly with the parameter set and then gen-
erating SAXS/SANS data from the output of that assembly
simulation. In the present work, the “true” data is also
simulated, which is necessary to have a data set with
known ground truth. We implement two versions of the
full pipeline here, one for a stochastic simulation class
and one for a deterministic one, in each case using the
same techniques for creating true data and for fitting to
those data.
Stochastic simulations are run using DESSA [7] which

implements a version of the Gillespie algorithm [29]
for coarse grained, complex self-assembly systems [6].
Reaction chemistry is represented as a continuous time
Markovmodel of the possible reaction trajectories ( see [7]
for details) available to an initial collection of protein sub-
units that undergo association and dissociation reactions
according to a local rule model [4, 42]. The local rules
describe interactions between protein subunits in terms
of the positions, affinities, and kinetics of their binding
sites, with the binding rate constants the only free param-
eters. This simulator does not explicitly model diffusion in
space, nor is it based on a lattice or compartment model.
Instead, the intra-capsid geometry is modeled through
the local rules, with diffusion implicitly a function of the
kinetic rates under the assumption that the system is
well mixed.
Because DESSA deals directly with expected wait time

constants for reactions (T) rather than reaction rate con-
stants (k), conversion between the two is useful. The uni-
molecular case (e.g. dissociation of species S1 : S1 → 2S1)
is easy. The reaction rate kuni has units 1

[s] , so the expected
wait time Tuni is simply the inverse of the rate constant.
The bimolecular (e.g., association: S1 + S2 → S1 : S2)
molar reaction rate constant is defined as kmolar =
NA∗�
Tbi

, where � is the system volume, NA is Avogadro’s
number and Tbi is the expected reaction waiting time,
again allowing one to derive the rate constant from the
inverse of the waiting time and vice versa. Finally, because
the search space can span multiple orders of magnitude
along each dimension, we work in log-scaled units. We

specifically treat the ground truth (GT) parameter values
TGT as the origin of CCMV’s 10-dimensional parameter
space, with the conversion between real space (T) and
log-scaled space (x) given by T = 10(log(TGT )/log(10)+x).
Search points are constructed by the algorithm as mod-
ifications of the ground truth point which is located at
x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). In all results figures, the x
values of points are displayed, rather than their T values.

ODEmodel
Simulating assembly using ODEs requires a distinct
differential equation describing the time evolution of
the concentration of each potential intermediate, from
monomeric subunit to complete capsid. We began, like
Endres & Zlotnick [43] and Misra & Schwartz [12], by
considering a model of T = 1 assembly from pentameric
capsid subunits, for which only monomer/monomer and
monomer/oligomer reactions are possible. We justify this
restriction of the pathway space based on the observation
that, except in cases of extremely high rates or concentra-
tions [44], the equilibrium concentration of monomers is
much larger than that of the intermediates. With this sim-
plification, we were able to compute each species in the
assembly tree (all of the structurally unique partial assem-
blies of a given size), their forward/backward reaction
degeneracies, and their relative stabilities. Following [12],
we represent the molar concentration of the kth unique
species of size j as [j,k], and represent the forward reac-
tion degeneracy between (j,k) and (m,n) after monomer
addition as am,n

j,k . The corresponding backward reaction

degeneracy is bj,km,n. The relative stability of (j,k) w.r.t. (m,n)
is approximated as

sm,n
j,k = exp(−�G ∗ (cm,n − cj,k)/RT) (3)

were cj,k is the number of bonds formed within species
(j,k).
The differential equation for the time evolution of [ j, k]

is as follows.

d[ j, k]
dt

= kon�m,n
(
bj,km,nsm,n

j,k [m, n]−am,n
j,k O(m − j)[ j, k] [m − j]

)

− kon�p,q
(
bp,qj,k s

p,q
j,k [ j, k]−aj,kp,qO(j − p)[ j − p] [ p, q]

)

(4)

In Eq. 4, O(m − j) denotes the symmetry of the monomer
subunits (or oligomer subunits if m − j >= 1 were
allowed). The full set of these equations for all defined
j and k define an ODE model for time evolution of the
complete reaction system.
For the equations to be correct, it is necessary to iden-

tify assemblies that are isomorphic to one another, a
special case of the graph isomorphism problem. While
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a general algorithm for detecting isomorphism of sub-
sets of icosahedral assemblies is provided in [12], we
provide here an efficient variant customized for this appli-
cation. Our new algorithm for identifying all structurally
unique intermediate oligomers and computing the for-
ward/backwards degeneracies for each relevant pair is
shown in Fig. 1. It iteratively constructs the state space by
adding a pentagonal monomer to each free binding site of
the current oligomer, and tests the resulting oligomer set
for isomorphism. Only the unique structures are saved,
i.e. those which are not pairwise isomorphic under some
transformation in SO(3). For each isomorphic structure
generated, the appropriate am,n

j,k is incremented. The iso-
morphism testing subroutine is outlined in Fig. 2. It relies
on the fact that without loss of generality, we can enforce
that all species contain the same initial monomer (which
we call ’face 1’), and that the implicit dodecahedron – of
which all oligomers are a part – can be oriented relative
to a fixed location in space. For convenience, the centroid
of face 1 is treated as the fixed location. There are 11
3D rotations leaving the dodecahedron in an orientation
equivalent to the original, but which successively place
each face in the fixed location. Further, for each of these
orientations, due to the pentagonal symmetry of the sub-
units, there are 4 2D rotations leaving the centroid of the
face in the fixed location unchanged. When determining
if two oligomers are isomorphic, each of the 12*5 ori-
entations of the first oligomer are computed successively
and the resulting coordinates are compared with the sec-
ond oligomer for identity. The isomorphism subroutine
runs in time O(|F| ∗ |E/F|) where |E/F| is the number of
edges per face. Finally, we note that many viruses possess
icosahedral symmetry. Being dual to the dodecahedron

and sharing the same symmetry group, the same set of
rotations apply to the icosahedron.

Gaussian process framework
Modeling the objective as a Gaussian process
Gaussian processes have a long history of use in disparate
fields for related tasks including interpolation and pre-
diction. For example, in geostatistics it has been known
as kriging since the early 1970s [21]. The modern inter-
pretation is that a GP assigns a probability distribution
to a space of functions, the most important properties of
which (e.g. smoothness) are determined by the GP covari-
ance function. Due to its non–parametric nature, overfit-
ting is less of a concern than it is with other regression
models.
In analogy with the Gaussian distribution, the GP prior

is completely defined by its mean function and covariance
function [21].

F(x) ∼ GP(m(x), k(x, x′)) (5)

The covariance function, k(x, x′), is of central importance.
It defines a notion of similarity between points in the
input space in terms of their objective values, enabling
prediction at test points. It is technically a kernel func-
tion and must be symmetric. Further, when this kernel
function is evaluated at a set of points, the resulting
matrix must also be positive semidefinite. Combining
the prior with new observations (i.e., training on pairs
{x, F(x)}) leads to the posterior distribution over func-
tions, representing our updated beliefs about possible
candidate functions.

Fig. 1 Pseudocode for identifying distinct intermediates
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Fig. 2 Pseudocode for determining if oligomers are isomorphic

Once the form of the mean and covariance functions
are specified initially, training is synonymous with covari-
ance hyperparameter optimization (note that the model is
still nonparametric because the hyperparameters define a
class of GPs rather than a particular instance). In other
words, the hyperparameters obtained are those that min-
imize the negative log marginal likelihood of the data
under the GP class specified by the covariance function.
This optimization step is usually very efficient and should
not be confused with the larger optimization problem of
minimizing the objective function.

Gaussian process optimization
At a high level, the method will work iteratively by using
the GP to identify candidate parameter sets at which to
run additional simulations, which in turn are used to
refine the GP fit. After training, the GP can be queried for
the best new expensive point(s) to evaluate. This model
includes uncertainty at test points, as it not only provides
an estimate of the mean value of the objective, but also
provides an estimate of the variance. Assuming the input
space has not yet been thoroughly explored, the algo-
rithm will benefit from objective evaluations at additional
parameter points. In identifying candidate points to sim-
ulate, we need to balance exploration of unexplored (high
variance) areas with exploitation of regions known to have
low objective values. Several acquisition functions (AF)
have been designed to handle this tradeoff at the expense
of yet another (usually inexpensive relative to F(x)) opti-
mization. We have chosen the lower confidence bound
(LCB) as the acquisition function to be minimized due to
its simplicity of evaluation.

aLCB(x) = μ(x) − κσ(x) (6)

xnew = argminx aLCB(x) (7)

In Eq. 6, μ denotes the mean prediction at each input and
σ the corresponding standard deviation. The user-defined
parameter κ balances the tradeoff (higher and lower for

exploration and exploitation, respectively). It has been
shown that choice of statistical model is often far more
important than choice of acquisition function [45]. Other
popular choices include probability of improvement (PI),
expected improvement (EI), entropy search, and Thompson
sampling [45, 46].
AF minimization can be achieved using derivative

free optimization packages such as DIRECT [47, 48],
SNOBFIT [49] andMCS [50], or methods such as sequen-
tial quadratic programming and quasi-Newton solvers.
We, however, chose a simpler approach. We draw sam-
ples in relevant areas of the search space, evaluate the AF,
and directly select the minimizer. This randomized pro-
cedure is repeated many times with the resulting set of
minimizers coordinate-wise averaged.

Multi-GPmodel optimization
In many regression contexts, domain-specific knowledge
can be applied to constrain the class of statistical model
used to fit the experimental data. For example, it may be
known from physical principles that observations should
be distributed linearly with some corruption from ran-
dom measurement error, suggesting the use of a linear
regression model. In our case, GP regression allows a
great deal more flexibility in principle but we lack prior
knowledge about which, if any, GP class accurately mod-
els the process generating a particular set of observa-
tions.With sufficient training data, the kernel maximizing
the likelihood of those data while also predicting the cor-
rect noise level is often the best choice. However, our
focus is optimization of the objective with as few func-
tion evaluations as possible. A novelty of the proposed
method is the assumption that using multiple statisti-
cal models for experimental data generation at once,
rather than in a one-off fashion, may allow us to more
efficiently discover structure, e.g., the locations of local
minima. Additionally, during early rounds of search, this
strategy can provide an avenue for more thoroughly
exploring the input space since the acquisition functions
corresponding to different kernels may be minimized by
different points.
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The kernel functions used in the present work are listed
in Table 1. We sought to include a range of traditional
kernels as well as a few less common choices. All except
the Neural Network (NN) covariance are stationary in the
sense of depending on the relative difference x− x’ rather
than on the absolute locations in parameter space. The
Square Exponential (SE) covariance leads to extremely
smooth candidate functions (i.e., infinitely differentiable).
This smoothness may not be realistic for objective func-
tions associated with physical processes, but it is the
most widely used in machine learning. The Matern class
covariance with hyperparameter ν = 7/2 (not used)
leads to candidate functions very similar to the SE. As
ν moves through 5/2 and 3/2, the respective candidate
functions become rougher. Values of ν below 3/2 are not
recommended for regression, and non half-integer values
lead to very complicated forms for k(x, x′). The Rational
Quadratic (RD) kernel can be viewed as a mixture of many
SE kernels, each with a distinct lengthscale hyperparam-
eter, and is very general. The NN covariance allows us
to perform regression with the equivalent of an infinitely
wide single layer network using the error function as the
hidden unit. The Gabor covariance enables the discovery
patterns in the data which incorporate some periodicity,
and extrapolation based on the pattern. Our decision to
include these kernels and not others is somewhat arbitrary
beyond the fact that they impose a diversity of assump-
tions on data generation. Future work may consider more
principled methods for the number and types of kernel to
be used.
Figure 3a visualizes the main aspects of our global opti-

mization method during a single round of search and (b)
illustrates how the optimization fits into the overall data
set preparation and parameter inference pipeline.

Results
Gaussian process model specification and hyper-
parameter optimization was performed using code

Table 1 Kernel functions, k(x1, x2)

1. Matern 3/2 (ARD): σ 2(1 + √
3
√
r) ∗ exp[−√

3
√
r]

2. Matern 5/2 (ARD): σ 2(1 + √
5
√
r + (5r)/3) ∗ exp[−√

5
√
r]

3. Rational Quadratic (ARD): σ 2(1 + r/(2α)−α

4. Rational Quadratic (ISO): σ 2(1 + s/(2α)−α

5. Gabor (ARD): h(x1−x2); h(t)=exp[−∑
((t.2)./(diag(P.2)] ∗cos[2π∑

(t./p)]

6. Neural Network: σ 2 arcsin

[
xT1Px2/

√(
1 + xT1Px2

) ∗ (
1 + xT1Px2

)]

7. Square Exponential (ARD): σ 2exp[−r/2]

r = (x1 − x2)T ∗ P−1 ∗ (x1 − x2); s = (x1 − x2)T ∗ (� ∗ I)−1 ∗ (x1 − x2)

P is the diagonal matrix of ARD lengthscale hyperparameters.

� is a scalar lengthscale hyperparameter; I is the unit matrix.

α is a shape hyperparameter for the rational quadratic kernel.

p is a vector of period hyperparameters.

released by Rasmussen, Nickisch,Williams and Duvenaud
[51, 52].

Stochastic simulation model results
We begin the model fitting by sampling a selection of
points in parameter space uniformly at random from
a hypersphere, a contrast to our earlier methods that
begin with a regular grid search [14] that is motivated by
prior work showing random sampling to be more efficient
when the objective surface has low effective dimensional-
ity compared to the parameter space [53]. For the present
experiments, the hypersphere is centered on the ground
truth point. For each sampled point, we run a set of
simulation trajectories, project SAXS outputs, and com-
pute the associated RMSDs relative to the input data. The
resulting data points are then used in initial GP kernel
hyperparameter training, updating the prior over objec-
tive functions to a posterior. In subsequent rounds of
search, the posterior density estimated by the GP from
the previous round becomes the new prior density from
which we select further parameter points for evaluation to
produce an updated posterior.
To provide a comparison with a more traditional solver,

we used SNOBFIT (Stable Noisy Optimization by Branch
and FIT) [49] a Matlab-based solver that combines a
branching strategy with localized quadratic response sur-
face fitting for fast, continuous optimization of black box
functions satisfying a number of technical and design
criteria. We favor SNOBFIT based on prior work show-
ing it to be effective on capsid assembly simulation [17].
Its major advantage over competitor methods, including
early stochastic process basedmethods such as DACE and
SPACE [54, 55] as well as more traditional iterative model-
ing methods such as DIRECT and UOBYQA [56, 57], is its
ability to handle all of the following cases: function values
are expensive to evaluate; function values may be available
only at approximately the requested points; the function
values are noisy; the objective is non-convex; no gradients
are available; there are hidden constraints; there are soft
constraints; parallel function evaluation is desired; func-
tion values may be obtained extremely infrequently; and,
the objective function or the search region may change
during optimization. In the present work, the compar-
ison is in terms of the number of function evaluations
necessary to recover the ground truth parameter vector.
Each time SNOBFIT is called, it uses function evaluations
from previous rounds as well as newly evaluated points to
return a user-specified number of function minimizers to
be evaluated evaluated in the next round. These minimiz-
ers belong to one of 5 classes: 1-3 being local estimates,
and 4-5 global estimates. Plots indicate the local/global
classification of each returned point.
We first show results of a search of a small parame-

ter space, corresponding to a hypersphere of radius 3 logs
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Fig. 3 High-level overview of our multi-GP optimization strategy. a Visualization of a single round of our multi-GP model optimization. b Overall
parameter inference pipeline incorporating the multi-GP optimization method of a

around the ground truth. For this search, we used an ini-
tial sample of 100 points, with 300 trajectories per point
sampled. Figure 4 shows RMSD as a measure of search
progress for our method (top/middle) and for SNOBFIT
(bottom). The κ parameter listed for our method balances
the degree to which the search favors exploration of uncer-
tain regions (higher κ values) versus exploitation of low
variance regions. After one round of optimization, no ker-
nel is clearly superior in discovering the correct parameter
set. After two rounds, in each case one of the seven kernels
shows a near optimal fit, although it is surprisingly a dif-
ferent kernel for each choice of κ . The three best scoring
points are displayed in Fig. 4 (middle) with 95% confi-
dence intervals on each dimension. These intervals are
kernel-dependent and so we used the kernel responsible
for recovering the point in their calculation. To estimate
confidence intervals in a particular dimension, we use
the GP model to sample a series of RMSD values from

a sequence of points in the vicinity of the chosen opti-
mum in that dimension, with the spacing for the sequence
determined in part by the applicable kernel lengthscale
hyperparameter, l. Specifically, we scanned a region of 20l
at a density of 0.001l. The regression provided us with pre-
dictions of μ(RMSD) and σ 2(RMSD) at each point in the
sequence from which we drew 10,000 random samples to
estimate the fraction of times each point in the sequence
would be predicted to yield the optimum RMSD. We then
chose the minimal symmetric window of points around
the optimum so as to account for 95% of the probability
density of minimum RMSDs, providing an estimated 95%
confidence interval.
SNOBFIT with default settings was unable to recover

low RMSD parameter sets from either its locally weighted
(classes 1 and 3) or global (class 4) optimizations
after seven rounds. Figure 5 shows another measure
of search progress, the distance between predicted
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Fig. 4 Comparison of objective values for our multi-GP optimization (top/middle) and SNOBFIT (bottom). Both methods use the same training set of
100 randomly sampled inputs, and both return 21 points for evaluation in a subsequent round. In the second round (R2 region) of search, our
method recovers 3 low RMSD points, i.e. the blue square, pink asterisk and purple diamond. These three points, displayed in the middle figures with
95% confidence intervals for each dimension, minimize acquisition functions for distinct GPs and exploration/exploitation trade-off parameters.
Displayed for SNOBFIT are 7 rounds of search in which it fails to recover equally low RMSD points. With default settings, SNOBFIT returned points of
three types (distinguished by color), two of which result from local searches, and the remaining from a global search

parameter points and the ground truth parameter set.
Here we can see that the same points that approxi-
mately minimized the RMSD are also in fact close to the
ground truth.
We further sought to compare the results to a more

conventional kriging search by evaluating how well the
method would perform using only a single kernel. Figure 6

are search results for which only a single kernel is used
across all rounds of optimization, with the same 100-
point training set as in Figs. 4 and 5. In the multi-GP
search, it was the Matern 3/2 kernel that discovered the
lowest RMSD (1.6 × 1010 ± 2.2 × 1011) point after 121
total function evaluations. In the single-GP searches, the
Gabor-ARD kernel was able to obtain the slightly lower
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Fig. 5 Comparison of error in predicted parameters for our multi-GP optimization (top) and SNOBFIT (bottom). Both methods use the same training
set of 100 randomly sampled inputs, and both return 21 points for evaluation in a subsequent round. In the second round (R2 region) of search, our
method recovers 3 points very close to the ground truth, i.e. the same blue square, pink asterisk and purple diamond. Displayed for SNOBFIT are 7
rounds of search in which it fails to recover equally close points

value of 0.7×1010±2.2×1011 after only 106 total function
evaluations. The remaining searches produced minima in
the range 5.2 × 1010 – 2.4 × 1011 with similar noise lev-
els. We can conclude that while a single kernel may lead
to slightly better performance when seeking the minimum
of a particular objective function, it is not obvious how
to select this kernel beforehand, or to what extent the
choice depends on the particular training examples seen.
The multi-kernel approach does nearly as well as the best
single-kernel approach without the need for advanced
knowledge of how to select an appropriate kernel for a
particular system.
We next consider a search of a larger space, corre-

sponding to a hypersphere of radius 9 logs using 71 initial
training points and 100 trajectories per point sampled.
For this search, we allowed the optimization to run for 20
rounds. The results show fairly high concordance among
solutions, although with high variability in estimates of
parameters p7 and p10. The results suggest the method

is effective at finding low-RMSD solutions, although as
might be expected, the solutions are sensitive only to a
subset of the parameters. Figure 7 summarizes search
progress to this point.
As the predictions for each kernel begin to repeat round

after round (e.g. beginning shortly after the 150th function
evaluation in Fig. 7), it may be useful to re-evaluate points
the algorithm deems good. As more simulated experi-
ments are averaged at a point, the corresponding objec-
tive becomes more accurate, potentially allowing better
discrimination between similarly good points and better
generalization at nearby points.We have settled on a num-
ber of criteria for the selection of the most useful set of
points to re-evaluate with more simulations. First, the set
should be a subset of previously evaluated points. This
allows the utilization of previously run simulations. Sec-
ond, no two points should be “close” (as defined by a ker-
nel’s lengthscale hyperparameter). Third, the set should
prioritize higher scoring points. These criteria suggest a
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Fig. 6 Results for single-GP parameter searches in which a single kernel function is used during all rounds. Displayed for each search are the errors in
objective value (RMSD - right y-axis, dark blue) and error in predicted parameters (Distance - left y-axis, light blue) for each round

selection subroutine analogous to agglomerative, hierar-
chical clustering, with the highest scoring cluster repre-
sentatives chosen for re-evaluation. The resulting set of
points was limited to 16 and is shown in Fig. 8. See Fig. 9
for pseudocode of the selection subroutine. In this case,
re-evaluation of each of the 16 points with 1000 additional
simulated experiments did not alter their relative order-
ing. It is interesting to note that for the smaller search
space, the lowest RMSD points tend to also be closest to
the ground truth in Euclidean distance. However, for the
larger search space, the lowest RMSD are among the fur-
thest from ground truth. This is again an illustration of
the fact that the objective function is not equally sensi-
tive to changes in each dimension. To obtain more precise
estimates of the global minimum, one strategy would be
to begin new small (e.g. hyperspheres of radius 3 logs)
searches at low noise levels, and centered successively on
each of the top 16 points.

ODEmodel results
We next examined the utility of the solver for determinis-
tic optimization using an ODE model of capsid assembly
represented as a dodecamer, as in [43]. Here, we fol-
low the assumption that each step in the oligomerization
reaction may have an independent rate, but equating all
oligomers of a given size. That is, we assume there is a sin-
gle oligomer of size N that has a defined rate of transition
to sizeN+1, but allow that the transition fromN toN+1
may have a different rate than that from N ′ to N ′ + 1 for

N �= N ′. We here examine two cases: a 6 parameter model
(grouping [1,2],...[11,12]) and the full 12 parameter model
in which each oligomer has its own on-rate. We arbitrarily
define the ground truth for the differential equationmodel
to be a parameter vector in which each element (reaction
rate) has the value 100 (in real space as opposed to the
log space used in the stochastic simulations) and we con-
duct the parameter search in a hypersphere of radius 100
around this ground truth value.
Figures 10 and 11 show the results of the six and twelve

parameter models. Each subfigure shows RMSD as a func-
tion of the number of search rounds for each kernel. We
note that the ground truth in each case has an RMSD of
exactly zero, yet moving a small distance away necessi-
tates a minimal RMSD in the realm of 107 due to the way
SAXS experiments are evaluated. The objective surface is
roughly constant in a neighborhood surrounding ground
truth, with a very steep descent in its immediate vicinity.
Thus, we should expect the accuracy of the approximate
globalminimizer to depend on the size of this surrounding
neighborhood. In each assembly model (6 or 12 param-
eters), different kernel functions are able to identify this
neighborhood with varying amounts of training data.
To provide comparison to a competitive existing black

box global minimizer, we use Multilevel Coordinate
Search (MCS) [50], a more appropriate choice than
SNOBFIT when solving for a deterministic objective.
MCS is based on the DIRECT method and can be
classified as branch without bound in the sense that it
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Fig. 7 Results from 20 rounds of optimization for a large (hypersphere of radius 9 logs) search space. Individual rounds are not delineated due to
variable numbers of points returned from acquisition function minimization in different rounds. Shown are (top) the RMSD values, and (bottom) the
errors in predicted parameter sets as the search progresses. Note that the best points found (very low RMSD) often correspond to comparatively
distant parameter sets. This is a result of the fact that the objective can be insensitive to large displacements in some of the input dimensions but
not others

sequentially partitions the search space. As an improve-
ment on DIRECT, the balance between global and local
search is handled through a multilevel approach (parti-
tioning the space along a single coordinate only). The
method is guaranteed to converge if the objective is
continuous in the neighborhood of a global minimizer.
Because MCS is designed as a MATLAB caller, taking the
black box function as an input, we were not able to easily
asses its performance in terms of the number of function
evaluations. Rather, it runs until convergence (or a stop-
ping criteria is met) and outputs the minimizer, objective
value, number of function evaluations, number of func-
tion evaluations used in local search, and other algorithm
parameters. Figure 12 shows the results of MCS searches

of increasing search space size. The ground truth is again
a 12D vector with each element 100. The plot shows that
MCS performs well when we have relatively tight bounds
on the global minimum, in fact far better than our GP
method, but poorly when those bounds are relaxed. A
good strategy for solving deterministic systems of similar
dimension may therefore be to narrow down the search
region using the GP approach, and then apply MCS for a
more accurate solution.

Discussion
While our work provides a proof-of-concept demonstra-
tion of the multi-GP strategy, it offers many avenues for
improvement. For example, our current goal is efficient
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Fig. 8 Sixteen points returned by re-evaluation selection subroutine. The points were chosen from among the 50 top scoring points over all rounds

global optimization with respect to the number of func-
tion evaluations, yet when considering the vast variation
in resources required for a given evaluation (in terms of
simulation time as well as memory), it may make sense to
define efficiency with respect to total search time instead.
To give some idea of the time required for stochastic
assembly, evaluation of the ground truth point with 300
trajectories takes on the order of 30 min, while distant
points in parameter space can span the range of hours
to a week. One way to accomplish this may be to sepa-
rately model the expected evaluation time, and take this
into account during AF minimization. Another avenue
for improvement concerns the empirical noise variance in
RMSD at evaluated points; information to which we have
access but do not directly utilize in GP regression. Model-
ing this variance itself as a GP may improve the ability of

the LCB, which is constructed with the standard deviation
at test points, to explore the space.
Furthermore, like all black box search methodologies,

ours requires many design choices which balance com-
peting factors including run time, cluster architecture,
available memory, and the details of simulating molec-
ular assembly. We attempted to bias the search as little
as possible, defining the search bounds as a hypersphere
surrounding the known ground truth and selecting initial
training points randomly within the region, and refraining
from enforcing hyper-priors on the kernel hyperparam-
eters. In acquisition function minimization our sam-
pling methods were simple, again based around randomly
selecting points from hyperspheres, and more sophisti-
cated sampling strategies might lead to more efficient
optimization.
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Fig. 9 Pseudocode for selecting previously evaluated low RMSD points for re-evaluation at a lower noise level

Fig. 10Model-fitting results for a 6-parameter ODE model. The results reflect 100 rounds of search with 893 points evaluated following initial
training on 200 points randomly selected from a radius 100 hypersphere. Each round results in a new predicted minimizer for each GP model. The
correspoinding RMSD is displayed. The lowest RMSD for each GP model over all rounds is plotted as a large green filled circle. In the final subfigure,
the inputs with the lowest RMSD for each GP model are displayed



Thomas and Schwartz BMC Systems Biology  (2018) 12:65 Page 15 of 17

Fig. 11Model-fitting results for a full 12-parameter ODE model. The results reflect 100 rounds of search (893 points evaluated following initial
training on 200 points randomly selected from a radius 100 hypersphere). Each round results in a new predicted minimizer for each GP model. The
corresponding RMSD is displayed. The lowest RMSD for each GP model over all rounds is plotted as a large green filled circle. In the final subfigure,
the inputs with the lowest RMSD for each GP model are displayed

Finally, it also important to note that this method is
limited to learning models of a system under exper-
imental conditions, typically in vitro, which may be
quite far from conditions of the functional system
in vivo. Many extrinsic factors might perturb sys-
tem behavior in vivo, such as the presence of other
molecules interacting with the system or generic effects,

such as molecular crowding. Prior work has explored
the question of how to “correct” a rule-based system
learned in vitro for some effects one would expect
in vivo (e.g., crowding [19]). Such approaches can-
not account for all possible differences, though, and
addressing that issue is a hard problem that would
need to be solved on a system-specific basis.
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Fig. 12 Results for ODE model-fitting using three separate MCS searches with varying search space sizes: 200 (1200 function calls, max allowed
7200), 1000 (878 function calls, max allowed 7200), and 10,000 (1439 function calls, max allowed 7200). Each dimension is lower-bounded by 1 to
enforce that all rate constants are positive. Only the smallest search space resulted in the correct minimizer being found
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Conclusions
We develop a novel method for efficient Bayesian param-
eter inference from rule-based models of molecular self-
assembly and demonstrated it for fitting stochastic and
deterministic models of viral self-assembly to simulated
SAXS or SANS data. Our results show that for stochas-
tic systems of low to moderate dimension, treating the
objective function as being separately generated by multi-
ple Gaussian processes can be an effective way to discover
its structure. When placed within a Bayesian optimization
framework, this translates to efficiently discovering locally
optimal regions of the parameter space.
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