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Abstract 
The advancement in single-cell RNA sequencing technologies allow us 
to obtain transcriptome at single cell resolution. However, the original 
spatial context of cells, a crucial knowledge for understanding cellular 
and tissue-level functions, is often lost during sequencing. To address 
this issue, the DREAM Single Cell Transcriptomics Challenge launched 
a community-wide effort to seek computational solutions for spatial 
mapping of single cells in tissues using single-cell RNAseq (scRNA-seq) 
data and a reference atlas obtained from in situ hybridization data. As 
a top-performing team in this competition, we approach this problem 
in three steps. The first step involves identifying a set of most 
informative genes based on the consistency between gene expression 
similarity and cell proximity. For this step, we propose two different 
approaches, i.e., an unsupervised approach that does not utilize the 
gold standard location of the cells provided by the challenge 
organizers, and a supervised approach that relies on the gold 
standard locations. In the second step, a Particle Swarm Optimization 
algorithm is used to optimize the weights of different genes in order 
to maximize matches between the predicted locations and the gold 
standard locations. Finally, the information embedded in the cell 
topology is used to improve the predicted cell-location scores by 
weighted averaging of scores from neighboring locations. Evaluation 
results based on DREAM scores show that our method accurately 
predicts the location of single cells, and the predictions lead to 
successful recovery of the spatial expression patterns for most of 
landmark genes. In addition, investigating the selected genes 
demonstrates that most predictive genes are cluster specific, and 
stable across our supervised and unsupervised gene selection 
frameworks. Overall, the promising results obtained by our methods 
in DREAM challenge demonstrated that topological consistency is a 
useful concept in identifying marker genes and constructing 
predictive models for spatial mapping of single cells.
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Introduction
Single cell RNA sequencing (scRNA-seq) is a cost-efficient, 
high throughput technology that has dramatically enhanced 
our understanding of developmental biology such as cell 
type identification, regulatory network inference, and cell  
trajectories1–8. Despite many breakthroughs in biological  
sciences made possible by this technology, it yet suffers 
from the drawback that native cell location in e.g. embryo or  
complex tissue is often lost, except for in a few experimental  
methodologies which are either expensive, require highly  
specialized tools, or are not as widely applicable as standard  
scRNA-seq protocols9–12. Given the substantial benefit offered 
through cell location recovery, such as obtaining a basic  
understanding of tissue function and disease pathology13,14, the 
cell spatial reconstruction was specifically addressed in recent  
Single Cell Transcriptome DREAM challenge as a community-
wide effort.

Many promising computational approaches dealing with the 
spatial reconstitution problem are centered around the main  
idea that an in situ atlas of a set of landmark gene’s expres-
sions is used as a guideline to be combined with scRNA-seq  
profiles of individually measured cell15,16. For instance, Seurat15 
first imputes the noisy scRNAseq data then predicts the cell  
locations by comparing the scRNAseq gene expression pattern  
to its binary expression level measured by in situ data. This  
step is done through a mixture model. Finally, original cell 
location is retrieved by evaluating a posterior probability  
function constructed for cell-bin pairs. DistMap16 was a success-
ful method for spatial reconstruction (of Drosophila embryo)  
with near single cell resolution, much higher compared to 
that of Seurat (3039 bins versus 128 bins). It predicts top  
candidate positions for a given cell by calculating the Math-
ews Correlation Coefficients (MCC) of binarized landmark gene  
expressions for every cell-bin combination. While DistMap 
was to some extent successful in dealing with the cell spatial  
mapping problem, it was limited to binarized data rather 
than continuous, utilized simplistic MCC analysis, and more  
importantly it treats each single cell independently whereas it 

might be more beneficial to account for collective interrelation-
ships between cells. To more extensively explore the space of  
better predictive strategies, DREAM challenge aimed to exploit 
the atlas provided by DistMap with the hope of resolving  
spatial reconstruction by using incrementally fewer landmark  
genes (i.e. 60,40,20). Achieving this goal will help with elimi-
nating the need for a priori reference atlas, which is expen-
sive and time-consuming to obtain, in the future transcriptomic  
studies.

In this work, we proposed a top-performing method (evalu-
ated based on three distinct scoring criteria defined by DREAM 
challenge) which allows us to predict the cell location  
consistently as accurate as DistMap while requiring fewer  
number of landmark genes. The details of our method and  
evaluation metrics are provided later in the text.

Methods
Overview of the proposed method
The general overview of our method is such that in the first 
step we investigate both supervised and unsupervised feature  
selection methods by defining two biologically rational  
metrics optimizing the consistency between gene expression 
similarity and cell proximity. In the unsupervised version we 
do not use the predicted cell locations given in 16 to obtain the  
set of most informative genes (e.g. 60,40,20), thus avoiding  
overfitting. On the other hand, the supervised version uses the 
cell locations given by DistMap as a reference. In the next, 
to predict the final cell locations, we use a PSO algorithm 
to assign proper weights to genes based on fitness functions  
defined by gene expression patterns. This reflects the intui-
tion that different landmark genes are expected to demonstrate 
different potential in guiding us toward the proper embryo 
reconstruction. Finally, we use the information embedded in 
the cell topology to adjust the associated cell-location score  
with the hope to improve the predictions.

Datasets and pre-processing steps
To reconstruct Drosophila embryo from single cells, we need 
reference dataset (in situ), spatial coordinates, and scRNA-seq 
data, the details of which along with the preprosseing steps are  
given in the following.

Reference database The reference database (denoted as W) 
provides the in situ expression values as a W

3039×84
 matrix where 

rows and columns correspond to bin locations and marker 
genes, respectively. The original data comes from Berkeley  
Drosophila Transcription Network Project (BDTNP) and in  
here we used the binarized format as explained in 16.

Spatial coordinates The spatial coordinate information from 
one half of Drosophila embryo (denoted as L) is an L

3039×3
 matrix  

where the columns are x, y, and z coordinates of 3039 rows  
of bins.

Single cell RNA sequencing The scRNA-seq data (denoted as 
Y) gives the gene expression values as a Y

1297×8924
 matrix where 

rows and columns are single cells and genes, respectively. In 

           Amendments from Version 1
The current revised manuscript addresses the interesting 
comments raised by the reviewers. The main adjustments were 
clarification of the Method section and slight elaboration on 
Result section. More specifically, we have provided some insights 
and reasoning behind the selection of hyperparameter values 
used in our work. In addition, we provided some details about 
the different components of our method and our strategy to 
combine them for different subchallenges. The metrics used 
to rank different methods is now explained in the section 
“Evaluation metrics”. We have also added “Gold standard cell 
locations” subsection to explain the prediction offered by 
DistMap. In the result section, we have further explained the 
results presented in Table1 to make it clearer. Finally, we have 
included the running time of PSO algorithm.

Any further responses from the reviewers can be found at 
the end of the article
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here we followed the normalization process as implemented 
by 16. Briefly, the raw data was first normalized with respect 
to the total number of unique molecular identifiers (UMI) for  
each cell, followed by a pseudo count addition and a log trans-
formation. The binarization process was implemented such 
that the quantile was varied in order to obtain the minimum 
mean squared root error between the gene correlation matrix of  
binarized atlas and binarized scRNA-seq.

Gold standard cell locations: For each of the 1297 cells, the 
Mathews Correlation Coefficients (MCC) is calculated at each 
of the 3039 location bins between the binarized 84 RNAseq 
expression values for the 84 driver genes and the binarized  
in situ expression values for the same 84 genes. The location bin 
with the maximum value of MCC score is defined as the gold  
standard location for each cell.

Finding most informative genes
In this study, our first goal is to identify a subset of genes  
whose expression patterns are predictive of cell locations. We 
have proposed two different feature selection methods (super-
vised and unsupervised) to select informative genes. In the 
supervised method, our metric was defined based on true cell  
locations (gold standard). To prevent overfitting we applied  
a 10 fold cross validation. On the other hand, we designed an 
unsupervised method based on the intuition that the current 
locations obtained by matching the normalized and binarized  
scRNA-seq expression patterns with the in situ expression  
patterns are not necessarily the true locations of these cells. 
These two methods are discussed in detail in the following  
sections.

Unsupervised gene selection
As we believe the current locations obtained by matching 
the normalized and binarized scRNA-seq expression patterns  
with the in situ expression patterns are not necessarily the 
true locations of these cells, we decided to take an unsuper-
vised feature selection approach, which does not depend on 
the current locations of the cells to be predicted, and therefore  
avoid overfitting.

The key rationale in our unsupervised feature selection method 
is that if a set of genes can be used as predictors of cell loca-
tions, then the cells showing similar expression patterns of  
these genes must be geometrically close to each other. There-
fore, we defined two complementary metrics to quantitatively 
measure the proximity of cells with similar expression patterns 
for different gene subsets, and developed a greedy algorithm 
to search for a gene subset with the optimal (minimal) score  
combining the two metrics.

Metrics to measure the power of gene signatures as loca-
tion predictors. The first metric relies solely on the in situ gene 
expression patterns in the 3039 location bins, and is calculated 
as follows: given a set of genes G as features, the pairwise Pear-
son Correlation Coefficient (PCC) is computed between the in 
situ expression data for every pair of the 3039 location bins; the  

top-10 locations with the highest PCC is then identified for  
each location bin; the metric 

1

GM  is defined as the average  
Euclidean distance between each location bin and its top-10  
most similar location bins: 

		
1

1 ,

n
G iji j LG ki

D
M

k n

= ∈

×
=

∑ ∑
	                       (1)

where G
kiL  is the set of k most similar bins for location i based 

on the in situ expression pattern of a gene signature G, k is fixed 
at 10 in this work, and n =3039 is the total number of location 
bins. D

ij
 is the Euclidean distance between the geometric coor-

dinates of location i and location j. In this work, k is set to 10 
because the evaluation of the prediction results is based on 10  
best locations for each single cell. Also, based on the number 
of location bins (n), we believe 10 is a reasonable choice  
for the number of nearest neighbors.

The second metric uses information from both the in situ  
expression data and the scRNA-seq expression data, and is 
calculated as follows. Given a set of genes G as features, the 
pairwise PCC is computed between the scRNA-seq expres-
sion pattern of each of the 1297 cells and the in situ expression  
pattern of each of the 3039 location bins; then for each of the 
1297 cells, the top-10 location bins with the highest PCC is 
identified; the metric 

2

GM  is defined as the average Eucli-
dean distance between the geometric coordinates of the loca-
tion bin most similar to cell c and the geometric coordinates 
of the top-10 most similar location bins (including the most  
similar location): 

                           1

2 ,
G Gc j S l jkc cG

m
D

M
k m

= ∈

×
=

∑ ∑                           (2)

where G
kcS  is the set of top-k locations whose in situ expres-

sion patterns are most similar to the scRNA-seq expression  
pattern of cell c based on gene signature G, k is fixed at 10 in 
this work, and m =1297 is the total number of cells whose loca-
tions are to be predicted. G

cl  is the location bin where the  
expression pattern of gene signature G is most similar to cell c.

Note that the currently known most possible location of each 
cell c, *

cl  which is predicted using all 84 genes with uniform 
weights, are not used in either M

1
 and M

2
; therefore, the gene 

selection process is not biased towards identifying genes to 
match the original locations predicted by the 84 genes. Rather, 
the metric provides an intrinsic measurement of the power of 
any subset of genes as location predictors, independent of the 
locations predicted with the 84 genes. In fact, the quality of the 
84 genes as predictors can also be measured using these two  
metrics, and compared to any other gene sets; it is possi-
ble that a subset of the 84 genes can receive higher scores in 
these two metrics than the original 84 genes. In contrast, using 
a supervised feature selection method, where the “true” loca-
tion is defined using all 84 genes, any subset of genes will be  
necessarily inferior to the complete set of 84 genes.
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Step-wise backward elimination feature selection algorithm. 
We used a standard backward elimination algorithm to iden-
tify a subset of genes G with the minimal sum of 

1

GM  and 

2

GM . Briefly, starting with a set of q genes, we computed  

1

GM  and 
2

GM  for all possible subsets of q − 1 genes by  
removing one gene at a time from the set. The subset with 
the minimal 

1 2

G GM M+  is then recorded as the best subset  
of size q − 1. This procedure is then repeated until a desired 
number of genes is reached. As this algorithm is a greedy 
approach, it does not guarantee to find the optimal solution. We  
have also attempted to combine backward elimination with 
forward selection, which only improved the solution slightly. 
Due to the excessive running time required, we opted to use 
the simple algorithm described above while leaving additional  
improvement as future work.

Supervised gene selection
While in the unsupervised approach metrics M1 and M2 were 
optimized, in the supervised version a single metric N was 
defined as explained below. This metric, which relies on both 
the scRNA-seq gene expression patterns in the 1297 cells and  
the gold standard location of each cell, is calculated as follows:  
given a set of genes G as features, the pairwise PCC is  
computed between the scRNA-seq expression data for every 
pair of the 1297 cells; the top-10 cells with the highest PCC  
is then identified for each cell; the metric NG is defined as the 
average Euclidean distance between the gold standard geometric  
coordinates of each cell and its top-10 most similar cells: 

		
* *1

,

m
Gc j T l lc jkcG

D
N

k m

= ∈

×
=

∑ ∑
	                       (3)

where 
G

kcT  is the set of top-k cells whose scRNA-seq expres-
sion patterns are most similar to the scRNA-seq expression 
pattern of cell c based on gene signature G, k is fixed at 10 in  
this work, and m =1297 is the total number of cells whose loca-
tions are to be predicted. *

cl  is the “gold standard” cell location  
for cell c, which is predicted using all 84 genes.

Supervised learning to find optimal gene weights
It is intuitive to assume that the contribution of genes in deter-
mining cell locations are not equal. Therefore, we look for a 
way to learn how to assign proper weight to each selected gene 
for more accurate prediction of cell locations. To this end, 
we chose a supervised learning approach, using the cell loca-
tions predicted by the highest MCCs with the 84 signature 
genes as “gold standard” locations. To avoid overfitting, we  
performed 10-fold cross-validation: gene weights were deter-
mined using the scRNA-seq data of 90% of cells; these 
weights are then used to predict the locations of the remain-
ing 10% of the cells not used in training. The splitting of the  
data is saved, for reproducibility of the results.

The basic idea of the PSO algorithm is as follows. We  
created a set of agents, each of which is initiated with a gene 
weight vector w

i
 of size |G|× 1. Each weight vector is evalu-

ated by how closely the weighted gene expression pattern can 

be used to predict the cell locations when compared to the  
“gold standard” locations obtained with the 84 genes: 

                           
, *1,

3 ,
w G

ckc

m
c j S l jw G

D
M

k m
= ∈

∑ ∑
=

×
                           (4)

where ,Gw
kcS  is the set of top-k location bins whose in situ 

expression patterns are most similar to the weighted expres-
sion pattern of cell c based on a given gene signature set G. 
The similarity is measured by PCC here. k is fixed at 10,  
and m is the total number of cells in the training set. *

cl  is the 
“gold standard” cell location for cell c, which is predicted  
using all 84 genes with uniform weights.

During the search, each agent keeps track of a personal best  
weight vector P best

i
, and the global best solution from all 

agents is denoted Gbest. At each iteration, the weight vector of 
each agent is updated by the differences between the current  
weight and the personal best and global best weight vectors: 

           
( ) ( )1 2 ,i i i i iw w r Pbest w r Gbest wα β= + × − + × − 

where α and β are constants to control the granularity of the 
search and speed of convergence. We choose α = β = 0.2 with 200  
agents and the maximum number of iterations is 40. The  
operator ∘ denotes entry-wise vector multiplication. r

1
 and r

2
 are 

vectors of random numbers uniformly distributed between 0 
and 1, generated independently for each agent at each iteration.  
α and β are acceleration coefficients, also referred to as trust 
parameters. α expresses how much confidence a particle has in 
itself, while β expresses how much confidence a particle has in 
its neighboring particles. Particles draw their strength from their 
cooperative nature and are most effective when α and β coex-
ist in a good balance. Most applications use α=β. Low values 
for α and β result in smooth particle trajectories, while high val-
ues cause more acceleration, with abrupt movement towards  
or past good regions. In this study we used α=β=0.2, with 
200 agents and the maximum number of iterations set to 40. 
These parameters were manually tuned by observing the values  
of the fitness function to reach desired search granularity and 
speed of convergence. The running time of PSO algorithm 
is about 15 hours when running on a system with 16 GB of  
memory. However, the running time could depend on different  
optimization settings such as parameter α and β.

Neighbor-weighted cell location prediction
The location prediction for each single cell relies on the 
(weighted) similarity between the expression pattern of 
selected signature genes in the cell and every location bin. It is 
important to note that the expression patterns in neighboring 
cells should be similar in general, and therefore the overall  
prediction should take the expression of nearby location bins 
into consideration. Intuitively, if the globally highest scor-
ing location is far away from locations with slightly lower but 
comparable scores, the confidence score for the highest-scor-
ing location should be reduced; on the other hand, a locally 
highest-scoring location close to other high-scoring locations  
should be upweighted. Therefore, to make the final prediction 
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for a given cell, we adjusted the prediction score based on  
the prediction scores from neighbor locations.

Formally, let C = (c
ij
)

n×m
 be the bin-cell association matrix, 

where c
ij
 is the PCC between the (weighted) scRNA-seq data 

and the in situ hybridization data for every pair of cells and 
locations. n = 3039 is the number of candidate location bins, 
and m is the number of cells in the test set, Let D = (d

ij
)

n×n
 be 

the Euclidean distance matrix between the geometric coordi-
nates of every pair of location bins. We define an affinity matrix  

A = (a
ij
)

n×n
 such that *

ijd
d

ija e
−

= , where d* is a parameter to  
control how many neighbor locations can impact the final 
prediction score. A smaller d* value means fewer neighbor  
locations to be considered. To have a robust measure of how 
geometrically close two location bins can be, we first meas-
ure the distance between each location and its nearest location, 
and then computed the median of these shortest distances as d*.  
As a result, most a

ij
s’ are much smaller than e−1, and only a  

limited number of neighbor locations with very high scores  
can impact the final prediction score for each cell.

The final prediction score matrix P = (p
ij
)

n×m
 is calculated by  

P = A × C. Since a
ii
 = 1 and a

ij
 ≤ 1 for all j ≠ i, it is easy  

to see that 

                              1

.
= ≠

= = +∑ ∑
n

ij ik kj ij ik kj
k k j

P a c c a c

Therefore, the final prediction score for a cell i to be at a  
particular location j is the weighted sum of the similarity scores 
between the expression pattern of cell i and all locations, where 
the weight is an exponentially decreasing function of the  
geometric distance from location j.

From the final predicted bin-cell association matrix, we reported 
the 10 locations with the highest scores for each cell as the  
most likely positions in embryo.

How proposed method applied to different 
subchallenges
During the challenge period, each team was given a limited  
number of attempts to test the success of their proposed 
approach(es) - evaluation results and ranking for all teams 
were shown in a leaderboard, with no details of the evaluation  
metrics. It was made clear that different methods could be used 
for different sub-challenges. Our final results for subchallenge 1  
were obtained with both PSO and neighbor weighting. For  
subchallenge 2, we were not able to perform PSO due to a  
lack of time. On the other hand, it was also our observation 
that PSO only resulted in modest improvement with almost 
no impact to our ranking based on feedback from previous 
rounds. Therefore, the 40 genes obtained from gene selec-
tion in subchallenge 2 were utilized with uniform weights. In  
subchallenge 3, genes were weighted with the PSO proce-
dure, but we did not perform neighbor weighting. The rationale  
is that, as subchallenge 3 used substantially fewer genes, 
the quality of the location prediction may be relatively low 

and therefore using gene expression information from the  
predicted neighbors may actually degrade the final prediction.

Post-challenge phase
In this phase to evaluate the robustness and soundness of the 
method, a 10 fold CV scenario was performed to obtain 10  
different sets of informative genes using a subset of cells. To  
compare the similarity of the selected genes, Jaccard similarity  
was defined as follows: 

		         ( ),
A B

J A B
A B

∩
=

∪ 	                       (5)

where A and B are two sets of informative genes and J(A, B) 
measures the ratio of the number of common genes and the 
total number of genes presented in two sets. In addition, the  
expected Jaccard similarity was computed as follows: 

		
0

( )
2

m

k

m n m
k m kkJ nm k

m

   
   
      

 
=  

  

−
−=

−∑E� 	                       (6)

where, n is the total number of genes, here 84, and m is the 
number of genes in our selected gene set, 60,40, and 20 for  
subchallenge 1,2, and 3, respectively.

DREAM consortium evaluation metrics
Our method was designated as a top-performing method among 
34 participating teams. To evaluate and rank the teams, the  
challenge organizers had defined three scoring metrics s1, s2, 
and s3, which were not disclosed to participants at the time 
of submission. The details of each metric are available in 17 
and are quite complex. Here, we briefly explain each scoring  
metric and the general intuition behind them.

The first metric s
1
 computes the weighted average of the 

Mathew Correlation Coefficient (MCC) between the in situ 
profile of the ground truth cell location (as predicted by Dist-
Map) and the in situ profile of the most probable prediction  
location for that cell17.

                      
1 ( ,1, )

1 1

( , )
( , )

( , )

N
K

A c KN
c Ki

c

p c As MCC f f
p i A= =

=
∑∑ 

where N is the total number of cells with predicted locations, 
A(c, i, K) represents the predicted i−th most probable location 
for cell c using K genes, 𝜖

c
 the ground truth location bin for cell 

c, and f𝜖c
 the in situ expression profile at 𝜖

c
 for the K selected 

genes. The weights are calculated as 84 ( , )
( , ) ,

( , )k
k

d c Ap c A
d c A

=  

where d
k
(c,A) is the average euclidean distance between the 

geometric coordinates of the ground truth location of cell c 
and the top-10 locations predicted using k genes. d

84
(c,A) is  

the value of d
k
(c,A) using k = 84.

The second metric, s
2
 only considers how the averaged loca-

tion prediction of the 10 most probable predictions using 60, 
40, and 20 genes is compared to that of the one predicted by 
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using all the 84 genes17. As is evident, this metric does not 
include either of the accuracy of the in situ expression profile  
prediction and the closeness of in situ and scRNA-seq data.

                                      
2

1

1
( , )
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where t
cs
 represents the binarized expression value of gene s in 

cell c, and ∀c denotes that MCC is calculated cell wise for  
each gene.

Software
The method proposed here is written in Matlab 2018b and the 
source code is available from GitHub18

It does not utilize or rely on any specific Matlab toolbox.  
Therefore by following the clear detailed formulation provided 
in manuscript this method can readily be implemented in any  
open-access software.

Results and discussion
Performance evaluation
Table 1 shows the results of our supervised and unsuper-
vised methods on the three subchallenges, evaluated by the 
three metrics (s1, s2, and s3) proposed by the DREAM chal-
lenge organizers. The details of these metrics are discussed in 

Method Section “DREAM consortium evaluation metrics”. A 
more detailed analysis of the results and comparison with other  
top-performing algorithms are presented in 17, and is not 
repeated here. To obtain some additional insights of our  
algorithms’ performance, we present here the results of some 
variations of our proposed methods. Both our supervised and  
unsupervised methods have two important components, (1) gene 
selection, and (2) neighbor-weighted cell location prediction, 
integral to selecting a set of most informative genes and locat-
ing cells based on the information buried in cell neighborhood 
network topology. To understand the importance of these two 
components, we designed a set of baseline studies incorporat-
ing four experiments. In these experiments, the gene selection  
strategy was replaced by either selecting genes randomly, or  
selecting genes expressed in the most number of cells (high 
degree genes). The neighbor-based reweighting component was  
also removed in two of these experiments.

The subchallenge scores corresponding to our method (super-
vised and unsupervised) along with these four baseline studies  
are listed in Table 1 under the group A and group B, respec-
tively. The method with highest score (s1, s2, s3) in each of 
the three subchallenges is shown in boldface. It can be seen  
that the supervised and unsupervised methods (group A) 
achieved comparable results, and significantly outperformed 
the baseline approaches (group B) on average, for all three 
subchallenges. For subchallenge 3, which is the most diffi-
cult task, both of our methods significantly outperformed the 
baseline approaches in all three metrics. On the other hand, for 
subchallenge 1, for which the goal is to select 60 genes to best  
approximate the cell locations determined by 84 genes, ran-
dom gene selection coupled with neighbor-based reweighting  
achieved almost the same performance as our unsupervised  
approach, and is only slightly inferior to the supervised 

Table 1. Numerical values of subchallenges scores are given for the ease of comparison with some designed baseline 
methods.

SubCh1 SubCh2 SubCh3

gene selection method s1 s2 s3 s1 s2 s3 s1 s2 s3

Group A

Our Unsupervised method 0.6610 1.4522 0.6122 0.6552 1.3176 0.6538 0.6620 1.0166 0.7928

Our Supervised method 0.6730 1.5463 0.5937 0.6558 1.3719 0.6731 0.6534 1.0994 0.7807

Group B

Random gene selection 0.6736 1.0638 0.6289 0.6113 0.6930 0.6240 0.5362 0.5052 0.7283

Random gene selection + neigh based reweighting 0.6714 1.4043 0.5762 0.6642 1.139 0.6619 0.5734 0.6997 0.6964

High degree gene selection 0.6914 0.904 0.5860 0.6061 1.0163 0.5969 0.5653 0.6156 0.7159

High degree gene selection + neigh based reweighting 0.6702 1.3241 0.5706 0.6134 1.027 0.5978 0.5593 0.7065 0.6468

Avg of all metrics in group A for each subchallenge 0.9231 0.8879 0.8342

Avg of all metrics in group B for each subchallenge 0.8137 0.7376 0.6291
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approach. This is understandable because of the extensive  
overlap between the randomly selected genes and the “optimal”  
gene set. High degree selection achieved somewhat less 
accurate results than random selection, indicating that some 
less frequently expressed genes are important determinants of 
cell locations. For subchallenge 2, our proposed methods out-
performed all four baseline approaches in s2, and three out of 
the four baseline approaches in s1 and s3. Finally, compar-
ing the four baseline approaches suggest that the neighbor-
based reweighting component significantly improved s2, but its 
impacts on the other two metrics are somewhat mixed. Overall, 
the significant performance gain in subchallenge 3 compared  
to random gene selection and high degree gene selection sup-
ports that the small set of genes we identified are important  
for predicting cell locations.

The predictions mentioned above did not involve any addi-
tional pre-processing steps, e.g. imputation, on the provided 
input data. We simply used the binarized and normalized 
in situ hybridization and scRNA-seq data. However, for the 
sake of completeness we also examined the possible role of  
“imputation” and using raw data instead of the binarized  
scRNA-seq data. We tried to impute the dropouts in scRNA-
seq data using SAVER19 and netImpute20, but no significant 
improvement was gained in terms of enhancing our met-
ric scores. On the other hand, although our analysis indicated  
that using raw data instead of the binarized data can potentially  
increase the consistency between gene expression pattern  
similarity and cell proximity in this challenge (according  
to M

1
 and M

2
 metrics), we are limited by the fact that the 

true locations of the cells to be predicted are unknown, and  
prediction accuracy is at least partially defined by comparing 
to the “gold standard” location obtained from binarized data. 
We speculate that anyone using raw data would probably be 
disadvantaged. It is noteworthy that our method is applicable 
if one prefers to use raw data instead of binarized data, and our 
results (data not shown; available as underlying data) indicate  
that there is benefit of using raw data instead of binarized data.

Robustness of marker genes
In the post-challenge phase of the competition the data set was 
divided into train and test subsets using 10-fold cross-validation  
in order to further investigate to what degree the set of most 
informative genes are consistent across different subset of 
cells selected through the 10 fold CV analysis. The results 
given in Figure 1 show that the Jaccard similarity between  
different folds are higher than the expected similarity in all three 
subchallenges indicating that there in fact exists a consistency 
in the most-informative genes selected across different folds. 
Moreover, as the number of genes allowed in a subchallenge 
decreases (from subchallenge 1 to subchallenge 3) the differ-
ence between Jaccard similarity of the most-informative genes  
and its expected value becomes more and more pronounced.

Figure 2 shows the Venn diagram of 20 most informative genes 
selected from supervised and unsupervised methods. Out of 
20 genes selected by each method, there are 11 common genes 

Figure 1. Boxplot shows the Jaccard similarity between 
the genes selected for each of the 10 CV scheme in all 3 
subchallenges. Blue stars represent expected Jaccard similarity.

Figure 2. The Venn diagram shows 20 genes selected from 
supervised and unsupervised methods out of which 11 genes 
are common for both methods. The 12 genes denoted by red 
color are the scRNA cluster-specific genes reported in DistMap.

identified by both methods, which is more than expected  
(p-value < 0.0005, Fisher’s exact test).

Another interesting observation is that cluster-specific genes  
(denoted by red color) are prevalent in the set of most  
informative genes obtained from both supervised and unsu-
pervised methods. This finding highlights our method was in 
fact able to take advantage of those 12 cluster-specific genes  
which contain cell location information.

Recovering gene expression pattern
To virtually reconstruct gene expression patterns, the result 
of our method (i.e. bin-cell association matrix) was processed 
based on the methodology of vISH - a tool developed in 16 to 
derive the expression pattern of each of the 84 genes across 
the location bins, and compared with the expression patterns 
obtained by DistMap. Figure 3 shows the distribution of the  
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PCC between DistMap and our results from the three subchal-
lenges. Overall, there is a high correlation among reference  
patterns (DistMap) and patterns generated by our method. The 
average correlation in the three sub-challenges are 0.81, 0.76, 
and 0.68, respectively. In sub-challenge 1, almost all genes 
have been reliably reconstructed, while for sub-challenge 3,  
a small number of genes have fairly low reconstruction rate.

Figure 4 shows the reconstructed expression patterns for three 
genes: twi, cad, and ftz, which play key roles in the regula-
tory network of early Drosophila development. Overall, there 
is good agreement between our predictions and that of Dist-
Map. In case of twi, our method and DistMap both very pre-
cisely predicted the in situ expression pattern. In fact, twi is  
one the 20 genes selected by both the supervised and unsuper-
vised feature selection methods, due to its distinct expression 
patterns associated with cell spatial arrangement in the embryo. 
For cad, DistMap and our method with as few as 20 genes  
predicted very similar expression patterns, where there is a 
higher expression in the posterior domain, consistent with the 
current knowledge of cad in embryo development21. On the 
other hand, the predicted expression patterns seem to be much 
more diffused than the in situ expression pattern, potentially 
because of the binarization of the in situ data, which caused  
loss of weaker signals. Finally, for ftz, while the predicted 
expression pattern by our method with 60 genes is in gen-
eral agreement with DistMap and in situ data, our method with 
40 or 20 genes failed to reconstruct the expression pattern of 
ftz associated with the segmentation of Drosophila embryos22.  
While it is possible that more refined parameters such as a  
smaller number of neighbor cells may improve the prediction 
of our method, we believe the striped pattern of ftz makes it dif-
ficult, if not impossible, for any method that aims at a much  
reduced number of marker genes for spatial mapping.

Conclusion
In this work, we proposed a method to identify gene mark-
ers for RNAseq-based reconstruction of cell spatial informa-
tion that were lost during single-cell transcriptomics sequencing  

of Drosophila embryo. The main hypothesis of this study is 
that the topology of the marker gene expression based cell- 
cell similarity graph should be consistent with the topology 
of the cell-cell geometric location map. To test the hypoth-
esis, several metrics were defined based on this biological 
rationale to capture the consistency between gene expression  
similarity and cell proximity. A greedy step-wise backward  
elimination feature selection algorithm was implemented to 
find a set of most informative genes to optimize these metrics. 
Next, a Particle Swarm Optimization algorithm was developed 
to obtain optimal gene weights to construct the cell-location  
association matrix. Finally, the prediction score of a cell’s 
location was further improved by considering the expression  
similarity between neighboring locations. It was shown that 

Figure 3. Histogram of correlation between gene patterns predicted by our method and DistMap using 60,40,20 genes.

Figure 4. Expression pattern of three sample genes are given 
for in situ, DistMap, and our method using 60,40,20 genes.
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our method can successfully identify markers genes capa-
ble of predicting cell locations with high accuracy. In addi-
tion, it was also demonstrated that our method can recover 
the spatial expression patterns of most embryo marker genes.  
Even though the method proposed here was custom designed 
for this Drosophila embryo problem, it has the potential to  
be readily applied to other organisms as well.

Data availability
Underlying data
The challenge datasets can be accessed at https://www.synapse.
org/#!Synapse:syn16782375

Challenge documentation, including the detailed description  
of the Challenge design, overall results, scoring scripts, and  
the clinical trials data dictionary can be found at: https://www. 
synapse.org/#!Synapse:syn15665609/wiki/582909

Software availability
Source code is available from: https://github.com/mary77/scSpa-
tialMapping.git

Archived source code at time of publication: https://doi.org/ 
10.5281/zenodo.387757718

License: MIT
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predict. Back to our problem, the authors may not be using the exact bin locations of the single 
cells (gold standard) but they are using proxies for them derived from the same or partially the 
same information used to establish the gold standard. Therefore, I would suggest to remove the 
term unsupervised when describing this method.
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the fact that they have used in situ data from all 84 genes in selecting the best subsets of 
20, 40, 60 which was against the DREAM challenge rules. 
 
The PSO algorithm to set the gene weights optimization seems to be computationally 
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single cells locations in a dme embryo with minimal accuracy loss relative to locations based 
on 84 genes. The method could be useful in similar applications, yet I have the following 
comments: 
  
Major: 
(Q1) The “Unsupervised gene selection” section defines two metrics (M1 and M2) to assess 
the quality a given gene set G of size 20, 40, or 60 out of all 84 genes with in situ data 
available. The optimal set of genes is identified by a greedy algorithm. However, metric M2 
can not be considered unsupervised because it takes the samples from the set where 
prediction of locations are expected (cells from the scRNA-seq data) and correlates their 
expression values with profiles of all in situ bins and finds those genes that ensure a 
maximum correlation. While the authors do not use the information of the in situ cell 
assigned by DistMap to a given single cell (gold standard), by expecting that there should be 
some 10 bins with gene expression patterns that correlate with the profile of each single 
cell, they are implicitly creating their own gold standard. Therefore, not only M2 should be 
stated as supervised instead of unsupervised, the authors should add as a limitation in the 
discussion the fact that they have used in situ data from all 84 genes in selecting the best 
subsets of 20, 40, 60 which was against the DREAM challenge rules. 
 
(A1) Firstly, we agree that the “unsupervised” version of our method does not strictly follow 
the DREAM challenge rule of not using in situ data directly. The reason is that we were not 
aware of the rule until after our submission. (The rule was posted in the discussion forum 
instead of on the challenge main webpage, and there were a lot of discussions about this 
issue among other participants as well). This is why we were allowed to submit, 
“unofficially”, a supervised version after discussing with the DREAM organizers. Despite 
violating the DREAM challenge rule, we believe the “unsupervised” method we describe here 
has been evaluated rigorously and the ideas are valuable, based on both post-challenge 
analysis results, as well as arguments presented below. 
Secondly, we argue that the M2 metric that we proposed is indeed unsupervised instead of 
supervised learning. In a supervised method, you optimize parameters in order to achieve 
the minimal deviation from ground truth (or gold standard in this work). Since the gold 
standard in this work is defined with all 84 genes, when you reduce the number of genes, 
you expect to gradually increase the gap between the gold standard and the prediction, and 
the goal is to minimize the gap with K genes. Our proposed metric M2 does not aim to 
reduce deviation from ground truth. In fact, the values of M2 achieved with the genes that 
we selected have better M2 values than the initial 84 genes, which potentially indicate that 
the initial 84 genes are not “optimal”. Another way to look at this is that we do not use the 
“gold standard” position in determining how good or bad the selected genes are. The 
definition of M2 relies on lcG , the location bin whose expression profile of gene set G is the 
most similar to cell c among all location bins. Although initially when G has all 84 genes, lcG 
 is indeed identical to the gold standard, lc* , this set of locations moves away from the gold 
standard when the gene set changes – so you could say that we have a “moving” gold 
standard if you wish, and the fact is that with 20 genes, lcG  is quite different from  lc*. 
 Furthermore, while we implemented a stepwise backward elimination method to choose G 
genes from 84 genes, we could have started with any random set of genes or the whole 
RNAseq dataset (with much longer running time, however). In fact, our analysis results 
showed that the M2 values on test data can often be better than the M2 values on training 
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data, further supporting that this is not a supervised method. 
 
(Q2) The PSO algorithm to set the gene weights optimization seems to be computationally 
intensive. Can the authors provide some sense of computation time involved? 
 
(A2) We have included this information in the revised manuscript: 
“The running time of PSO algorithm is about 15 hours when running on a system with 16 GB 
of memory. However, the running time could depend on different optimization settings 
such as parameter alpha and beta.” 
 
Minor:  
(Q3) The authors state, “We used a standard backward elimination algorithm to identify a 
subset of genes G with the minimal sum of M1 and M2”. I believe they meant identifying the 
subset of genes G with a minimal loss (decrease) in M1+M2, since you want the sum to 
remain as high as possible. So in the end this is a maximization not minimization problem. 
 
(A3) M1 and M2 were defined based on Euclidean distances and our objective was indeed to 
minimize M1+M2, not to maximize it.  
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This manuscript describes the methodology the authors employed to perform well in the DREAM 
Single cell Transcriptomics Challenge. The theme of the challenge is to select a subset of 84 known 
marker genes to characterize the spatial gene expression patterns in Drosophila embryo. The 
team developed methods for unsupervised gene selection, supervised gene selection, gene 
weighting and neighbor-smoothing based prediction of cell location. Overall, the manuscript 
provides sufficient detail to reproduce the results and some interpretations. It appears some 
further improvements can be done as follows:

Where it is understood that the team has optimized the hyper-parameter including k, alpha 
and beta with some fixed values for this dataset. For others to use the same methods on 
other similar studies, there is no clue how to tune or select the hyper-parameters. 

1. 
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Discussion or more experimental results should be provided in this regard. 
 
Similarly, it is also a mystery why different strategies of combining the methods are 
necessary for the three sub-challenges. There is no discussion of how the combinations are 
selected or optimized. 
 

2. 

The results in Table 1 are very poorly explained. How to calculate the 14%, 20%, 30% 
improvement over the three measures is unexplained. Possibly, it is also helpful to explain 
the metric used to rank different methods in the competition. 
 

3. 

In Figure 4, why not also plot the original in-situ hybridization and scRNAseq expressions of 
the three genes for comparison? The use of vISH seems to be unnecessary. 
 

4. 

In the section "Datasets and pre-processing steps", a subsection explaining the "gold 
standard" prediction by DistMap should be added. It is confusing in the description of 
supervised vs unsupervised gene selection, when the DistMap prediction and the nearest 
locations are used in the measures in equation (2) and (3).

5. 

 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly
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Maryam Zand, University of Texas at San Antonio, San Antonio, USA 

We thank the reviewers for the overall positive comments, as well as the detailed critics that 
have helped to improve the manuscript. 
 
Response to Reviewer1 comments   
This manuscript describes the methodology the authors employed to perform well in the 
DREAM Single cell Transcriptomics Challenge. The theme of the challenge is to select a 
subset of 84 known marker genes to characterize the spatial gene expression patterns in 
Drosophila embryo. The team developed methods for unsupervised gene selection, 
supervised gene selection, gene weighting and neighbor-smoothing based prediction of cell 
location. Overall, the manuscript provides sufficient detail to reproduce the results and 
some interpretations. It appears some further improvements can be done as follows: 
 
(Q1) Where it is understood that the team has optimized the hyper-parameter including k, 
alpha and beta with some fixed values for this dataset. For others to use the same methods 
on other similar studies, there is no clue how to tune or select the hyper-parameters. 
Discussion or more experimental results should be provided in this regard. 
(A1) We thank the reviewer for bringing up this important point. It should be noted that as 
the challenge participants were blind to the evaluation metrics at the time of results 
submission, which made a direct assessment of the performance of the proposed methods 
inaccessible, our team did not perform extensive parameter tuning. In the revised 
manuscript we have provided some insights and reasonings behind the selection of 
hyperparameter values used in our work. This added information may be used as a general 
guideline for hyperparameter selection for applying the proposed method to other datasets 
of similar nature. Nonetheless, it should be mentioned that optimum hyperparameters is 
problem-specific and may be found through ad hoc tests, sensitivity analysis, and detailed 
investigations. The following has been added in the manuscript. 
“In this work, k is set to 10 because the evaluation of the prediction results is based on 10 
best locations for each single cell. Also, based on the number of location bins (n), we believe 
10 is a reasonable choice for the number of nearest neighbors.” 
 “alpha and beta are acceleration coefficients, also referred to as trust parameters. alpha 
expresses how much confidence a particle has in itself, while beta expresses how much 
confidence a particle has in its neighboring particles. Particles draw their strength from 
their cooperative nature and are most effective when alpha and beta coexist in a good 
balance. Most applications use alpha=beta. Low values for alpha and beta result in smooth 
particle trajectories, while high values cause more acceleration, with abrupt movement 
towards or past good regions. In this study we used alpha=beta=0.2, with 200 agents and 
the maximum number of iterations set to 40. These parameters were manually tuned by 
observing the values of the fitness function to reach desired search granularity and speed 
of convergence.” 
 
(Q2) Similarly, it is also a mystery why different strategies of combining the methods are 
necessary for the three sub-challenges. There is no discussion of how the combinations are 
selected or optimized. 
(A2) During the challenge period, each team was given a limited number of attempts to test 
the success of their proposed approach(es) - evaluation results and ranking of all teams 
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were shown in a leaderboard, with no details of the evaluation metrics. It was made clear 
that different methods could be used for different sub-challenges. Therefore, it was a 
natural choice for us to try a diverse combination of the main ingredients of the method for 
different subproblems to get some insights of these ingredients. During the post-challenge 
stage, further experiments have been designed by the DREAM organizers for additional 
insights (see ref. [16]). In this manuscript, we have also added a few baseline approaches to 
test these components (see Table 1). While we could repeat the whole experiments with a 
common strategy for all three sub-challenges, we thought it would be best for the readers 
to see the results in a way consistent with our final results submitted to DREAM challenge. 
Admittedly, we did not use PSO for sub-challenge 2 because of lack of time towards the end 
of the competition. The rationale of using neighbor weighting in subchallenge 1 and 2 but 
not in subchallenge 3 is that as subchallenge 3 used substantially fewer genes, the quality 
of the location prediction may be relatively low and therefore using gene expression 
information from the predicted neighbors could actually degrade the final prediction. The 
revised manuscript now provides some details of these rationales. 
 
(Q3) The results in Table 1 are very poorly explained. How to calculate the 14%, 20%, 30% 
improvement over the three measures is unexplained. Possibly, it is also helpful to explain 
the metric used to rank different methods in the competition. 
(A3) In the revised manuscript we have further explained the results presented in Table1 to 
make it clearer. The metrics used to rank different methods is now explained in section “
Evaluation metrics”. The details of formulation and additional explanation can be found in 
the reference article [16]. Additional discussion of the evaluation results has also been 
included in the revised manuscript (see below for your convenience). 
 
“Table 1 shows the results of our supervised and unsupervised methods on the three 
subchallenges, evaluated by the three metrics (s1, s2, and s3) proposed by the DREAM 
challenge organizers. The details of these metrics are discussed in Method Section “DREAM 
consortium evaluation metrics”. A more detailed analysis of the results and comparison with 
other top-performing algorithms are presented in 16 and is not repeated here. To obtain 
some additional insights of our algorithms’ performance, we present here the results of 
some variations of our proposed methods. Both our supervised and unsupervised methods 
have two important components, (1) gene selection, and (2) neighbor-weighted cell location 
prediction, integral to selecting a set of most informative genes and locating cells based on 
the information buried in cell neighborhood network topology. To understand the 
importance of these two components, we designed a set of baseline studies incorporating 
four experiments. In these experiments, the gene selection strategy was replaced by either 
selecting genes randomly, or selecting genes expressed in the most number of cells (high 
degree genes). The neighbor-based reweighting component was also removed in two of 
these experiments. 
The subchallenge scores corresponding to our method (supervised and unsupervised) 
along with these four baseline studies are listed in Table 1 under the group A and group B, 
respectively. The method with highest score (s1, s2, s3) in each of the three subchallenges is 
shown in boldface. It can be seen that the supervised and unsupervised methods (group A) 
achieved comparable results, and significantly outperformed the baseline approaches 
(group B) on average, for all three sub-challenges. For subchallenge 3, which is the most 
difficult task, both of our methods significantly outperformed the baseline approaches in all 
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three metrics. On the other hand, for subchallenge 1, for which the goal is to select 60 
genes to best approximate the cell locations determined by 84 genes, random gene 
selection coupled with neighbor-based reweighting achieved almost the same performance 
as our unsupervised approach, and is only slightly inferior to the supervised approach. This 
is understandable because of the extensive overlap between the randomly selected genes 
and the “optimal” gene set. High degree selection achieved somewhat less accurate results 
than random selection, indicating that some less frequently expressed genes are important 
determinants of cell locations. For subchallenge 2, our proposed methods outperformed all 
four baseline approaches in s2, and three out of the four baseline approaches in s1 and s3. 
Finally, comparing the four baseline approaches suggest that the neighbor-based 
reweighting component significantly improved s2, but its impacts on the other two metrics 
are somewhat mixed. Overall, the significant performance gain in subchallenge 3 compared 
to random gene selection and high degree gene selection supports that the small set of 
genes we identified are important for predicting cell locations.” 
 
(Q4) In Figure 4, why not also plot the original in-situ hybridization and scRNAseq 
expressions of the three genes for comparison? The use of vISH seems to be unnecessary. 
(A4) The original binarized in situ hybridization data is what the first subplot in Figure 4 
shows in fact. For other subplots vISH was used because we wanted to compare our results 
with Distmap which also uses vISH. Moreover, vISH computes the expression pattern for 
each gene by combining the cell-bin mapping scores with the original normalized gene 
expression levels. 
 
(Q5) In the section "Datasets and pre-processing steps", a subsection explaining the "gold 
standard" prediction by DistMap should be added. It is confusing in the description of 
supervised vs unsupervised gene selection, when the DistMap prediction and the nearest 
locations are used in the measures in equation (2) and (3). 
(A5) In the revised version we have added “Gold standard cell locations” subsection. 
“For each of the 1297 cells, the Mathews Correlation Coefficients (MCC) is calculated at each 
of the 3039 location bins between the binarized 84 RNAseq expression values for the 84 
driver genes and the binarized in situ expression values for the same 84 genes. The location 
bin with the maximum value of MCC score is defined as the gold standard location for each 
cell.”  

Competing Interests: No competing interesets

 
Page 19 of 20

F1000Research 2021, 9:1014 Last updated: 23 MAR 2021



The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 20 of 20

F1000Research 2021, 9:1014 Last updated: 23 MAR 2021

mailto:research@f1000.com

