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Abstract

Neuroimaging studies of psychotic disorders have demonstrated abnormalities in structural and 

functional connectivity involving widespread brain networks. However, these group-level 

observations have failed to yield any biomarkers that can provide confirmatory evidence of a 

patient’s current symptoms, predict future symptoms, or predict a treatment response. Lack of 

precision in both neuroanatomical and clinical boundaries have likely contributed to the inability 

of even well-powered studies to resolve these key relationships. Here, we employed a novel 

approach to defining individual-specific functional connectivity in 158 patients diagnosed with 

schizophrenia (n = 49), schizoaffective disorder (n = 37) or bipolar disorder with psychosis (n = 

72), and identified neuroimaging features that track psychotic symptoms in a dimension- or 

disorder-specific fashion. Using individually-specified functional connectivity, we were able to 

estimate positive, negative, and manic symptoms that showed correlations ranging from r = 0.35 to 

r = 0.51 with the observed symptom scores. Comparing optimized estimation models among 
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schizophrenia spectrum patients, positive and negative symptoms were associated with largely 

non-overlapping sets of cortical connections. Comparing between schizophrenia spectrum and 
bipolar disorder patients, the models for positive symptoms were largely non-overlapping between 

the two disorder classes. Finally, models derived using conventional region definition strategies 

performed at chance levels for most symptom domains. Individual-specific functional connectivity 

analyses revealed important new distinctions among cortical circuits responsible for the positive 

and negative symptoms, as well as key new information about how circuits underlying symptom 

expressions may vary depending on the underlying etiology and illness syndrome from which they 

manifest.
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INTRODUCTION

Brain-based biomarkers with sufficient sensitivity and specificity to track with specific 

symptoms at the level of individuals would have the potential to radically transform the 

assessment and management of patients with psychotic disorders. These patients, who are in 

varying states of illness, may lose the ability to portray their symptom burden, which has 

tremendous inter-individual heterogeneity in cross-sectional presentations and complex 

symptom trajectories over time within individuals. Use of brain imaging, including structural 

and functional MRI, has shown great promise for identifying meaningful biomarkers in 

mental disorders, and has increasingly identified macroscopic structures that may 

differentiate broad disease categories. For example, studies of psychotic disorders have 

found abnormalities in functional connectivity involving widespread cortical and subcortical 

brain networks 1–10, as well as irregularities in brain structure such as ventricular 

enlargement and cortical thinning11, some of which may scale with the intensity of ongoing 

symptoms 12–16. Nevertheless, these findings have yet to cohere into a set of regional 

interactions that reliably and reproducibly track with a patient’s current symptom burden in 

a manner that has shown successful application in the assessment of individual patients.

The study of circuit abnormalities in psychosis may have been hampered by the lack of 

precision in mapping functional brain regions in individual patients. Large-scale studies of 

human brain organization have yielded stable parcellations of the human cerebral cortex 
17–21 and subcortical structures 22–24, providing a new cortical taxonomy for describing 

regional and network-level disruptions in cortical function contingent with disease. 

However, these atlases only reflect general principles of functional organization in a 

population, rather than the idiosyncrasies of an individual. Until now, most imaging studies 

have relied on applying group-level atlases when assessing individual-level functional data. 

While these group-level analyses have revealed important relationships between connectivity 

and clinical characteristics (e.g.25, 26), subtle relations could be missed if the symptom 

expressions are related to functional networks that are highly variable across individuals, 

especially those in the association cortices27, 28. Recent studies have indicated that important 

features of brain networks could be absent in group-based templates but are evident within 
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individuals19, 29. Applying the group-level atlas to individual subjects can thus dilute brain-

behavior associations that are critical for understanding the specific disease processes. To 

address this challenge, our group and others have developed methods that account for 

individual heterogeneity in cortical functional anatomy as a strategy to improve the 

robustness and inter-individual reliability of functional connectivity information and its 

potential relationship with cognitive abilities in healthy individuals 30. Nevertheless, it 

remains unclear whether connectivity analyses based on individually-specified regions will 

facilitate the discovery of robust illness surrogate markers for global and/or dimension-

specific symptom domains. To test this idea, here we examined functional connectivity in a 

large cohort of individuals expressing varying degrees of psychotic symptoms, and 

employed machine learning under a range of constraints to identify connections that track 

with the principal domains of psychotic symptoms (e.g., positive symptoms, negative 

symptoms, mania). Estimation models were optimized using both dimension-alone and 

categorical-dimensional assumptions about the underlying nature of pathophysiological 

disturbances in psychotic syndromes.

MATERIALS AND METHODS

Participants

A total of 158 patients with DSM-IV diagnosed schizophrenia (SZ, n = 49), schizoaffective 

disorder (SZA, n = 37) or bipolar disorder with psychosis (BP, n = 72) were recruited from 

inpatient and outpatient treatment settings at McLean Hospital with informed consent. See 

Supplementary Materials for the inclusion criteria. Functional MRI data (1–2 scans, 372 

seconds per scan) were collected on a single 3T Tim Trio scanner (Siemens Healthcare, 

Erlangen, Germany) at McLean Hospital, using the vendor-supplied 12-channel phased-

array head coil (TR = 3000 ms, TE = 30 ms, flip angle = 85o, 3 × 3 × 3mm voxels), while 

participants were instructed to lie still with their eyes open. An in-bore camera (ISCAN, 

120Hz, infra-red illumination) monitored participant behavior and arousal state. After 

quality control of the data (using a slice-based signal-to-noise ratio31 >100), data from 44 

SZ patients, 32 SZA patients, and 55 BP patients were retained for subsequent analysis. 

Among them, 72 subjects (20 SZ, 23 SZA, and 29 BP) were reported in previous 

publications32. Participants’ demographic and clinical characteristics are summarized in 

Supplementary Table S1.

Imaging data preprocessing

Resting-state fMRI data were processed using procedures previously described 33, 34. See 

Supplementary Materials.

Identifying homologous functional regions of interest (ROIs) in individuals

Functional ROIs were localized in each individual according to the following steps. First, 

eighteen cortical networks were mapped in each subject using the iterative parcellation 

approach recently developed and validated by our group35. The algorithm was initially 

guided by the group-level functional network atlas derived from 1000 healthy subjects and 

then iteratively refined network boundaries in the individual. The individual-level cortical 

networks were then segmented into discrete “patches” using a clustering algorithm 

Wang et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2019 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(mri_surfcluster in FreeSurfer). Finally, discrete patches in individual subjects were matched 

to the 116 cortical ROIs extracted from the population-level atlas estimated in 1000 subjects. 

The template matching procedure was performed for each cortical network as follows: 1) If 

an individual-level patch overlapped with a single ROI in the atlas, then the patch was 

labeled as the same ROI in the atlas. 2) If an individual-level patch overlapped with multiple 

ROIs in the network, then the patch was split into multiple smaller patches. Specifically, 

vertices overlapping with the group-level ROIs were labeled according to these ROIs, 

forming the centers of several smaller patches. The remaining vertices in the original patch 

were then assigned to the nearest ROIs according to the geodesic distance on the brain 

surface. 3) If a patch did not overlap with any ROI in the group-level network, then the patch 

was assigned to its nearest ROI if the shortest distance between the patch and the ROI was 

within a certain threshold (we used mean distance between any two vertices in the nearest 

ROI); 4) otherwise the patch was labeled as “unrecognized”. See Supplementary Materials 

for more details.

Strategy for symptom estimation

Resting-state functional connectivity among the individual-specific ROIs was computed, 

resulting in a large pairwise connectivity matrix for each subject (see Supplementary Fig. 
S1). A support vector machine for regression (SVR) model was trained to estimate each 

patient’s symptom severity scores based on the connectivity among individualized ROIs. 

Importantly, connections sensitive to head motion were excluded and potential confounds 

including age and gender were controlled in the model. The leave-one-out cross validation 

(LOOCV) was employed, i.e., data from N-1 subjects were used to train the model and then 

the resulting model was applied to the data of the remaining subject to estimate the subject’s 

symptom severity. The procedure was repeated N times to estimate the symptom scores of 

all subjects. Correlation between the estimated and observed symptom scores was then 

evaluated. A nonparametric permutation test was performed to determine whether the 

correlation simply occurred by chance. Specifically, the observed symptom scores were 

randomly reshuffled among the subjects and then the symptom estimation procedures were 

repeated (1,000 permutations). The permutation p value was estimated by calculating the 

percentage of permutations that yielded an estimation-observation correlation value higher 

than the estimation-observation correlation based on the real data. See Supplementary 

Materials for more details.

Code availability

Codes for cortical network parcellation, ROI extraction, and symptom score estimation can 

be downloaded from our website (http://nmr.mgh.harvard.edu/bid/DownLoad.html).

RESULTS

Individually-specified functional connectome tracks PANSS positive symptoms

Using a subject-specific, iterative functional network parcellation strategy 30, 34, we mapped 

18 cortical networks for each subject and then extracted 116 discrete ROIs from these 

networks. These functional ROIs demonstrated substantial inter-individual variability across 

individuals (see Supplementary Fig. S2 for examples). Functional connectivity was 
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evaluated among these ROIs for each individual for the exploration of brain-behavior 

relationship.

To determine whether individually-specified functional connectivity tracks with the positive 

symptoms of psychosis, we trained SVR models to estimate the PANSS positive scores from 

each of the individual participants carrying a SZ or SZA diagnosis. Importantly, connections 

sensitive to head motion were identified first and excluded (see Supplementary Materials for 

the procedure and Supplementary Fig. S3). Age and gender were controlled for as 

covariates. We found that PANSS positive symptom scores were robustly estimated by a set 

of functional connections, with a moderate but statistically significant correlation between 

estimated and observed PANSS positive scores among the 76 patients (Fig. 1a, r = 0.50, p = 

0.004, all p-values in this study were based on permutation tests). Connections that 

contributed most to the estimation of PANSS positive scores mainly involved the 

frontoparietal control network (FPN), dorsal attention network (ATN), and motorsensory 

regions (MOT) (Fig. 1b, see also Supplementary Fig. S8 for the connections positively and 

negatively correlated with the symptom scores, respectively). For comparison, the analysis 

was repeated using functional connectivity among the corresponding ROIs identified in 

Yeo’s group-level functional network atlas 34. Atlas-based connectivity was unable to 

estimate PANSS positive scores regardless of whether connections sensitive to head motion 

were excluded (r = 0.28, p = 0.09, Fig. 1c) or included in the model (r = 0.25, p = 0.087, 

Supplementary Fig. S4a).

Functional connectivity among individually-specified ROIs tracks PANSS negative 
symptoms

To demonstrate the specificity of our approach to estimate symptom levels in multiple 

symptom domains, we next tested whether individually-specified connectivity could track 

with levels of negative symptoms in the same group of individuals with SZ or SZA. Here, 

we again found a moderate, statistically significant correlation between estimated and 

observed PANSS negative symptom scores (r = 0.35, p = 0.033, Fig. 2a). Connections that 

contributed most to the estimation of PANSS negative scores mainly involved the FPN and 

MOT, and the salience network (SAL, Fig. 2b & Supplementary Fig. S8). In contrast, 

PANSS negative scores estimated by atlas-based connectivity (i.e., Yeo’s group-level atlas) 

were uncorrelated with observed negative symptoms, when tested with either motion-related 

connections excluded (r = 0.03, p = 0.403, Fig. 2c) or included (r = 0.02, p = 0.460). 

Furthermore, the connections that contributed to negative symptom estimation models 

showed no overlap with the connections that contributed to positive symptom models 

(Supplementary Fig. S4), indicating that our approach yields sets of connections specific to 

particular symptom domains in largely non-overlapping brain systems.

Between-network connectivity abnormality is a major contributor to positive and negative 
symptoms in patients with schizophrenia spectrum illness

Inspecting the connections that were predictive of the PANSS positive and negative 

symptoms (e.g., Fig. 1b & Fig. 2b), we found that the majority of them were connections 

between different functional networks rather than connections within the same network (see 

Supplementary Materials for the details of how between-network connectivity was 
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estimated). Importantly, the absolute values of between-network connections were 

significantly reduced when ROIs were individually-specified, compared to atlas-defined (see 

Supplementary Fig. S5); nevertheless, the reduced connectivity can yield better symptom 

estimates, suggesting that between-network connectivity may be more accurately quantified 

when functional regions are localized in individuals.

Grouping the connections according to the 7 canonical functional networks34, we observed 

that connections contributing to the positive symptom estimation model were mostly 

between-network connections that involved the FPN, ATN, and MOT (Fig. 3a). In contrast, 

connections contributing to the negative symptom estimation model mainly involved the 

FPN and MOT (Fig. 3b).

Functional connectivity estimates of symptom dimensions perform better within 
diagnostic groups

While a large body of genetic, imaging, and neuropathology research suggest that SZ, SZA, 

and BP share some aspects of pathophysiology, it remains unclear whether similar 

connectivity abnormalities give rise to similar clinical presentations in patients within 

distinct diagnostic classes. To address this question, we trained SVR models to estimate 

PANSS positive and negative symptoms in 55 patients carrying a diagnosis of BP with 

psychosis.

As in the schizophrenia spectrum group, we found that functional connectivity among the 

individually-specified ROIs yielded estimates of PANSS positive subscale scores in the 

bipolar patients, with a mild-moderate, and nominally significant, correlation (r = 0.35, p = 

0.048, Fig. 4). However, in contrast to the PANSS positive estimation model in the SZ/SZA 

group, PANSS positive symptom estimation in the bipolar group was driven mainly by 

between-network connectivity involving the visual network (VIS), DN, FPN and SAL, with 

no overlap between the connections contributing to positive symptom estimation in the two 

patient groups (Supplementary Fig. S6a). To further test whether positive symptoms were 

driven by any common connections in the two groups, we aggregated patients across both 

affective and non-affective psychosis and then trained SVR models to estimate PANSS 

positive scores. Despite this analysis employing the largest number of participants, 

individually-specified connectivity in this cross-diagnostic cohort did not yield PANSS 

positive estimates that correlated with observed positive symptom levels (r = 0.15, p = 0.187, 

Supplementary Fig. S6b).

In the case of PANSS negative symptoms in the BP patients, neither individually-specified 

ROIs (r = 0.11, p = 0.261) nor atlas-based ROIs (r = 0.13, p = 0.192) yielded robust 

symptom estimates. Although, as noted above, the PANSS negative scores could be 

estimated in the schizophrenia spectrum patients, the cross-diagnostic patient cohort that 

included BP patients yielded estimates that performed no better than chance (r = 0.20, p = 

0.081, Supplementary Fig. S6c).

Taken together, these observations indicate that positive and negative symptoms may result 

from distinct pathophysiological mechanisms in affective and non-affective psychosis, which 
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must be accounted for when employing connectivity-based measures in evaluating the two 

conditions.

Functional connectivity among individually-specified ROIs predicts mania scores in BP 
patients

As functional regions identified in individuals may better capture the idiosyncrasies of 

subjects than atlas-based ROIs, performing connectivity analyses based on individually-

specified ROIs may facilitate the discovery of meaningful brain-based biomarkers for a 

variety of symptoms and behaviors beyond the PANSS scales. As a proof of this concept, we 

trained SVR models to estimate the level of mania in the 55 BP patients, using the same 

approach outlined above. Connections sensitive to head motion were identified first and 

excluded. We found that functional connectivity among the individually-specified ROIs 

yielded moderately strong correlations between estimated and observed Young Mania 

Rating Scale (YMRS) totals (r = 0.51, p = 0.011). The optimized mania estimation model 

was driven mainly by between-network connectivity involving the SAL, VIS, LMB, and DN 

(Fig. 5). Connectivity within the FPN also contributed to the estimation. Again, functional 

connectivity among the ROIs defined by Yeo’s group-level atlas did not yield YMRS 

estimates that correlated with observed mania levels (r = 0.17, p = 0.217).

Additional Analyses

We performed a series of additional analyses to test if our results were affected by 

medication, the selection of group-level atlas, or the method for cross validation. We found 

that our symptom estimation models were not influenced by medication (Supplementary 
Fig. S7). We repeated the analyses using Glasser’s group-level atlas, which consisted of 360 

areas 36, as well as 10-fold cross validation, and found that our conclusions remained 

unchanged (see Supplementary Materials). Focusing on the symptom-related connections 

(as shown in Fig. 1, 2, 4 & 5), we found that the same connections defined by group-level 

ROIs were less correlated with symptom scores (Supplementary Fig. S9), indicating that 

the symptom-related connections were obscured by the group-level atlas, thus impairing the 

prediction of symptoms. Finally, we performed analyses to test if macroscopic anatomical 

features are related to the symptom scores, and found that models using macroscopic 

anatomical features, such as sulcal depth and cortical thickness, were unable to estimate 

psychotic symptoms (Supplementary Table S2).

DISCUSSION

In this study, we identified connectivity among individually-specified functional regions that 

was able to yield moderate-to-strong estimates of symptom levels across several principal 

domains of psychotic disorder symptomatology. Importantly, without accounting for 

individual variation in cortical functional anatomy, conventional atlas-based connectivity 

was unable to predict these symptoms in almost every case. Moreover, the specific sets of 

network interactions predicting symptom burden changed substantially when taking our 

individual-specific approach, with between-network variance explaining dramatically more 

symptom-specific severity than in atlas-defined models. Our work highlights the critical 

importance of accounting for individual variation in cortical functional anatomy in 
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psychoradiology research37–39 and taking a conservative approach to de-confound human 

neuroimaging data, particularly when the goal is to identify meaningful clinical-

neurobiological correlations that could serve pragmatic clinical utility in diagnosis, 

prognosis, and treatment selection for patients with psychiatric disorders.

A conservative neuroimaging approach facilitates robust biomarker discovery in 
schizophrenia and bipolar disorder

Prior studies on psychosis have related a wide range of neuroimaging-derived metrics to 

several prominent symptom domains. For example, positive symptoms have been related to 

reduced cortical thickness and brain volume 14, 15, 40, abnormal fractional anisotropy 41–44, 

and altered resting-state as well as task-based functional connectivity, with some convergent 

evidence for abnormalities among fronto-temporal and limbic structures 44–46. Likewise, 

several reports have documented correlations between negative symptom severity and 

cortical thinning and/or reduced gray matter 47–49, particularly in the temporal and frontal 

lobes, basal ganglia, corpus callosum, thalamus, and the paralimbic system. Levels of mania 

have been related to the extent of prefrontal white matter abnormalities, as well as decreased 

connectivity and task-based fMRI responses involving the cingulum, the prefrontal cortex 

and failure of de-activation in the medial frontal cortex during active tasks 50–53. The lack of 

specificity and reproducibility in the literature may be due to the considerable heterogeneity 

of clinical presentations, assessment strategies, and differences in data processing, together 

with a failure to sufficiently account for confounding sources of variance. These limitations 

may have reduced the effective power in even large-scale studies to detect true illness-related 

effects.

By taking a machine learning approach, our findings reflect unbiased, data-driven estimates 

of which sets of cortical connections allow for optimal estimation of a particular symptom 

summary score, independent of any other symptom domains tested. Although this approach 

underestimates the full set of interactions that carry illness-related information, it 

nevertheless demonstrates tremendous heuristic value as a tool for human network 

neuroscience, yielding simple, reliable readouts to test how changes in a particular model 

affect the model’s ability to estimate a particular set of symptoms. For instance, our models 

were unable to estimate positive or negative psychotic symptom domains when data from 

SZ/SZA and BP patients were considered together. And yet, these same symptoms were 

estimated far more reliably when SZ/SZA and BP patients were considered separately. As 

noted, our approach was conservative in selecting eligible interactions and may have 

underestimated sources of shared variance (e.g., among motion-sensitive areas); nonetheless, 

we found the level of non-overlap striking, especially for positive symptoms, where our 

findings indicate an entirely distinct set of interactions governing positive-symptom like 

experiences in bipolar disorder and schizophrenia.

Between-network connectivity abnormality is a major contributor to positive and negative 
symptoms

A particularly important observation in the present study is that between-network 

connectivity played an essential role in estimating symptoms in every case we tested. While 

interactions across networks have been explored in psychotic patients54–56, prior approaches 
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in the literature, including our own32, have placed more emphasis on within-network 

variance as the significant source of illness-related signal. In the present study, no robust 

relation was found between the within-network connectivity and clinical symptoms (except 

for the FPN). If within-network variance only reflects domain general psychopathology, and 

identification of domain specific biomarkers requires the assessment of variation in 

connectivity between networks, then our findings here indicate that accounting for individual 

differences in functional network boundaries is critical, as mislocalization of networks will 

significantly obscure the true values of low amplitude between-network correlations and 

hamper the discovery of brain-behavior associations (see Supplementary Fig. S9).

Additionally, psychotic symptoms appeared to be mainly related to the strengthening of 

between-network connectivity, although we also observed correlations with the weakening 

of a few connections (see Supplementary Fig. S8). To further explore this, we averaged the 

connectivity values of all predictive between-network connections and found that mean 

between-network connectivity was positively correlated with all symptoms studied here (see 

Supplementary Materials). The strengthening of between-network connectivity, or the loss 

of segregation between networks, may result from an abnormality of brain development as 

suggested in previous studies57, 58.

Structural anatomy failed to predict symptom dimensions

Anatomical correlates of neural system integrity are generally more stable than fMRI 

measures, leading many in the field to focus on cortical thickness, subcortical volumes, and 

other neuroimaging surrogates for structural network integrity. We were unable to train any 

of our symptom estimation models using optimal weightings from brain structural anatomy, 

as derived from standardized processing pipelines (i.e. FreeSurfer). While we, like others, 

have identified numerous structural abnormalities in group comparisons of patient groups 

and healthy participants, this finding seems to indicate that structural neuroanatomy is either 

(a) not changing significantly as a function of specific symptom variation, or (b) our current 

spatial resolution of T1 images are insufficient to reduce measurement error into a range 

where they might be sensitive to symptom-specific illness-related effects.

Limitations and Future Directions

There are a few limitations that deserve mention. First, our approach identifies all 

connections carrying information without regard to which neural systems they comprise or 

any known function of such a connection, lending less obvious interpretability to our 

findings. That said, the distribution of informative connections revealed in our analysis did 

not appear to be random and was consistent with broad patterns of network-level 

involvement that could have tractable biological etiology. Moreover, the purpose of our 

study was not to make any strong claims about the nature of the underlying biology of 

psychotic illnesses, but rather to determine whether connectivity could provide useful 

information for estimating clinical state variables. Second, symptoms are still being 

evaluated using conventional scales, which require subjective judgment from trained 

clinicians. Work to provide more reliable assessments of signs and symptoms using 

objective behavioral recordings and real-world naturalistic measures is ongoing. Third, to 

date, a reliable technique for mapping functional networks in individual participants’ 
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subcortical regions is not yet available, precluding our ability to investigate subcortical 

connectivity in this study. However, we plan to adapt our individual-level approach to 

examine cortico-striatal connectivity in future studies, given the pivotal role of these circuits 

in psychiatric disorders. Finally, our analysis did not include healthy control subjects 

because symptom scores have little or no variation within healthy subjects, thus including 

them may strongly bias the symptom estimation models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Positive symptoms in patients with schizophrenia spectrum illnesses can be predicted by 

functional connectivity after accounting for individual variation in functional region 

distribution and head motion. (a) The scatterplot illustrates the correlation (r = 0.50, p = 

0.004, permutation test) between the PANSS positive scores predicted by connectivity 

among the individually-specified ROIs and the scores that were actually observed in the 76 

patients with SZ or SZA. (b) 116 ROIs extracted from 18 individualized networks are 

represented on a wheel. Fifty-two connections that are predictive of the PANSS positive 

scores are plotted (top 20 connections are indicated by the dark lines). Group-level maps of 

the 18 functional networks are shown outside the wheel. The 116 ROIs are color-coded 

according to 7 canonical networks: visual (VIS), sensorimotor (MOT), attention (ATN), 

salience (SAL), limbic (LMB), frontopariental control (FPN) and the default network (DN). 

Functional regions involved in the most predictive connections are rendered on the cortical 
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surface. The predictive power of each connection is indicated by the “weight”, as color-

coded on the cortical surface. (c) A similar analysis is performed using 116 ROIs defined in 

a group-level network template. Functional connectivity based on the brain template is not 

able to predict the PANSS positive scores in these patients (r = 0.28, p = 0.09, permutation 

test).
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Fig. 2. 
(a) Functional connectivity among the subject-specific ROIs can predict the PANSS negative 

subscale scores in 76 patients with schizophrenia or schizoaffective disorder. The scatterplot 

illustrates the correlation (r = 0.35, p = 0.033, permutation test) between the predicted and 

observed PANSS negative scores. (b) Fifteen connections that are predictive of the PANSS 

negative scores are plotted on the wheel. Functional regions involved in the most predictive 

connections are rendered on the cortical surface. (c) A similar analysis is performed using 

116 ROIs defined in a group-level network template. Functional connectivity based on the 

brain template is not able to predict the PANSS negative scores in these patients (r = 0.03, p 
= 0.403, permutation test).
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Fig. 3. 
Between-network connectivity plays an essential role in predicting the positive and negative 

symptoms in patients with schizophrenia spectrum illness. (a) The functional connections 

most predictive of the symptom severity scores in SZ/SZA patients are grouped according to 

the 7 canonical networks. Connections contributing to the positive symptom prediction are 

mainly between-network connections (white bars). These between-network connections 

mainly involve the FPN, ATN and MOT. (b). Connections contributing to the negative 

symptom prediction mainly involve between-network connectivity in the FPN and MOT. 

Connections within the FPN also contributed to the prediction.
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Fig. 4. 
(a) Functional connectivity among the subject-specific ROIs can predict the PANSS positive 

scores in 55 patients with bipolar disorder. The predicted and observed PANSS positive 

scores are significantly correlated (r = 0.35, p = 0.048, permutation test). (b) Twenty-six 

connections that are predictive of the PANSS positive scores are plotted on the wheel. (c) 

Functional connectivity based on the brain template is not able to predict the PANSS 

positive scores in these patients (r = 0.19, p = 0.219, permutation test). (d) The prediction 
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based on subject-specific ROIs is also driven by between-network connectivity involving the 

SAL, DN, VIS, and FPN.
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Fig. 5. 
(a) Functional connectivity among the subject-specific ROIs can predict the mania score 

(YMRS) in patients with bipolar disorder (r = 0.51, p = 0.011, permutation test). (b) Thirty-

two connections that are predictive of the PANSS positive scores are plotted on the wheel. 

(c) Functional connectivity based on the brain template is less predictive of the mania score 

(r = 0.17, p = 0.217, permutation test). (d) The prediction is mainly driven by between-
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network connections involving the SAL, VIS, LMB and DN. Connections within the FPN 

also contributed to the prediction.
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