
Comparison of the Cancer Gene Targeting and
Biochemical Selectivities of All Targeted Kinase
Inhibitors Approved for Clinical Use
Joost C. M. Uitdehaag1, Jeroen A. D. M. de Roos1, Antoon M. van Doornmalen1, Martine B. W. Prinsen1,

Jos de Man1, Yoshinori Tanizawa2, Yusuke Kawase2, Kohichiro Yoshino2, Rogier C. Buijsman1,

Guido J. R. Zaman1*

1Netherlands Translational Research Center B.V., Oss, The Netherlands, 2Carna Biosciences Inc., Kobe, Japan

Abstract

The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two
large assay panels: (1) a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins;
and (2) a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase
inhibitor drugs in use (status Nov. 2013), and for six of these drugs, the first kinome profiling data in the public domain.
Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers
dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to
small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for
EGFR, ABL1 and BRAF(V600E)-driven cell growth, and demonstrates that the best targeted agents combine high
biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for
use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the
evaluation of kinase inhibitor drug action.
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Introduction

Targeted therapies significantly increase the efficiency of cancer

therapy. They bring great benefit to patients because they improve

survival rates with much less side effects than traditional cytotoxic

therapies. Small molecule inhibitors of protein kinases are a prime

example of the success of targeted therapy. There are currently

(Nov. 2013) twenty-five kinase inhibitor drugs approved for clinical

use, all except two for cancer (Table 1 and Figure 1). In 2012

protein kinases were the single most successful target class based

on the number of approved new medicines by the U.S. Food and

Drug Administration (FDA) and this trend continued in 2013 [1].

However, given the high attrition of drug candidates, the limited

survival benefits of first generation therapies, the problem of drug

resistance and the fact that targeted therapy is only of benefit to a

small fraction of cancer patients, there is a need for novel and

improved targeted kinase inhibitors.

Crucial to the development of targeted therapies is the ability to

couple drug response to a genetic marker such as mutation,

translocation or overexpression of a cancer gene [2]. Despite that

there are more than 500 kinases encoded by the human genome,

current approved kinase inhibitor drugs act primarily through only

about ten different targets (Table 1 and Table S1). Most kinase

inhibitors for oncology act by inhibiting tumour cell proliferation,

angiogenesis, or both [3]. Drug sensitivity biomarkers are

therefore needed to support the development of new targeted

therapies and to broaden the utility of marketed anti-cancer

therapies.

To better predict patient responder populations at an early stage

in drug development, and to better understand kinase drug action,

we have established a cancer cell line panel of forty-four cell lines

that have been derived from a wide diversity of human tumours

(Figure 2A). The cancer gene mutations that drive the cancerous

phenotype of most of the cell lines have been characterized in the

COSMIC Cell Lines (CCL) project [4]. Our panel contains

representatives of all well-known oncogenes and tumour suppres-

sors, that in a large cell panel sum up to more than 90% of all

documented genetic changes (Table S2) [4]. Twenty-three of these

frequent genetic changes occur in at least two cell lines (Figure 2B

and Table S3).

Recent studies have demonstrated that cell line panels can be

used to identify new markers of drug sensitivity by coupling drug

response to the presence of cancer gene mutations [4–7]. These

studies have used cell panels with up to 400–1000 cell lines, to

discover novel sensitivities related to rare genetic variants.
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However, such panels are impractical for routine use [8]. Smaller

panels are experimentally more accessible and can also give useful

data, as has been demonstrated for the sixty cell line panel of the

National Cancer Institute (NCI60), in which since the 1990s more

than 300,000 compounds have been characterized [9], and the

forty-five cell line panel of the Japanese research foundation [10].

To compare the anti-proliferative activities of all kinase

inhibitor drugs that have been approved for clinical use, we have

profiled them in our forty-four cell line panel. We correlated drug

activities to cancer gene mutations and identified new drug

sensitivity markers for MEK and EGFR inhibitors. In addition,

the cell panel data were used to quantitatively compare the relative

targeting efficacy of drugs designed to inhibit the same kinase.

To further study biochemical origins of differential effects in

cellular targeting we profiled all kinase inhibitor drugs on a panel

of enzyme activity assays of more than 300 wild-type and mutant

kinases [11]. Whereas extensive biochemical selectivity data are

available for many kinase inhibitors [12–14], this provides the first

extensive profiles of the approved drugs cabozantinib [15],

dabrafenib [16], ponatinib [17], regorafenib [18], trametinib

[19] and vemurafenib [20] (Table 1). Combination of the cellular

and biochemical datasets reveals that biochemical potency and

selectivity are independent contributors to the efficient targeting of

genetic drivers in tumour cells. In addition, specific off-target

activities can positively contribute to targeting, as we show for

ABL1 inhibitors, by computationally linking kinome profiles to

cellular targeting. Our study shows that cell panel profiling in

combination with biochemical panel profiling is a powerful tool in

finding new applications for existing inhibitors, and the design of

optimally targeted inhibitors.

Results

Composition and validation of the Cell Panel
A panel of forty-four human cancer cell lines was assembled

from the American Type Culture Collection (ATCC). The cell

lines were selected to represent both a wide range of different

tissue tumour types (Figure 2A) and many different genetic

alterations in oncogenes and tumour suppressor genes (Figure 2B).

Public DNA sequence information from the CCL project [4] and

the Cancer Cell Line Encyclopedia (CCLE) [5] were used to select

the cell lines. For all cell lines, we developed proliferation assays

using measurement of intracellular ATP content as an indirect

readout of cell number. Compared to other cell panels, the panel

(Oncolines) has increased genetic diversity (Figure S1) and the test

concentrations span a wider range: nine points from 32 mM to

3.2 nM. We did not estimate compound activities by extrapolation

outside the testing range, as was carried out in another study [4].

Instead, to ensure that all IC50s fell within the testing range, it was

extended to subnanomolar concentrations in the case of very

potent compounds. To preserve cell line characteristics, the cell

lines were cultured in the media recommended by the original

investigators who deposited the cell lines, and by ATCC. All cells

used were within nine passages from the original ATCC vial.

The accuracy of cellular response data is getting increased

attention [21–23]. By following a standardized workflow and

implementing stringent quality criteria, we achieved a maximal

IC50 shift of a factor 2 and a standard deviation of 0.07 on
10logIC50 values (a factor of 1.17), based on multiple independent

measurements of the same compounds across the panel (Figure

S2). To benchmark this value, we investigated reproducibility in

public datasets. Despite the general consensus that public data sets

of compound profiling experiments are of high value to the drug

discovery community, information on the reproducibility of the

data is sparse. For the NCI60 panel a maximum variation of IC50

of a factor 11 was observed when the same compound was

measured on two different occasions (Figure S2C) Furthermore, in

a recent analysis of chEMBL data [21], when two groups in

different laboratories measured the same constant, a standard

deviation of 0.8 in 10logIC50s was found. This translates to a factor

of 100.8 = 6 as standard deviation in IC50s. We therefore conclude

that our cell line profiling data are highly reproducible.

To determine whether the panel has sufficient size, we

performed a power analysis. Depending on the number of cell

lines that carry a specific cancer gene mutation, an IC50 shift of 2

to 10 times between responders and non-responders is statistically

significant (Table S4). These limits fall well within responses

usually observed [4], and therefore a 44-cell line panel is suitably

large to perform drug responder analyses.

Profiling of Clinical Kinase Inhibitors in the Cell Panel
In a comparative drug sensitivity analysis, we profiled all

twenty-five kinase inhibitors in clinical use on all forty-four cell

lines, together with six classic cytotoxic agents and the proteasome

inhibitor bortezomib (Figure 2C, Table S5). All kinase inhibitor

drugs approved for oncology showed anti-proliferative activity on

at least some of the cell lines. Only tofacitinib and fasudil, the two

drugs that are approved for non-cancer indications (Table 1),

showed no or very poor inhibitory activity.

Clustering of all cell proliferation data (Figure 2C) confirmed

that cytotoxic agents have relatively undiscriminatory activity

against all cell lines. The profile of the proteasome inhibitor

bortezomib resembles that of cytotoxic agents, illustrating that

inhibiting a well-defined target does not result in a targeted

therapy when the target performs a general physiological function.

Of all cell lines, SHP-77 was the least sensitive to doxorubicin,

cisplatin, docetaxel, etoposide, vincristine and bortezomib

(Figure 2C), which coincides with its expression of multiple

multi-drug-resistance mechanisms [24]. HCT-15 and DLD-1 are

different in karyotype but originate from the same patient [25].

Consistently, the profiles of the two cell lines cluster together. SW-

620 and SW-480 also originate from the same patient but do not

cluster together, primarily because SW-620, which is derived from

a metastasis, is substantially more sensitive to the MEK inhibitor

trametinib (Figure 2C).

Clear targeted effects are shown by kinase inhibitor drugs, as

many inhibit the proliferation of only a few cell lines. Which lines

depends on their mechanism of action. For example, the EGFR

inhibitors lapatinib, erlotinib and gefitinib cluster together because

they inhibit the same subset of cell lines, most notably AU-565,

FaDu, CAL 27 and C-33A, which originate from a variety of

tissues and have the common characteristic that they overexpress

EGFR (Table S3). The ABL1 inhibitors imatinib and nilotinib

cluster together because they selectively inhibit the cell lines A-204

and K-562 that are dependent on ABL1 for growth (Figure 2C).

However, other kinase drugs inhibit the growth of multiple cell

lines, such axitinib, ponatinib, bosutinib, sunitinib and crizotinib,

which cluster together in the heat map (Figure 2C), the mTOR

inhibitors temsirolimus and everolimus, and the MEK inhibitor

trametinib (Figure 2C). To further analyse the cellular selectivity of

kinase inhibitors, we compared the most potent cellular IC50 of a

compound, as a measure of specific cellular activity, with the

average IC50 in the full panel, as a measure of general cellular

toxicity. Classic cytotoxic therapies and bortezomib show a 10-fold

difference between the average IC50 in the cell panel and the most

potent IC50 (Figure 2D). In contrast, most kinase inhibitors showed

a 100-fold difference, and dasatinib even a more than 1000-fold

difference (Figure 2D), demonstrating that kinase inhibitors indeed

In Vitro Profiles of Targeted Kinase Inhibitors
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Figure 1. 2D structures of the kinase inhibitors profiled in this study. All are kinase inhibitors that were approved for clinical use at Nov.
2013.
doi:10.1371/journal.pone.0092146.g001
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achieve an improved selectivity window in comparison to classic

chemotherapeutic agents.

Biochemical Profiling of Clinical Kinase Inhibitors
To relate the anti-proliferative activity of kinase inhibitor drugs

to the inhibition of specific kinase targets, all compounds were

profiled at a single concentration on a panel of more than 300

biochemical kinase assays (Figure 3A, Table S6) [11]. Additionally,

for the most important targets, IC50 values were determined

(Table 1). For vemurafenib, dabrafenib, trametinib, regorafenib

and cabozantinib, this is the first large kinome profile in the public

domain. A comparison of the approved RAF inhibitors vemur-

afenib and dabrafenib shows that dabrafenib is much more potent

than vemurafenib on wild type BRAF and mutant BRAF(V600E).

Dabrafenib also inhibits substantially more kinases (Table 1;

Figure 3A). The first profile of trametinib reveals that, as most

MEK inhibitors [26], it is exquisitely selective (Figure 3A).

Regorafenib is a structural analog of sorafenib and shows a

similar biochemical profile (Figure 3A). Regorafenib has been

classified as more potent [18]. However, the data show that this is

true for its inhibition of VEGFR2, a target of angiogenic drugs,

but not for PDGFRa, a target in gastro-intestinal stromal tumours,

an indication for which regorafenib is approved as well (Table 1).

Biochemical inhibition of TIE2, another receptor involved in

angiogenesis, was minor, consistent with a previous report (Table

S6) [18]. Instead, regorafenib has substantial additional inhibitory

activity on several oncogenic kinases, including the Ephrin

receptors and p70S6K, that might contribute to its differential

clinical profile [27]. Cabozantinib has been characterized as a

combined VEGFR2, MET and RET inhibitor and is one of the

most potent VEGFR2 inhibitors (Table 1). It is approved for use in

medullary thyroid carcinoma, consistent with its potent inhibition

of RET [28]. However, this is not a distinguishing characteristic of

cabozantinib, as all growth factor kinase receptor inhibitors, and

many ABL1 inhibitors are potent RET inhibitors (Table S6).

Cabozantinib’s activity on MET, another important drug target

[29], is much more special, as crizotinib is currently the only other

approved drug that inhibits this kinase.

The biochemical profiles of all twenty-five kinase drugs in the

same assay panel allow us to study how biochemical potency and

selectivity influence general cellular targeting. This is important, as

in the kinase field, selectivity of new drug candidates is a much-

debated issue [30–32]. Improved biochemical potency correlates

with improved cellular IC50s, and the strength of this relation is

target-dependent (Figure 3B). To monitor biochemical selectivity,

we summarized the kinome profiles by calculating the selectivity

entropy (Table 1) [33]. The lower this value, the more selective a

compound. A lower biochemical selectivity entropy is expected to

result in less general cellular toxicity as determined by average cell

panel IC50 and this is indeed the case for many inhibitors

(Figure 3C). Axitinib, ponatinib, bosutinib, sunitinib and crizotinib

have a high entropy (Table 1) and show broad cellular activity

(Figure 3C). The cellular toxicity of EGFR, ABL1 and

BRAF(V600E) inhibitors also improves with increasing selectivity

(Figure 3C). The exceptions are the mTOR and MEK inhibitors

which are biochemically highly selective inhibitors (Table 1,

Figure 3A) but inhibit the proliferation of many cells. This

confirms that MEK and mTOR drive the proliferation of many

cell lines, and illustrates that the selectivity of a cellular response

also depends on the biological target.

Genetic Markers of Drug Sensitivity
To explore the biology underlying the cellular responses, we

investigated the genetic determinants of response to the twenty-five

kinase inhibitor drugs in an unbiased manner. We correlated any

differences in IC50 by Anova analysis with mutations, transloca-

tions, mRNA overexpression and DNA copy number changes in a

set of highly frequent and validated cancer genes (Table S3 and

Figures S3 to S5). Several known associations of targeted therapies

were used to validate the cell panel as an investigational tool for

the discovery of new drug sensitivity markers. For instance, nutlin

3a, a compound stabilizing the interaction of p53 with MDM2,

inhibited the proliferation of cell lines wild-type for TP53 more

potently than cell lines expressing mutant TP53 (Figure S3). The

BRAF inhibitors vemurafenib and dabrafenib preferentially

inhibited the proliferation of cell lines containing the

BRAF(V600E) mutation. ABL1 inhibitors and EGFR inhibitors

preferentially inhibited cell lines that are dependent on ABL1 and

EGFR oncogenes, respectively (Figures S4 and S5).

With the Anova analysis, we discovered new drug sensitivity

markers for MEK and EGFR inhibitors. The MEK inhibitor

trametinib preferentially inhibited cell lines carrying mutations in

CTNNB1, which encodes the transcription factor b-catenin
(Figure 4A). The association was confirmed with two other

MEK inhibitors, i.e. AZD6244 and PD0925301 (Figure S6). On

average, the MEK inhibitors were between 12 and 37 times more

potent in cell lines expressing mutant b-catenin in comparison to

cell lines expressing only the wild-type protein. An additional

interesting finding is that all four EGFR inhibitors, including

afatinib, are more active in proliferation assays in cell lines

harbouring a mutation in SMAD4 (Figure 4B and Figure S5). The

association was confirmed with two other EGFR inhibitors that

are still in clinical development, i.e., pelitinib and neratinib (Figure

S7). The difference in the activity of the EGFR inhibitors in

SMAD4 mutant versus wild-type cells ranged from 2 to 12 times.

Comparing Targeting Efficacy within Inhibitor Classes
Analysis of the genetic determinants of cellular response allows

comparison of the specificity of cellular targeting of different drugs

that have been designed to inhibit the same molecular target, such

as EGFR, ABL1, or BRAF inhibitors (Table 1, Figure 5).

EGFR inhibitors are one of the earliest examples of targeted

therapies (Table 1). Gefitinib, erlotinib and afatinib have been

approved for EGFR-overexpressing lung cancer. Also lapatinib

has activity against EGFR (IC50, 4.9 nM, Table 1). These

inhibitors are all highly selective (Table 1). In addition, the

spectrum selective inhibitors vandetanib, bosutinib, ponatinib and

dasatinib are potent EGFR inhibitors (Table S6). Overlay of the

individual Anova analyses for EGFR shows that the selective

inhibitors have a better correlation with EGFR expression levels

and larger potency shifts than spectrum-selective inhibitors

(Figure 5A). Also EGFR specific inhibitors, such as gefitinib and

erlotinib, have a better targeting efficacy than the dually selective

Her2/EGFR inhibitors lapatinib and afatinib, even though the

irreversible inhibitor afatinib is most potent on EGFR. The most

targeted EGFR inhibitor is gefitinib (most top-left in Figure 5A),

which has similar biochemical properties as erlotinib (Table 1). Its

superior targeting is probably related to specific off-target

activities: i.e., gefitinib is less active on ABL1 and more active on

the EGFR(T290M) mutant and the Ephrin receptors, which can

suppress EGFR by cross-talk [34].

The discovery that the growth of many tumours is driven by a

specific mutation in the BRAF oncogene, i.e., BRAF(V600E), has

led to the development of the RAF inhibitors vemurafenib and

dabrafenib (Table 1). Trametinib is an inhibitor of MEK, which

acts downstream of BRAF and is also registered for BRAF mutant

cancers [19]. Sorafenib has been characterized as an inhibitor of

BRAF [35], but has not been approved for BRAF-mutant cancers

In Vitro Profiles of Targeted Kinase Inhibitors
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and poorly inhibits BRAF biochemically (Table 1). Anova analysis

of the cell line profiling data reveals a strong association of the

anti-proliferative activity of dabrafenib with mutant

BRAF(V600E), followed at a distance by vemurafenib (Figure 5B).

Dabrafenib inhibited BRAF mutant cell lines with a 284 times

lower IC50 than non-mutant cell lines. For vemurafenib the

difference was 3-fold. There was no correlation between the

cellular activity of sorafenib and BRAF(V600E). Targeting efficacy

of the RAF inhibitors is related to the enhanced biochemical

potency of dabrafenib compared to vemurafenib, as dabrafenib is

less selective (Table 1).

Another important class of kinase inhibitor drugs are those

targeting ABL1, of which a re-arranged form, i.e., BCR-ABL1,

drives Philadelphia chromosome-positive chronic myelogenous

leukemia (CML). Imatinib, nilotinib, dasatinib, ponatinib and

bosutinib are approved drugs for this indication. However, also

many growth factor kinase inhibitors such as crizotinib, vandeta-

nib, axitinib and sunitinib are potent ABL1 inhibitors (Figure 3A,

Table S6). Anova analysis of cancer cell line profiling data reveals

a strong association with ABL-dependent cell growth for all CML-

approved inhibitors, except bosutinib (Figure 5C). Dasatinib shows

the most potent IC50 shift, which can be assigned to its superior

potency. Because dasatinib is spectrum selective and inhibits the

growth of many different cell lines, the significance (p-value) of the

association is low. The most targeted ABL1 inhibitor in Figure 4C

is actually the most selective ABL1 inhibitor, imatinib (Table 1).

Quantification of Cancer Gene Targeting
To further compare inhibitors, we developed a quantitative

measure of cancer gene targeting on the basis of cell panel data

and response analysis. The average IC50 shift (DIC50) of a

compound in the Anova analyses was taken as basis, as it indicates

the difference in potency of a compound between sensitive

(mutant) and insensitive (wild-type) cell lines. Another important

parameter is the remaining variance between IC50s in the wild

type or oncogene-carrying group of cell lines (smut or wt), which is

indicative of additional effects on cell growth besides the main

inhibitor mechanism. To combine both values we selected the

standardized mean difference (SMD) as a quantitative tool, which

is calculated as DIC50/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(smutzswt)

p . For the clinically used EGFR,

ABL1 and BRAF kinase inhibitor drugs this quantity clearly shows

that dabrafenib and imatinib are exceptionally targeted and that

gefitinib and erlotinib are near-equivalent (Figure 5C), suggesting

that the SMD of IC50s is a good tool to rank the targeting of drug

candidates and existing therapies.

Deducing Optimal Kinome Profiles
It has been argued that specific cross-reactivities, in addition to

a primary biochemical activity, can positively contribute to the

cellular targeting of kinase inhibitors by inhibiting resistance or

feedback signalling [32,36,37]. Many research groups have tried to

design specific, dual-activity, or even multiple-activity kinase

inhibitors [31,38,39]. However, the question which inhibitor

profile is most optimal to target a particular genetic driver has not

been answered. Using cellular and biochemical data, we have

started to derive such ‘optimal’ biochemical profiles for cellular

targets.

Given the importance of ABL1 inhibitors (Table 1), we first

searched for any biochemical activity, in addition to inhibition of

ABL1, that may contribute to the targeting efficacy of this drug

class. Twenty relevant kinases, including all targets of currently

approved kinase inhibitor drugs, were selected as candidates that

might confer beneficial secondary activities. If any of these kinases

were inhibited by any of the 25 kinase inhibitor drugs (.80% in

Table S6), the pair was labelled ‘active’, otherwise ‘inactive’. The

resulting biochemical activity matrix was used in an Anova

analysis together with the cellular targeting SMDs (Figure 5D) to

identify biochemical activities that target cell lines that carry the

ABL1 oncogene. Aside from the expected identification of ABL1,

this analysis surprisingly revealed ABL2 (ARG) as significant side-

activity (Figure 6A). This finding was confirmed using elastic net

regression analysis (not shown), and ABL2 was further validated by

studying a separate dataset of binding Kds [12], confirming that

ABL2-binding augments the targeting efficacy of ABL1 inhibitors

in the cell line panel (Figure 6B). The contribution of ABL2

explains why bosutinib, which is a potent inhibitor of ABL1 but

lacks ABL2 activity, has relatively weak targeting efficacy on ABL1

oncogene-carrying cells compared to other ABL1 inhibitors

(Figure 5C).

Discussion

The development of selective kinase inhibitors has resulted in a

number of breakthrough medicines for genetically well-defined

patient populations [2,40]. To support the development of the

next generation of targeted kinase inhibitors, we have performed

an in-depth analysis of the cellular and biochemical on-target

efficacy of all kinase inhibitors in clinical use (Nov. 2013), by

parallel profiling of all compounds on a panel of forty-four cell

lines and a large kinase assay panel (Figures 2 and 3).

First, analysis of our data shows that there is potential for new

applications of approved targeted kinase inhibitors (Figures S4 and

S5). We discovered new drug sensitivity markers for MEK and

EGFR inhibitors. MEK inhibitors were 12 to 37 times more active

in cells harbouring mutated CTNNB1 (Figure 4A). Although MEK

inhibitors were included in the cell panel profiling studies of the

Sanger Centre [4] and the Broad Institute [5], the association of

MEK inhibition and CTNNB1 was not observed in these studies.

Studies in animal models and with patient derived material have

shown that Wnt/b-catenin signalling stabilizes signalling via the

RAS pathway, of which MEK is a component [41]. In lung

smooth muscle cell line lines, the synthesis of b-catenin is regulated

by MEK [42], suggesting that MEK inhibitors can stop aberrant

Wnt signalling by inhibition of MEK-dependent b-catenin
synthesis. Clinical treatment of CTNNB1-mutant cancers with

MEK inhibitors is therefore worth further investigation.

Another new drug sensitivity marker was identified for EGFR

inhibitors, which were not only active in EGFR-overexpressing cell

lines, but also in cell lines harbouring SMAD4 inactivating

mutations (Figure 4B). The association is supported by a biological

rationale, as many EGFR overexpressing cell lines also harbour

inactivating mutations in SMAD4 (e.g., in our panel, BxPC3, CAL

27 and FaDu). Inactivation of SMAD4 cooperates with KRAS to

enhance EGFR expression levels [43]. In turn, this increases

sensitivity to EGFR inhibitors [43,44]. SMAD4 mutation may

therefore be further explored as a candidate marker for the

selection of patients eligible for EGFR-inhibitor therapy.

Next our data shows that there is still potential to increase the

targeting to highly validated cancer driving genes such as BRAF,

ABL1 and EGFR. Our data demonstrate that biochemical potency

(illustrated by comparing dabrafenib to vemurafenib) and

biochemical selectivity (illustrated by comparing the EGFR

inhibitors) are both important for effective targeting of EGFR,

BRAF and ABL1 inhibitors to EGFR, BRAF(V600E) and ABL1

transformed cell lines (Figure 5). These insights give new directions

for drug discovery. For instance, all second generation ABL1

inhibitors are less selective than the most targeted ABL1 inhibitor

imatinib, because they are all optimized to inhibit the AB-

In Vitro Profiles of Targeted Kinase Inhibitors
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L1(T315I) resistance mutation (Table 1). A compound that is more

selective (or more potent with equal selectivity) than imatinib is

predicted to be even more targeted towards ABL1-driven cell

growth. Along similar lines, a compound equipotent to dabrafenib

but biochemically more selective is predicted to target

BRAF(V600E) mutant melanoma more effectively in vivo than

current available BRAF inhibiting drugs.

Finally, our combination of cell panel and biochemical panel

data generate new insight in the relation between spectrum-

selectivity of kinase inhibitors and their cellular targeting efficacy.

Spectrum selectivity is generally not a beneficial property, unless

specific and fortuitous combinations of biochemical activities are

combined in one compound. We developed a novel method for in

silico identification of such fortuitous polypharmacology. This

revealed that ABL1 inhibitors benefit from a secondary ABL2

activity in the targeting of ABL1-driven cell growth (Figure 6). The

association makes biological sense as ABL2 is an oncogene in its

own right [45] and ABL1 and ABL2 can have mutually supporting

roles in the regulation of cell growth [46,47]. We are currently

expanding this analysis to more genetic drivers to provide ‘ideal’

kinome profiles for the design of multikinase inhibitors with

improved targeting efficacy. Profiling methods, based on the

combination of cellular and biochemical panels are therefore

indispensable tools in the development of targeted therapy.

Figure 2. Cellular profiling of marketed kinase inhibitors. A: Tissue origin of cell lines in the Oncolines panel. B: Frequency of cancer gene
changes in the cell panel, i.e., mutations, translocations and copy number changes in the COSMIC Cell Line Project [4]. C: Hierarchical clustering of
profiling data of marketed kinase inhibitor drugs in the 44-cell line panel. Unscaled 10logIC50s were used. Doxorubicin_123 is a triplicate profiling for
control. Non-kinase inhibitors are coloured red. D: Kinase inhibitors have a greater selectivity in the cell panel than classic cytotoxic agents (5-
fluorouracil, cisplatin, vincristine, doxorubicin, etoposide, docetaxel and bortezomib).
doi:10.1371/journal.pone.0092146.g002
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Materials and Methods

Cell Preparation
All cell lines were purchased from the American Type Culture

Collection (ATCC, Manassas, VA, U.S.A.) and were authenticat-

ed by ATCC. Master and working cell banks and assay-ready

stocks were prepared by subculturing in ATCC-recommended

media and freezing according to ATCC recommended protocols.

Master cell banks, working cell banks and assay stocks were

prepared between 3, 6 and 9 passages from the original ATCC

vial, respectively. A full list of the cell lines in the Oncolines panel

is available in Table S7.

Figure 3. Biochemical profiling of marketed kinase inhibitors. A: Hierarchical clustering of inhibitory profiles of all kinase drugs in a panel of
more than 300 biochemical kinase assays (%-inhibition at 1 mM inhibitor concentration). Trametinib, everolimus and temsirolimus show only minor
inhibition, as mTOR and MEK kinase assays are not included in the panel. B: Potent biochemical IC50s on the biological target correlate with more
potent cellular IC50s. C: Biochemical selectivity leads to a more selective response in the cell panel. Biochemical selectivity was quantified by
selectivity entropy [33] and the selectivity of targeting cell growth was expressed by the average IC50 in the cell panel. Non-oncology drugs fasudil
and tofacitinib were deleted from the analysis because of lack of response. Open circles: the mTOR and MEK inhibitors everolimus, temsirolimus and
trametinib, respectively.
doi:10.1371/journal.pone.0092146.g003
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Compound Preparation
All compounds were obtained from commercial suppliers (Table

S1) and dissolved in 100% DMSO. At the day of the experiment,

the compound stock was diluted in 3.16 fold steps in 100% DMSO

to obtain a 9-point dilution series, followed by further dilution in

aqueous buffer. A volume of 5 ml was transferred to the cells to

generate a test concentration range from 3.16?1025 M to

3.16?1029 M in duplicate. In case a compound showed low

nanomolar or subnanomolar activity, it was further diluted 100

times and a new dose-response curve in duplicate was measured.

The final DMSO concentration during incubation was 0.4% in all

wells.

Clinical Status of Compounds
Information on the therapeutic application of compounds was

obtained from the label information of the US Food and Drug

Administration (www.fda.gov).

Cell Proliferation Assay
An assay stock was thawed and diluted in the media as

recommended by ATCC, and dispensed in a 384-well plate,

depending on the cell line used, at a concentration of 400–1600

cells per well in 45 ml medium. For each used cell line the optimal

cell density was used and the number of cells per well was

optimized to obtain a maximum assay window. Plated cells were

incubated in a humidified atmosphere of 5% CO2 at 37uC. After
24 hours, 5 ml of compound dilution was added and plates were

further incubated for another 72 hours after which 25 ml of

ATPlite 1Step (PerkinElmer, Groningen, The Netherlands)

solution was added to each well. Luminescence was recorded on

an Envision multimode reader (PerkinElmer, Waltham, MA,

U.S.A.).

Controls
Firstly, the cell signal at the start of incubation was recorded

separately in order to distinguish between cell population growth

and cell death. Secondly, for each cell line, the maximum growth

was measured by incubation of a duplicate without compound in

the presence of 0.4% DMSO. Third, as a control for compound

dilutions, the IC50 of the reference compound doxorubicin was

measured on a separate plate. The IC50 was trended. If the IC50

was out of specification (i.e. ,0.32 or .3.16 times deviating from

historic average) the assay was invalidated. Fourth, the cellular

doubling times of all cell lines were calculated from untreated

wells. If the doubling time was out of specification (i.e., ,0.5 or .

2.0 times deviating from historic average) the assay was

invalidated.

Curve Analysis
Percentage growth was used as the main y-axis signal. IC50s

were fitted by non-linear regression using IDBS XLfit5 using a 4-

parameter logistic curve, yielding a maximum signal, minimum

signal, hill-parameter and IC50. In addition, using the initial cell

counts, measures for cell death (LD50) and growth inhibition (GI50)

were fitted [9]. All curves were checked manually. Furthermore,

all curves were submitted to an F-test as implemented in XLfit5. If

F values exceeded 1.5, curves were invalidated. For some

compounds, biphasic curves were measured and in these cases

the most potent effect was fitted. Curves were not extended to

outside the measured range; all reported IC50s were measured

within an enveloping concentration range.

Clustering of Cellular and Biochemical Data
Cellular 10logIC50s were used as unscaled data to preserve their

physical meaning and to compare absolute compound potencies.

Biochemical %-inhibition data at 1 mM (see below) were restricted

to values between 0% and 100% before clustering. For both

Figure 4. Anova analysis reveals novel drug response markers. A: the MEK inhibitor trametinib and B: the EGFR inhibitor afatinib. The
volcano plots show the average IC50 shift between mutant and non-mutant cell lines (x-axis) and the significance from the Anova test (y-axis).
Significance was corrected for multiple-testing and all associations above the threshold level (dotted line) are coloured green. Areas of circles are
proportional with the number of cell lines carrying mutations.
doi:10.1371/journal.pone.0092146.g004

In Vitro Profiles of Targeted Kinase Inhibitors

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e92146



datasets we applied unsupervised hierarchical clustering in the

program R [48], using Ward’s minimum variance method [49,50]

with Euclidean distances for compounds and Spearman rank

correlation [49] clustering for cell lines and kinases (Figure 2A and

Figure 3A).

Anova Analysis and Volcano Plots of Cell Line Mutations
Anova (analysis of variance) was used to test if there is a

statistical correlation between a particular genetic change in the

panel of cell lines and drug sensitivity. In principle, any number of

genetic markers can be queried but because the number of

hypotheses influences the reliability of associations in Anova

analysis, we selected for our analysis the most frequent and most-

studied oncogenes, as assessed from their frequency in a large cell

line panel [4]. The genetic status (limited to ‘mutant’ or ‘wild-

type’) of 23 frequently changed cancer genes was established for

each cell line using public capillary sequencing data from the CCL

database (Table S3) [4]. Cell lines K-562 and A-204 were labelled

as having an ABL1 transformation on basis of the literature

[51,52], as these cell lines were mislabelled as not ABL1-

transformed in the CCL database. Mutations were treated as

factors and the 10log IC50 as signal and analysed by n-way Anova

in the statistical program R [48]. IC50 data were not normalized,

but taken as-is, as this was giving good results for known

associations. No interactions between factors were allowed. The

minimum number of mutants for each gene to be incorporated in

the test was 2, consistent with earlier analyses [4]. To minimize the

effect of unbalanced sample populations, a type II sum-of-squares

was used (type II Anova). Results of the Anova test were plotted as

volcano plots, with at the y-axis the significance p-values and at the

x-axis differences in the average 10log IC50 between mutant and

wild-type cell lines. To correct for multiple testing, p-values were

subjected to a Benjamini-Hochberg correction [53]. Genetic

associations with a ,20% false discovery rate were considered

significant, unless otherwise indicated.

Anova Analysis of Target Expression and Copy Number
Data
For gene expression and copy number analysis, we limited the

amount of hypotheses in Anova testing and reduced multiple-

testing artefacts, by only considering the validated oncology targets

EGFR, ERBB2, Kit, Met, PDGFRa and PDGFRb (Table S3).

Gene expression and copy number data for these targets were

Figure 5. Comparison of the targeting efficacy of marketed inhibitors. Each circle represents a marketed kinase inhibitor and its targeted
cell growth inhibition. A: Cell lines that overexpress EGFR. B: Cell lines containing the BRAF(V600E) mutation. C: Cell lines containing aberrant ABL1
signalling. Compounds in the upper left corner of the plots have superior targeting. Statistically relevant associations after correction for multiple
testing are coloured blue. D: Quantitative comparison of inhibitor targeting by standardization of IC50 shifts between sensitive and non-sensitive cell
lines.
doi:10.1371/journal.pone.0092146.g005
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downloaded from the CCLE [5]. Any cell line with expression or

copy number levels at 1 standard deviation above the average level

seen for that gene in the 1037 cell lines of the CCLE was labelled

as positive, the other cell lines as negative. Correlation between

target overexpression and 10logIC50 was subsequently analysed

with type II Anova as above.

Kinase Profiling in a Biochemical Assay Panel
Previously, we described the profiling of nine kinase inhibitor

drugs in a panel of more than 300 kinases using mobility shift

assays and ELISA technology [11]. In the same panel and under

the same conditions the other sixteen kinase inhibitor drugs were

profiled. The compound concentration was 1 mM and the ATP

concentration within two-fold of the KM,ATP for every individual

kinase (KM bin). All 1 mM full profiles are given in Table S6. For

the most important kinase targets for each compound, IC50s were

determined (Table 1).

Selectivity entropy is a quantitative, single-value expression of

the selectivity of compounds, allowing facile comparison of relative

selectivity based on data from large pharmacological profiling

experiments [14,33]. Selectivity entropies were calculated from the

IC50 data of Kitagawa et al. [11] or estimated from single

concentration profiles as explained and validated in Figure S8

and Gubler et al. [54]. Only wild type kinases were included.

Where applicable, estimated IC50s were replaced by measured

IC50s to improve the selectivity entropy estimates (Table 1).

Coupling of Biochemical Activity and Cellular Activity
Biochemical profiles were statistically linked to cellular profiles

to deduce the optimal kinase profile for optimal cellular targeting

activity. For the ABL1 oncogene, cellular targeting standardized

mean differences (SMDs) were calculated for each kinase inhibitor

drug as outlined above (Figure 5D). Each kinase drug was defined

in terms of its biochemical inhibitor spectrum by assigning a label

‘active’ for each kinase that it inhibits .80% at 1 mM (Figure 3A),

and ‘inactive’ for other kinases. The resulting matrix of inactive

and active labels was subsequently used as explanatory variable in

type II Anova analyses of the cellular targeting SMDs. Kinases

considered in the definition of the biochemical inhibition spectra

were the targets denoted in Table 1, supplemented with validated

oncology targets picked from separate branches in the hierarchical

clustering tree of kinases (Figure 3A). The final list comprised

ABL1, ABL2, ALK, MET, ROS, EGFR, HER2, BRAF, KIT,

PDGFRa, PDGFRb, RET, JAK2, KDR, DDR1, AXL, AurA,

SRC, FGFR1 and FLT3. Results were plotted in a volcano plot as

outlined above, including Benjamini-Hochberg correction

(Figure 6A) [53]. Kinase binding data of a subset of the clinically

approved inhibitors [12] were used to validate the finding

(Figure 6B).
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Figure S4 Volcano-analysis of drug sensitivity of twen-
ty-five approved kinase inhibitors and seven cytostatic
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specific targeting of ABL1 dependent cell growth. The circle labelled ABL1 refers to biochemical ABL1 inhibition. B: Inhibitors with equal ABL1 and
ABL2 affinity in an independent dataset [12] are better in targeting ABL1-dependent cell growth than inhibitors with ABL1 activity alone. Poor ABL2
affinity signifies binding Kd differences between 4 and 26-fold compared to ABL1. Equal affinity signifies binding Kd differences between 0.5 and 4-
fold.
doi:10.1371/journal.pone.0092146.g006
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32. Fabbro D, Cowan-Jacob SW, Möbitz H, Martiny-Baron G (2012) Targeting

cancer with small-molecular weight kinase inhibitors. Methods in Mol Biol 795:

1–34.

33. Uitdehaag JCM, Zaman GJ (2011) A theoretical entropy score as a single value

to express inhibitor selectivity. BMC Bioinformatics 12: 94.

34. Li JJ, Liu DP, Liu GT, Xie D (2009) Ephrin A5 acts as a tumor suppressor in

glioma by negative regulation of epidermal growth factor receptor. Oncogene

28: 1759–1768.

35. Wilhelm S, Chien DS (2002) BAY 43–9006: preclinical data. Curr Pharm

Design 8: 2255–2257.

36. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase

inhibitors Nature Rev Cancer 9: 28–39.

37. Prahallad A, Sun C, Huang S, Nicolantonio F, Salazar R, et al. (2012)

Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback

activation of EGFR. Nature 483: 100–103.

In Vitro Profiles of Targeted Kinase Inhibitors

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e92146

(XLSX)



38. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through

polypharmacology. Nature Rev Cancer 10: 130–137.

39. Morphy R (2010) Selectively nonselective kinase inhibition: striking the right

balance. J Med Chem 53: 1413–1437.

40. Patel MN, Halling-Brown MD, Tym JE, Workman P, Al-Lazikani B (2013)

Objective assessment of cancer genes for drug discovery. Nature Rev Drug Disc

12: 35–50.

41. Jeong W-J, Yoon J, Park JC, Lee SH, Kaduwal S, et al. (2012) Ras stabilization

through aberrant activation of Wnt/b-catenin signaling promotes intestinal

tumorigenesis. Science Signaling 5: ra30.

42. Gosens R, Baarsma HA, Heijink IH, Oenema TA, Halayko AJ, et al. (2010) De

novo stabilization of b-catenin via H-Ras and MEK regulates airway smooth

muscle growth. The FASEB J 24: 757–768.

43. Zhao S, Wang Y, Cao L, Ouellette MM, Freeman JW (2010) Expression of

oncogenic K-ras and loss of Smad4 cooperate to induce the expression of EGFR

and to promote invasion of immortalized human pancreas ductal cells.

Int J Cancer 127: 2076–2086.

44. Mimori K, Yamashita K, Ohta M, Yoshinaga K, Ishikawa K, et al. (2004)

Coexpression of matrix metalloproteinase-7 (MMP-7) and epidermal growth

factor (EGF) receptor in colorectal cancer: an EGF receptor tyrosine kinase

inhibitor is effective against MMP-7 expressing cancer cells. Clin Cancer Res 10,

8243–8249.

45. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL

family kinases in cancer: from leukaemia to solid tumours. Nature Rev Cancer

13: 559–571.

46. Colicelli J (2010) ABL tyrosine kinases: evolution of function, regulation and

specificity. Sci Signal 3: (139) re6.
47. Ganguly SS, Fiore LS, Sims JT, Friend JW, Srinivasan D (2012) c-Abl and Arg

are activated in human primary melanomas, promote melanoma cell invasion

via distinct pathways, and drive metastatic progression. Oncogene 31: 1804–
1816.

48. R development core team (2008) R: a language and environment for statistical
computing. R Foundation for statistical computing, Vienna, Austria.

49. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am

Stat Assoc 58: 236–244.
50. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM

computing surveys 31: 264–322.
51. Koos B, Jeibmann A, Lünenbürger H, Mertsch S, Nupponen NN (2010) The

tyrosine kinase c-Abl promotes proliferation and is expressed in atypical tertoid
and malignant rhabdoid tumors. Cancer 116: 5075–5081.

52. McGahon AJ, Brown DG, Martin SJ, Amarante-Mendes GP, Cotter TG, et al.

(1997) Downregulation of Bcr-Abl in K562 cells restores susceptibility to
apoptosis: characterization of the apoptotic death. Cell Death Differ 4: 95–104.

53. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Royal Statistic Soc B 57: 289–300.

54. Gubler H, Schopfer U, Jacoby E (2013) Theoretical and experimental

relationships between percent inhibition and IC50 data observed in high-
throughput screening. J Biomol Screen 18: 1–13.

55. Sedrani R, Cottens S, Kallen J, Schuler W (1998) Chemical modification of
rapamycin: the discovery of SDZ RAD. Transplantation proceedings 30: 2192–

2194.

In Vitro Profiles of Targeted Kinase Inhibitors

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e92146


