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Anti-programmed cell death 1 (PD-1) or anti-PD-ligand (L) 1 drugs, as classic immune
checkpoint inhibitors, are considered promising treatment strategies for tumors. In clinical
practice, some cancer patients experience drug resistance and disease progression in the
process of anti-PD-1/PD-L1 immunotherapy. Tumor-associated macrophages (TAMs)
play key roles in regulating PD-1/PD-L1 immunosuppression by inhibiting the recruitment
and function of T cells through cytokines, superficial immune checkpoint ligands, and
exosomes. There are several therapies available to recover the anticancer efficacy of PD-
1/PD-L1 inhibitors by targeting TAMs, including the inhibition of TAM differentiation and re-
education of TAM activation. In this review, we will summarize the roles and mechanisms
of TAMs in PD-1/PD-L1 blocker resistance. Furthermore, we will discuss the therapies
that were designed to deplete TAMs, re-educate TAMs, and intervene with chemokines
secreted by TAMs and exosomes from M1 macrophages, providing more potential
options to improve the efficacy of PD-1/PD-L1 inhibitors.

Keywords: immune checkpoint inhibitor (ICI), PD-1/PD-L1 axis, immunosuppression, tumor-associated
macrophages (TAMs), immune microenvironment
INTRODUCTION

Cancer is a worldwide health problem, with an increasing number of confirmed cases and a high
mortality (1). Immune escape is one of the most important characteristics of cancers. Tumors
reduce immunogenicity as they divide and proliferate, leading to immune escape. Immune
checkpoint inhibitors (ICIs) are a new method for tumor immune escape that yields survival
benefits for tumor patients. The first ICI that was developed targeted the protein cytotoxic T-
lymphocyte antigen 4 (CTLA-4)-ipilimumab (2), which increased survival by 3.7 months in patients
with advanced melanoma and boosted the field of cancer treatment. ICIs bind to CTLA-4 or PD-1
and its ligand PD-L1, the key targets related to T-cell activation and exhaustion, and then eliminate
immune suppression by tumors.

In the tumor microenvironment (TME), PD-L1 is expressed on the surface of tumors and binds
to PD-1 on T cells to resist the killing effect of T cells, ultimately causing tumor immune escape. The
application of anti-PD-1/PD-L1 monoclonal antibodies (mAbs) to block the PD-1/PD-L1 signaling
pathway has shown excellent antitumor efficacy in a variety of solid tumors (3). However, clinical
studies have demonstrated that some patients do not respond to the therapy, and some patients even
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exhibit tumor recurrence after a period of remission (4). Drug
resistance is a crucial factor that determines the efficiency of anti-
PD-1/PD-L1 ICIs. Therefore, a deeper understanding of the
regulation of the PD-1/PD-L1 axis is essential for the
improvement of antitumor immunotherapy.

The mechanisms of resistance to PD-1/PD-L1 blockade
mainly include dysfunction or activation disorder of T cells,
depletion or reduced infiltration of T cells, and changes in PD-L1
expression (5). The infiltration of T cells in the TME is the
precondition of antitumor immunity, while the infiltration of
immunosuppressive cells is the premise of tumor immune
escape. Tumor-associated macrophages (TAMs) are
immunosuppressive cells that induce drug resistance to PD-1/
PD-L1 therapy. As one of the most abundant cell types in solid
tumors, TAMs contribute to T-cell dysfunction and exhaustion
through the secretion of cytokines and metabolic products (6–8)
and increase PD-L1 expression in tumor cells and other
immunosuppressive cells (9–11). In diagnosed cancers, high
macrophage infiltration is often closely related to the
occurrence of drug resistance to PD-1/PD-L1 immune
suppressants (12–14). Therefore, TAMs have been suggested as
important targets to reverse the resistance to anti-PD-1/PD-L1
therapy. In this review, we highlight the recent findings of the
suppressive effects of TAMs on PD-1/PD-L1 checkpoint
inhibitors. To facilitate precision medicine and expand the
target population, we further discuss combination therapies
that may improve the efficacy of ICIs targeting PD-1/PD-L1.
TAMS MODULATE THE EXPRESSION AND
FUNCTIONS OF PD-1/PD-L1

Macrophages have powerful functions in identifying,
phagocytosing, and removing bacteria and foreign bodies in
the immune system. In the process of tumorigenesis,
macrophages evolve, resulting in the properties of TAMs that
promote tumor growth (15). Mounting evidence suggests that
secretions or exosomes from tumor cells shift the transcriptional
program of TAMs from the M1-like phenotype to the M2-like
phenotype (16–20). In a variety of cancers, the infiltration of M2
TAMs is significantly related to poor prognosis, tumor
progression, and other adverse clinical outcomes (14, 21–24).
Moreover, in the process of anti-PD-1/PD-L1 immunotherapy,
M2 TAMs can also suppress immunotherapy efficacy by
inhibiting T-cell activity and enhancing the expression of PD-
L1 in the TME. Specifically, M2 TAMs inhibit the function of
PD-1/PD-L1 blockers by secreting anti-inflammatory cytokines
and exosomes, increasing superficial immune checkpoint
ligands (Figure 1).

Cytokines Secreted by TAMs
TAMs are capable of secreting several cytokines, which mediate
tumor-promoting activity and immunosuppression in the TME.
Among them, transforming growth factor-b (TGF-b) and
prostaglandin E2 (PGE2) are noteworthy due to their strong
immunosuppressive effect and high correlation with TAM
(25–29).
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TGF-b has been shown to affect anti-PD-1/PD-L1
immunotherapy by inhibiting the activation of T-cells and the
expression of PD-L1 (30). TGF-b derived from TAMs inhibits T-
cell activity by decreasing the expression levels of IFN-g and
Granzyme B (indicating cytotoxic activity) in T cells through
phosphorylation of the Smad2/3 protein and the inhibition of
mitochondrial respiration (31, 32). The expression of TGF-b was
associated with the infiltration of T cells. Tumors with higher
expression of TGF-b presented lower infiltration of CD8+ T cells.
TGF-b can also modulate the function of PD-1/PD-L1 by
regulating PD-L1 expression. In solid tumors such as breast
cancer, TGF-b can induce the upregulation of PD-L1 in tumor
cells and tumor-associated angiogenesis, which may be
associated with the accumulation of succinate in tumor cells
(11). Increased TGF-b levels in the TME not only promoted T-
cell exclusion and accumulation of regulatory T cells (Tregs) (33)
but also blocked the acquisition of the Th1 effector phenotype
(34). In addition, since TGF-b in the TME originates from a
variety of cells (35), immunosuppression induced by crosstalk
between these cells should also be noted.

PGE2 can inhibit T-cell activation and function by increasing
the expression of PD-L1 (36–38). As a downstream of
cyclooxygenase 2 (COX-2), the level of PGE2 in the TME is
regulated by the expression of COX-2 and microsomal PGE2
synthase 1 (mPGES1) (39). In bladder cancer, TAMs can
increase the expression of PD-L1 in tumor-infiltrating myeloid
cells through the COX-2/mPGES1/PGE2 pathway, which leads
to the exclusion of CD8+ T cells (7). Similarly, PGE2 upregulates
PD-L1 expression in ovarian cancer cells by activating the PI3K-
AKT-mTOR pathway (40). Moreover, PGE2 can induce the
expression of Forkhead Box P3 (Foxp3) to stimulate the
differentiation of immunosuppressive Tregs from naïve T cells
(41). Of particular note is that therapies targeting PGE2 with
NSAIDs or COX-2 inhibitors fail in clinical trials due to global
prostaglandin inhibition, which in turn could cause serious side
effects (42). Therefore, precision therapy targeting macrophages
should be proposed, which may be the next step in reversing
drug resistance to PD-1/PD-L1 therapy.

Ligands Expressed by TAMs
In addition to the expression of PD-L1 on the surface of TAMs,
there are also homologous immune checkpoint ligands that can
block anti-PD-1/PD-L1 immune efficacy. V-domain Ig-
containing suppressor of T-cell activation (VISTA), an
immune checkpoint ligand expressed by TAMs (43–46), is an
immunosuppressive molecule that reduces T-cell proliferation
and cytokine production while sustaining Treg function (46).
The expression of VISTA is not only positively correlated with
the expression of PD-L1 on the surface of tumor cells but also
correlated with the patient’s poor prognosis, pathological grade,
and lymph node status (47, 48). In fact, a recent study
demonstrated a strong correlation between VISTA expression
and tumor infiltration by myeloid cells and PD-1+ inflammatory
cells (49). Targeting VISTA antibodies can regulate innate
immunity and adaptive immunity by promoting T-cell
infiltration, thereby slowing tumor growth in mouse cancer
models (50). However, VISTA is also highly expressed in
May 2022 | Volume 13 | Article 874589
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hematopoietic and microglial cells (51, 52), and more studies on
the systemic responses to VISTA-targeted therapies are needed.
We look forward to its future application in combination with
anti-PD-1/PD-L1 mAbs.

Moreover, TAMs can prevent the interaction of anti-immune
checkpoint mAbs with the targets through the Fcg receptor
present on cell surfaces (53). Indeed, studies have
demonstrated that after administration, anti-PD-1 mAb binds
to tumor-infiltrating T cells at an early stage but is subsequently
captured by TAMs due to the presence of Fcg receptors, which
ultimately leads to drug failure (53, 54). More importantly,
activation of Fcg receptors by an anti-PD-1 mAb results in
depletion of activated CD8+ T cells in vitro and in vivo,
reducing the therapeutic effect (55). Therefore, the design of
FC-null anti-PD-1 mAbs (55) or specific competitive inhibitors
is one of the future strategies necessary to block Fcg receptor-
mediated resistance and increase T-cell infiltration.

Exosomes Derived From M2 TAMs
Exosomes in the TME have been reported as a medium of
communication between cells for the occurrence and invasion
of tumors (56–58). Exosomes are able to promote the migration of
cancer cells through the PI3K-AKT signaling pathway activated by
apolipoprotein E (59). The effect of M2 TAM-derived exosomes
on drug resistance has also been reported (60), and it has been
Frontiers in Immunology | www.frontiersin.org 3
verified that microRNAs in exosomes are key regulators of
resistance to gemcitabine (60). Analogously, miRNAs of M2
TAM-derived exosomes have also been implicated in the
regulation of anti-PD-1/PD-L1 immunotherapy. MicroRNA-21
(MiR-21) expression is relatively high in glioma and associated
with low infiltration of CD8+ T cells. Inhibiting miR-21 in
exosomes not only improves the proliferation and cytotoxic
activity of CD8+ T cells but also reduces the level of TGF-b1,
which prevents immune escape of glioma cells (61). In addition,
another study showed that the combination of miR-21 deletion
and anti-PD-1 treatment demonstrates better antitumor activity
than either drug alone (62). Moreover, in vivo, miR-155-5p in
exosomes secreted by M2 TAMs can promote the expression of
interleukin-6 (IL-6) in tumor cells, thereby inhibiting the T-cell
immune response (63).
MODULATION OF TAMS TO ELEVATE
ANTI-PD-1/PD-L1 IMMUNOTHERAPY

As mentioned above, TAMs have a multichannel inhibitory
effect on anti-PD-1/PD-L1 immunotherapy. Therefore,
targeting TAMs is of great significance to improve the efficacy
of anti-PD-1/PD-L1 immunotherapy. Currently, strategies are
designed to deplete TAMs, re-educate TAMs, and intervene
FIGURE 1 | Multiple ways in which TAMs regulate the expression and function of PD-1/PD-L1. TAMs can release a variety of cytokines to alter the TME, such as
TGF-b and PGE2. There are also homologous immune checkpoint ligands on the surface of TAMs that can block anti-PD-1/PD-L1 immune efficacy. M2 TAM-
derived exosomes are also potentially associated with PD-1/PD-L1 inhibitors. IL, interleukin; mAb, monoclonal antibody; NK cell, natural killer cell; PD-1, programmed
cell death 1; PD-L1, programmed cell death ligand-1; PGE2, prostaglandin E2; TAM, tumor-associated macrophage; TGF-b, transforming growth factor-b; Treg,
regulatory T cell; VISTA, V-domain Ig-containing suppressor of T-cell activation.
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withchemokines secreted by TAMs. The combination of
the exosomes secreted by M1 macrophages and other
nanoimmunotherapy strategies provides more potential
opt ions to reduce the occurrence of PD-1/PD-L1
immunosuppression (Figure 2). In addition, we summarize the
current clinical trials on different targets of TAMs in
combination with anti-PD-1/PD-L1 mAbs (Table 1).

Depletion of M2 TAMs
As the infiltration of TAMs limits clinically relevant immune
responses (64–66), depleting TAMs seems to be an attractive
strategy. Colony-stimulating factor 1 receptor (CSF-1R) blockers
are the main method by which to deplete M2 TAMs (67, 68).
CSF-1 binds to its receptor, and the latter then undergoes
autophosphorylation, which plays an important role in the
proliferation, differentiation, and maintenance of macrophages
(69). Therefore, a CSF-1R inhibitor (CSF-1Ri) may improve the
efficacy of anti-PD-1/PD-L1 immunity. PLX3397 (pexidartinib),
a CSF-1R kinase inhibitor, can increase the infiltration and
antitumor function of CD8+ T cells in tumors when combined
with anti-PD-1 therapy (70, 71). At the same time, it can also
effectively reduce the appearance of tumor neovascularization
and ascites (72). BLZ945, another CSF-1Ri, combined with a PD-
1/PD-L1 blocking antibody is also effective in controlling tumor
growth (13, 73). Inherent antitumor drugs can also target CSF-
1R to provide a new method for combined immunotherapy.
Erlotinib, a first-generation small-molecule inhibitor targeting
the epidermal growth factor receptor (EGFR) tyrosine kinase, is
suitable for the first-line treatment of EGFR mutation-positive
non-small cell lung cancer (NSCLC). Combination therapy
consisting of its derivative TD-92 and anti-PD-1 contributes to
reduced tumor growth and increased survival in vivo (74).

Re-Education of M2 TAMs
Recently, several findings have suggested that re-education of M2
TAMs rather than depletion may represent a more effective
strategy. Previous studies have reported that the protumor M2
phenotype can be re-educated to the tumoricidal M1 phenotype,
thereby inhibiting the supporting role of TAMs in tumors (75).
BRD4, a bromodomain and extraterminal (BET) family protein,
can enhance the expression of CCL2 by activating the NF-kB
signaling pathway, which, in turn, causes the recruitment of
macrophages in tumors (76). The BRD4 inhibitor AZD5153 can
re-educate TAMs from M2 to M1 and promote the secretion of
proinflammatory cytokines, thereby activating cytotoxic T
lymphocytes (CTLs) in vitro (77). More importantly, AZD5153
was proven to render ovarian cancer sensitive to anti-PD-L1
treatment through a 3-D microfluidic model (77). SF2523,
another BRD4 inhibitor that can block the polarization of
TAMs, restores the activity of CD8+ T cells and then
stimulates the antitumor immune response (78). Furthermore,
the BET inhibitor JQ1 can significantly reduce PD-L1 expression
on tumor cells and TAMs and limit tumor progression in a
cytotoxic T-cell-dependent manner (79).

Ubiquitin-specific protease 7 (USP7), a deubiquitinating
enzyme, is considered a promising therapeutic target because
of its regulatory role in DNA damage and epigenetic inheritance
Frontiers in Immunology | www.frontiersin.org 4
(80). USP7 has been identified as a highly expressed M2 TAM
gene, and specific inhibition of USP7 can reprogram M2 TAMs
into M1 through the P38 MAPK pathway (81). In addition,
targeting USP7 promoted the infiltration and cytotoxicity of
CD8+ T cells in the TME and decreased PD-L1 expression in
tumor cells (81, 82).

Inhibition Chemokines Secreted
by M2 TAMs
In addition to targeting M2 TAMs themselves, the
immunosuppressive effects of M2 TAMs can also be reversed
by inhibiting cytokines secreted by M2 TAMs.

As one of the most important immunosuppressive cytokines
secreted by M2 TAMs, TGF-b changes the TME by limiting the
infiltration of T cells to inhibit antitumor immunity (8).
Combination therapy with a TGF-b inhibitor (1D11 and
galunisertib) and anti-PD-1/PD-L1 resulted in the upregulation
of immune response genes, restoring the cytotoxic activity of T
cells and the antitumor activity of anti-PD-L1 (32, 83). In addition
to the above effects, combinatorial treatment consisting of
tranilast, a TGF-b inhibitor, with Doxil nanomedicine has been
shown to improve M1 macrophage content in the tumor tissue,
which results in the increased efficacy of anti-PD-1 (84). Phase II
research is ongoing to investigate the combined effect of TGF-b
inhibitor (vactosertib) with anti-PD-L1 (durvalumab)
(NCT04064190), while another phase II study is assessing the
efficacy and safety of NIS793 with and without spartalizumab
(NCT04390763) in untreated metastatic pancreatic ductal
adenocarcinoma (mPDAC). In addition, M7824 is a bifunctional
fusion protein comprising a mAb against PD-L1 fused to the
extracellular domain of TGF-b receptor 2 (85). Compared with
targeting TGF-b alone, M7824 has been proven to reduce tumor
burden and improve overall survival (OS) (85). A phase II trial was
performed to determine the efficacy of M7824 plus topotecan or
temozolomide in recurrent SCLC (NCT03554473).

CCL2 is a chemokine that attracts a number of CCR2-high-
expressing monocytes to the tumor site. The role of C-C motif
chemokine receptor 2 (CCR2) seems to influence TAM
recruitment at the tumor site. In a recent study, it was proven
that CCR2 is involved in the recruitment and initiation of tumor-
promoting inflammation (86). Many preclinical studies showed
high efficacy of CCL2/CCR2 antagonists; for instance, targeting
CCR2 with a small-molecule inhibitor not only reduced
recruitment of M2-type macrophages but also induced tumor
infiltration of activated CD8+ T cells (87). Many other preclinical
studies on different tumor types showed that either depletion of
CCR2 or disruption of the CCL2-CCR2 interaction has an
impact on the inhibition of TAM recruitment and tumor
regression or inhibition of metastasis (88–91). A phase I/II trial
of combination immunotherapy with nivolumab and a CCR2/
CCR5 dual antagonist (BMS-813160) is in progress to evaluate
whether this therapy is safe in patients with locally advanced
pancreatic cancer (LAPC) (NCT03767582).

CXC-motif chemokine ligand 12 (CXCL12) is another
chemokine that regulates the migration of monocytes (92).
Elevated C-X-C chemokine receptor 4 (CXCR4) is correlated
with the tumorigenesis of NSCLC (93). CXCL12 secretion could
May 2022 | Volume 13 | Article 874589
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be induced in response to radiation therapy and cause the
accumulation of TAMs in the tumor (94). BL-8040
(motixafortide), one of the CXCR4 antagonists, plus the anti-
PD-1 pembrolizumab in the COMBAT trial contributes to the
improvement found in pancreatic ductal adenocarcinoma
(PDAC) patients (95). After using a new CXCR4 inhibitor
peptide R, the expression of CD73, CD38, and IL-10 in non-
small cell lung cancer is reduced, which can rescue the cytotoxic
activity of T cells and prevent TAM polarization (96). Another
Frontiers in Immunology | www.frontiersin.org 5
CXCR4 antagonist, Pep R, demonstrated efficacy in combination
with nivolumab in melanoma. In addition, there are already 2
observational studies in progress to study whether Pep R can
reverse anti-PD1 resistance (NCT03891485 and NCT03628859).

Many people have recognized the potential of TGF-b, and
there are currently many clinical trials combining TGF-b
targeting with PD-1/PD-L1 treatment (97). However, most
studies have stalled due to serious adverse events or the
observation of minimal clinical benefit (98), which may be
A B

FIGURE 2 | Treatments targeting TAMs to improve anti-PD-1/PD-L1 efficacy. (A) Multiple modes of re-education from M2 TAMs to M1 phenotype. Specific
inhibition of membrane proteins of M2 TAMs and TGF-b secretion can enable TAMs to obtain tumoricidal phenotype. M2 TAMs are repolarized to M1 type by
internalizing vesicles from M1-type macrophages and radiated tumor cells. Precise targeting of TAMs in TME improves the efficacy of anti-PD-1/PD-L1 therapy
through drug delivery platforms such as nanovesicles and hydrogels. (B) Various ways to inhibit TAM recruitment and infiltration in TME. Infiltration of TAMs in TME
can be inhibited by specific inhibition of receptors expressed on the surface of TAM cell membrane or by delivery of drugs via hydrogel. Radiotherapy combined with
ameliorating the hypoxia microenvironment can effectively eliminate the infiltration of TAMs in TME. BRD4, Bromodomain-containing protein 4; CCL, C-C motif
chemokine ligand; CCR, C-C motif chemokine receptor; COX-2, Cyclooxygenase 2; CSF-1R, Colony-stimulating factor 1 receptor; CSF-1Ri, CSF-1R inhibitor;
CXCL, CXC-motif chemokine ligand; CXCR, C-X-C chemokine receptor; RT-MP, Microparticles released by radiated tumor cell; TGF-b, Transforming growth factor-
b; USP7, Ubiquitin-specific protease 7.
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TABLE 1 | Characteristics of clinical trials and drugs on TAM-targeted therapy stratified by targeting mechanisms.

Targeting pathways and mechanisms Active drugs Combination therapy Cancer type Phase Clinical Trial ID

CSF-1/CSF-1R ARRY-382 Pembrolizumab Advanced Solid Tumors II NCT02880371
Pexidartinib Durvalumab Colorectal Cancer, Pancreatic Cancer I NCT02777710

CCL2/CCR2 BMS-813160 Nivolumab Colorectal Cancer, Pancreatic Cancer Ib/II NCT03184870
Non-small Cell Lung Cancer
Hepatocellular Carcinoma

II NCT04123379

Advanced Cancer II NCT02996110
Pancreatic Ductal Adenocarcinoma I/II NCT03767582

NCT03496662
CCL5/CCR5 Maraviroc Pembrolizumab Metastatic Colorectal Cancer I NCT03274804

Vicriviroc Pembrolizumab Colorectal Neoplasms II NCT03631407
CXCL12/CXCR4 Motixafortide Cemiplimab Pancreatic Cancer II NCT04543071
CD40/CD40L ABBV-927 Budigalimab Pancreatic Cancer II NCT04807972

Selicrelumab Atezolizumab Solid Tumors I NCT02304393
YH-003 Toripalimab Advanced Solid Tumors I/II NCT04481009

NCT05031494
Pembrolizumab Solid Tumor I NCT05176509

TLR7 BDB-001 Atezolizumab Solid Tumor I/II NCT03915678
NCT04196530

Pembrolizumab Solid Tumor I NCT03486301
NCT04840394

BDC-1001 Nivolumab HER2 Positive Solid Tumors I/II NCT04278144
DSP-0509 Pembrolizumab Neoplasms I/II NCT03416335
Resiquimod Pembrolizumab Advanced Solid Tumor

Locally Advanced Solid Tumor
Metastatic Solid Tumor

I/II NCT04799054

TLR8 SBT6050 Pembrolizumab HER2 Positive Solid Tumors I/Ib NCT04460456
Motolimod Durvalumab Ovarian Cancer I/II NCT02431559

TLR9 CMP-001 Atezolizumab Non-Small Cell Lung Cancer Ib NCT03438318
Nivolumab Melanoma, Lymph Node Cancer II/III NCT04695977

NCT04698187
NCT04401995
NCT03618641

Pembrolizumab Carcinoma, Squamous Cell of Head and Neck II NCT04633278
Lymphoma I/II NCT03983668
Melanoma Ib/II NCT03084640

NCT02680184
NCT04708418

Tilsotolimod Nivolumab Advanced Cancer I NCT04270864
Solid Tumor II NCT03865082

SD-101 Nivolumab Pancreatic Adenocarcinoma I NCT04050085
Metastatic Uveal Melanoma in the Liver I/Ib NCT04935229

Pembrolizumab Prostatic Neoplasms II NCT03007732
Pembrolizumab
Nivolumab

Hepatocellular Carcinoma
Intrahepatic Cholangiocarcinoma

Ib/II NCT05220722

Cavrotolimod Pembrolizumab
Cemiplimab

Advanced or Metastatic Solid Tumors Ib/II NCT03684785

TLR3 Rintatolimod Pembrolizumab Ovarian Cancer Recurrent I/II NCT03734692
PI3Kg signal pathway Copanlisib Durvalumab Non-Small Cell Lung Cancer I NCT04895579

Nivolumab Colon Cancer I/II NCT03711058
Malignant Solid Neoplasm I/II NCT04317105
Non-Small Cell Lung Cancer
Head and Neck Squamous Cell Carcinoma
Hepatocellular Carcinoma

Ib/II NCT03735628

Ann Arbor Stage III Lymphoma
Ann Arbor Stage IV Lymphoma
Solid Neoplasm

Ib NCT03502733

Indolent Lymphoma Ib NCT04431635
Lymphoma I NCT03884998
Recurrent Diffuse Large B-Cell Lymphoma II NCT03484819

Duvelisib Nivolumab Unresectable Melanoma I/II NCT04688658
Chronic Lymphocytic Leukemia
Diffuse Large B-Cell Lymphoma

I NCT03892044

(Continued)
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associated with higher global drug levels. As CXCR4 is widely
expressed in hematopoietic cells and a variety of stem cells (99),
therapies targeting CXCR4 face a similar dilemma. In contrast,
therapies that block the CCL2–CCr2 axis appear to be safer and
are expected to elucidate the mechanism of action in different
cancer species. In addition, for the current targeted drugs
yielding a poor systemic response, the combination of cell-
targeted drug delivery systems is an ideal choice to counteract
their limitations.

Nanoimmunotherapy Strategies
Compared with traditional delivery systems, nanoparticles
that can specifically deliver drugs to TAMs and modulate
their polarized states may be an effective method in
cancer immunotherapy. For example, tumor cell-derived
microparticles containing the chemotherapeutic drug
methotrexate (TMP-MTX), nanoparticles delivering shikonin
and PD-L1 knockdown s iRNA (SK/s iR-NPs) , and
Gadofullerene (GF-Ala) nanoparticles can all reprogram M2
TAMs to an M1-like phenotype and increase the infiltration of
CTLs, thereby effectively inhibiting tumor growth (100–102).
CMPB90-1, a new natural polysaccharide from Cordyceps,
converts immunosuppressive TAMs by binding to toll-like
receptor 2 (TLR2), polarizes TAMs to the M1 phenotype, and
has antitumor effects and a better safety profile (103). These
studies may provide a promising strategy for the development of
high-efficiency , low-toxic i ty immunotherapy based
on nanotechnology.

Due to the unpredictable toxicity and poor scalability of
nanocarriers in the human body (104), other advanced drug
carriers have gradually attracted attention, such as hydrogels
(105), exosomes (106), and enucleated cells (107). A Melittin-
Rada32 hybrid peptide hydrogel loaded with doxorubicin (DOX)
was designed to reshape the tumor immune microenvironment
in the treatment of melanoma, which specifically consumes M2
TAMs and increases activated CTL infiltration (108). Dai et al.
designed a hydrogel scaffold loaded with KN93, a Ca2
+/calmodulin-dependent protein kinase II (CAMKII) inhibitor,
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which can reprogram TAMs into the M1 phenotype (109). After
this hydrogel treatment, CTL infiltration in the TME increased,
and the expression of macrophage PD-L1 increased, suggesting
that it has good prospects for anti-PD-1 treatment (109).

Modification of Exosomes Derived From
M1 Macrophages
Studies have reported that exosomes derived from macrophages
have immunomodulatory effects (110). Exosomes secreted by
M1 macrophages are reported to inhibit the development of
gastric cancer and activate T-cell-dependent immune responses
(111). Endogenous macrophage exosomes have been shown to
have absolute advantages over their safety (112). Therefore, M1
macrophage-derived exosomes (M1-exos) can be used to deliver
various anticancer drugs for tumor therapy. Mannose-modified
macrophage-derived microparticles (Man-MPs) loaded with
metformin have been developed to efficiently target M2-like
TAMs to repolarize them into the M1-like phenotype (113).
More importantly, the collagen-degrading capacity of Man-MPs
contributes to the infiltration of CD8+ T cells into tumor
interiors and enhances tumor accumulation and penetration of
anti-PD-1 (113). Macrophage-derived exosomes loaded with
PTX and Dox were developed to treat triple-negative breast
cancer (TNBC) in vivo (114). With the development of
nanotechnology, exosome-mimetic nanovesicles derived from
M1 macrophages (M1NVs) were designed to repolarize M2
TAMs to M1 macrophages (115). Moreover, injection of a
combination of M1NVs and anti-PD-L1 further reduced the
tumor size compared with the injection of either M1NVs or aPD-
L1 alone (115).

Radiotherapy
As a conventional means of tumor treatment, radiotherapy leads
to increased expression of PD-L1 in tumor cells (116), which is
one of the markers of anti-PD-1/PD-L1 mAb therapy (117).
Interestingly, in a model of malignant pleural effusions,
microparticles released by radiated tumor cells (RT-MPs) can
precisely locate M2-TAMs in the TME and convert the latter into
TABLE 1 | Continued

Targeting pathways and mechanisms Active drugs Combination therapy Cancer type Phase Clinical Trial ID

CD47/SIRPa pathway ALX-148 Pembrolizumab Microsatellite Stable Metastatic Colorectal Cancer II NCT05167409
Solid Tumor, Non-Hodgkin Lymphoma I NCT03013218
Head and Neck Cancer
Head and Neck Squamous Cell Carcinoma

II NCT04675294
NCT04675333

AO-176 Pembrolizumab Solid Tumor I/II NCT03834948
Magrolimab Pembrolizumab Head and Neck Squamous Cell Carcinoma II NCT04854499

Hodgkin Lymphoma II NCT04788043
STING pathway SNX-281 Pembrolizumab Advanced Solid Tumor

Advanced Lymphoma
I NCT04609579

BMS-986301 Nivolumab Advanced Solid Cancers I NCT03956680
SYNB-1891 Atezolizumab Metastatic Solid Neoplasm, Lymphoma I NCT04167137
TAK-676 Pembrolizumab Solid Neoplasms I NCT04420884
MK-2118 Pembrolizumab Solid Tumor, Lymphoma I NCT03249792
MK-1454 Pembrolizumab Solid Tumors, Lymphoma I NCT03010176

Head and Neck Squamous Cell Carcinoma II NCT04220866
SB-11285 Atezolizumab Solid Tumor, Melanoma

Head and Neck Squamous Cell Carcinoma
Ia/Ib NCT04096638
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M1-TAMs by activating the JAK-STAT and MAPK pathways
(118). It is noteworthy that the combination of RT-MPs and
anti-PD-1 exhibits good biocompatibility and memory immune
response, which TMP-MTX cannot match (118). Since hypoxia
has been proven to be an important factor affecting the clinical
outcome after radiotherapy (119), strategies to interfere with
hypoxia have been developed to optimize radiotherapy (120).
Oxygen microcapsules are designed to rapidly increase the
oxygen concentration in the TME, resulting in reduced
infiltration of TAMs while enhancing the efficacy of
radiotherapy (121). Of particular note is the microcapsules’
ability to repolarize TAMs into the M1 phenotype, which, in
turn, activates the T-cell-mediated antitumor immune response
(121). Obviously, this nanotherapy can further enhance the
efficacy of radiotherapy combined with anti-PD-1/PD-L1 mAbs.
FUTURE PERSPECTIVES

The application of ICIs in clinical practice has completely
changed the therapeutic strategies for cancer patients by
improving the prognosis and reducing the impact on their
quality of life (QoL) compared with standard approaches (117,
122–129). However, the high cost of anti-PD-1 and PD-L1
agents (130, 131) highlights the need to select patients who will
benefit most from the treatment early, supporting the research
on predictive biomarkers of response and strategies to overcome
resistance and optimize the efficacy of these drugs.

Targeting macrophages to treat cancer is a young but rapidly
developing area of research and therapy. Despite great interest, the
optimum therapeutic approach has not yet been identified because
TAMs represent a heterogeneous population, and their role in
tumors varies depending on many environmental conditions. The
other difficulty arises from the TME, which is a very dynamic
tissue and contains various infiltrating immune cells and external
factors that influence tumor progression, macrophage
polarization, and therapeutic response. Some macrophage-
targeting therapeutics are effective as monotherapies. However,
Frontiers in Immunology | www.frontiersin.org 8
more evidence exists that targeting TAMs could improve the
efficacy of conventional therapies and immune therapeutics.
Currently, two main approaches that target TAMs with
apparent opposite effects have been developed. One approach is
to deplete macrophages, and the other is to re-educate them to kill
cancer cells. Depending on the macrophage infiltration status and
the chosen therapy as a combination treatment, various
approaches will be chosen. For example, through their Fcg
receptors, macrophages were shown to take up therapeutic
antibodies such as anti-PD-L1, limiting the efficacy of such
therapeutic modalities in animal models. In fact, in several
recent studies, it was shown that depleting macrophages with
the use of CCL2/CCR2 antagonists improves the efficacy of PD-
L1-targeting antibodies and possibly other ICIs (132, 133).

In addition, some important issues should be resolved before
TAM antagonists are used to overcome resistance to
immunotherapy. More convincing clinical studies are needed
to confirm the correlation of macrophage infiltration or
phenotype with the outcomes of patients under anti-PD-1/PD-
L1 therapy. It is essential to identify subpopulations that have the
potential to benefit from different therapies targeting
macrophages. Despite these difficulties, there is still great
potential to harness macrophage biology to improve the
efficiency of anti-PD-1/PD-L1 ICIs in oncology.
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GLOSSARY

AKT Protein kinase B
BET Bromodomain and extraterminal
BRD4 Bromodomain-containing protein 4
CAMKII Ca2+/calmodulin-dependent protein kinase II
CCL C-C motif chemokine ligand
CCR C-C motif chemokine receptor
COX-2 Cyclooxygenase 2
CSF-1R Colony-stimulating factor 1 receptor
CSF-1Ri CSF-1R inhibitor
CTL Cytotoxic T lymphocyte
CTLA-4 Cytotoxic T lymphocyte antigen 4
CXCL CXC-motif chemokine ligand
CXCR C-X-C chemokine receptor
DC Dendritic cell
EGFR Epidermal growth factor receptor
Foxp3 Forkhead Box P3
GF-Ala Gadofullerene
ICI Immune checkpoint inhibitor
IL Interleukin
LAPC Locally advanced pancreatic cancer
M1-exo M1 macrophage-derived exosome
M1NV Nanovesicle derived from M1 macrophages
mAb Monoclonal antibody
Man-MP Mannose-modified macrophage-derived microparticle
miR MicroRNA
mPDAC Metastatic pancreatic ductal adenocarcinoma
mPGES1 Microsomal PGE2 synthase1
NF-kB Nuclear factor kappa-B
NK cell Natural killer cell
NSCLC Non-small cell lung cancer
OS Overall survival
PDAC Pancreatic ductal adenocarcinoma
PD-1 Programmed cell death 1
PD-L1 Programmed cell death ligand-1
PGE2 Prostaglandin E2
PI3K Phosphatidylinositol 3-kinase
QoL Quality of life
RT-MP Microparticles released by radiated tumor cell
SK Shikonin
SK/siR-
NP

Versatile nanoparticle codelivering SK and PD-L1 knockdown siRNA

TAM Tumor-associated macrophage
TGF-b Transforming growth factor-b
TLR Toll-like receptor
TME Tumor microenvironment
TMP-
MTX

Tumor cell-derived microparticles containing the chemotherapeutic
drug methotrexate

TNBC Triple-negative breast cancer
Treg Regulatory T cell
USP7 Ubiquitin-specific protease 7
VISTA V-domain Ig-containing suppressor of T-cell activation
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