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ABSTRACT

Objective: To describe the baseline clinical and functional characteristics of an international
cohort of 193 patients with dysferlinopathy.

Methods: The Clinical Outcome Study for dysferlinopathy (COS) is an international multicenter
study of this disease, evaluating patients with genetically confirmed dysferlinopathy over 3 years.
We present a cross-sectional analysis of 193 patients derived from their baseline clinical and
functional assessments.

Results: There is a high degree of variability in disease onset, pattern of weakness, and rate of pro-
gression. No factor, such asmutation class, protein expression, or age at onset, accounted for this
variability. Among patients with clinical diagnoses of Miyoshi myopathy or limb-girdle muscular
dystrophy, clinical presentation and examination was not strikingly different. Respiratory impair-
ment and cardiac dysfunction were observed in a minority of patients. A substantial delay in diag-
nosis was previously common but has been steadily reducing, suggesting increasing awareness
of dysferlinopathies.

Conclusions: These findings highlight crucial issues to be addressed for both optimizing clinical
care and planning therapeutic trials in dysferlinopathy. This ongoing longitudinal study will pro-
vide an opportunity to further understand patterns and variability in disease progression and form
the basis for trial design. Neurol Genet 2016;2:e89; doi: 10.1212/NXG.0000000000000089

GLOSSARY
a-NSAA5 adapted North Star Ambulatory Assessment; CK5 creatine kinase; FVC5 forced vital capacity; IB5 immunoblot;
IH 5 immunohistochemistry; LGMD 5 limb-girdle muscular dystrophy; LGMD2B 5 limb-girdle muscular dystrophy type 2B;
ME 5 monocyte expression; MM 5 Miyoshi myopathy; MMT 5 Manual Muscle Testing; MRC 5 Medical Research Council;
NSAA 5 North Star Ambulatory Assessment; OR 5 odds ratio; RFF 5 rise from floor; TUG 5 Timed Up and Go.

Dysferlinopathy is a term for a group of rare muscular dystrophies with recessive mutations in
the DYSF gene, which encodes the skeletal muscle protein dysferlin.1,2 Two major phenotypes
are Miyoshi myopathy (MM),3 presenting with distal weakness and limb-girdle muscular dys-
trophy type 2B (LGMD2B),4,5 affecting more proximal muscles. Other reported phenotypes
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include the more rapidly progressive distal
myopathy with anterior tibial involvement,6

proximodistal weakness, and a pseudometa-
bolic presentation.7,8

Several studies have reviewed the pheno-
types of dysferlinopathy demonstrating a high
degree of variability in the initial pattern of
weakness. Symptom onset in young adult-
hood, highly elevated serum creatine kinase
(CK), and characteristic MRI pattern are gen-
erally consistent.2,8–14 However, patients with
atypical features are reported and the full spec-
trum of dysferlinopathy phenotypes and pat-
terns of disease progression is yet to be fully
described.15–17

As the neuromuscular field moves toward
trial readiness, a clearer understanding of the
natural history of these rare diseases is essential.
This report describes baseline characteristics of
participants in the Jain Foundation–funded
clinical outcome study—a large cohort of
patients with dysferlinopathy, enabling
characterization of common and rarer phe-
notypic features. This work will form the
baseline for longitudinal assessment aiming
to define distinct disease trajectories and
a robust set of outcome measures for clinical
trials and to identify areas for improving
clinical practice.

METHODS Inclusion criteria were $2 pathogenic mutations

in DYSF, or 1 pathogenic mutation plus either absent dysferlin

expression on immunoblot (IB)18 or #20% dysferlin monocyte

expression (ME).19 Truncating mutations and splice-site

mutations affecting the 11/21 or 2 positions were deemed

pathogenic. Pathogenicity of other splice-site mutations and

missense mutations were defined according to the UMD

Predictor (http://umd-predictor.eu).

Patients have 6 visits over 3 years (screening, baseline, 6

months, 1, 2, and 3 years). At each visit, a medical examination

is conducted, and quality of life, exercise, and medical history data

are collected via questionnaires. Blood is drawn for hematologic and

biochemical assays. Patients can choose to provide DNA, RNA,

serum, plasma, and skin biopsy for biobanking. Cardiac assessment

by ECG and echocardiogram are performed at baseline and 3 years.

MRI assessment (to be reported separately) includes lower limb

T1W, T2, 3-point Dixon (lower limb), and magnetic resonance

spectroscopy evaluation (3 sites) at baseline, 1, 2, and 3 years.

Physiotherapists, trained and assessed in investigator meet-

ings, perform evaluations at each visit. They assess respiratory

function (sitting forced vital capacity [FVC]), muscle strength

(Manual Muscle Testing [MMT]), and functional status (adapted

North Star Ambulatory Assessment [a-NSAA] in ambulant pa-

tients, timed tests [rise from floor (RFF), 10-m walk/run, 4 stair

climb and descend, Timed Up and Go (TUG)], and 6-minute

walk). Assessments were reviewed for consistency between screen-

ing and baseline by lead physiotherapists from Newcastle.

The a-NSAA is based on the validated NSAA, a 17-item scale

with a maximum score of 34 used in Duchenne muscular dystro-

phy. This was adapted adding items relevant to ambulatory ability

in dysferlinopathy creating a 22-item scale with a maximum score

of 51 (table e-1 at Neurology.org/ng).

Using a-NSAA and ambulatory status, the cohort was strati-

fied into mild (a-NSAA 40–51), moderate (a-NSAA 6–39), or

severe (a-NSAA #5 or nonambulant) groups. Ambulation status

was determined by the ability of patients to walk 10 m with shoes

and usual walking aids or orthotics. Medical Research Council

(MRC) power grades, timed tests, and respiratory status were

reported according to this stratification.

For analysis, 5-point MRC power grades for MMT were con-

verted to an 11-point scale (0, 1, 2, 32, 3, 31, 42, 4, 41, 52,

and 5).

Statistical analysis was performed using Prism software

(GraphPad Software Ltd., La Jolla, CA). Demographics were col-

lected for ethnicity, sex, age, ambulatory status, years symptom-

atic, and mutation details. Median values and ranges were

calculated for the number of years symptomatic, age at symptom

onset, age at diagnosis, and MMT analysis. Mean values (SD and

ranges) were calculated for serum CK, serum creatinine, and

serum urea. Percent predicted FVC and timed tests (10-m run,

TUG, RFF, stair ascend, descend, and 6-minute walk test) are

stratified by disease severity. MMTmedian values were also strat-

ified by disease severity and analyzed for symmetry between right

and left, anterior and posterior, and upper and lower limb muscle

groups using the Wilcoxon signed-rank test, considering a p value
of less than 0.05 statistically significant.

Standard protocol approvals, registrations, and patient
consents. All study participants provided informed consent. The

study was approved by ethical review boards in each country.

RESULTS Study demographics. Included were 193
patients from 15 sites (Newcastle, Barcelona, Seville,
Munich, Berlin, Padova, Marseille, Paris, Saint Louis,
Columbus, Charlotte, Washington, DC, Stanford,
Tokyo, and Sydney) representing 8 countries (United
Kingdom, Spain, Germany, Italy, France, the United
States, Japan, and Australia). Participants’ ethnicities
were white (71%), Asian (17%), black (3%), His-
panic (6%), and other (3%). Participants were 52%
female and 48%male. Ages range from 12 to 88 years
(mean age 40 years). Participants were 75% ambulant
(36% male/39% female) and 25% nonambulant
(13% male/12% female). At assessment, the majority
reported symptoms for 25 years or less (77%).
Median symptom duration was 17 years (range 3–
52 years).

Genetic and protein expression findings. In total, 175
different mutations were observed (table e-2), 112
only in a single individual; 49.2% of mutations were
truncating: 32.8% frameshift and 16.4% nonsense.
The remainder were missense (32.8%), splice-site
(17.5%), or in-frame duplication (0.6%).

Mutations were widely distributed throughout the
gene. Table 1 shows the most frequently observed
mutations. Two previously reported founder muta-
tions were identified: c.2779delG,20 in 3 individuals
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with Hispanic ethnicity and c.5713C.T,21 observed
in 4 individuals of diverse ethnicities.

Eighty-four percent of participants had 2 patho-
genic mutations inDYSF. Thirteen percent had a sin-
gle heterozygous mutation and absent or reduced
(i.e.,,20%) dysferlin expression on IB or ME. Three
percent had .2 pathogenic mutations.

Dysferlin ME, IB, or immunohistochemistry (IH)
data were available for 153 (79%) patients. Of these,
68% had absent and 30% had reduced dysferlin
expression. Symptom onset age did not vary accord-
ing to dysferlin expression levels. Normal dysferlin
expression was observed in 3 individuals who pre-
sented with moderate or severe disease.

Of the 40 patients (21%) with no protein expres-
sion data, 28 had 2 clearly deleterious mutations
(frameshift, splice-site, or nonsense), 8 had 1 clearly
deleterious mutation and 1 missense mutation that
was predicted to be pathogenic by the UMD predic-
tor, and 4 patients had 2 missense mutations pre-
dicted to be pathogenic. There was no relationship
between genotype (homozygosity for missense, splic-
ing, or truncating mutations) and protein expression,
age at onset, or disease severity.

Symptom onset and diagnosis. Self-reported age at “first
muscle symptoms” ranged from 3 to 60 years
(median 19 years) (figure 1). Most patients had symp-
toms preceding diagnosis; however, 24% were diag-
nosed after an incidental finding of elevated CK and
13% after diagnosis in a relative.

Initial symptoms varied, with some patients re-
porting multiple symptoms. Most commonly re-
ported was lower limb weakness (72%); this was
proximal (15%), distal (32%), or both (25%). Upper
limb weakness was less common (7%). Others

described muscle wasting (27%—predominantly dis-
tal lower limbs), pain, stiffness, or cramps (13%), or
pseudohypertrophy (6%—predominantly distal lower
limbs). Seventeen percent described onset following
trauma or illness, but the majority described symptom
onset over months.

Prior to symptom onset, 80% reported frequent
participation in sports; daily (13%) or several times
a week (42%). Forty-four percent reported “average”
sporting ability, with 19% competing at the regional
or national level.

The median age at confirmed diagnosis was 25
years (range 3–62 years) (figure 1). Mean time from
symptom onset to diagnosis in the 1970s was 20.5
years (SD 10.7), falling to 3.1 years (SD 2.6) with
onset in 2000s. Patient-reported clinical diagnoses
were LGMD2B (60%), MM (30%), proximodistal
dysferlinopathy (6%), hyperCKemia (3%), and
“other” including paravertebral muscular dystrophy
or pseudometabolic dysferlinopathy (2%). Clinical
diagnosis varied by research site but not by patient
ethnicity or age at symptom onset. MM was the most
common diagnosis in Japan: odds ratio (OR) 7.01
(2.10–23.46) and LGMD2B in England: OR 6.12
(2.28–16.25).

An initial diagnosis of polymyositis was reported
by 16%, and 25% reported previous corticosteroid
use. There were geographical differences in prior ste-
roid use, with none in Australia and .60% in
Germany, possibly because of a previous clinical trial.22

The longer the duration of symptoms, the greater
proportion of patients with severe disease (figure 2).
However, 2 patients with symptoms for over 30 years
remain mildly affected. Four patients, aged 16 to 30,
reported no muscle symptoms.

Physical examination. Thirty-six percent of patients
had joint contractures, commonly affecting ankles,
knees, and elbows. Muscle wasting was observed in
80% of patients most commonly in distal lower limbs
(71%). Pseudohypertrophy was noted in 11%; usu-
ally in distal lower limbs but sometimes proximal
lower limbs, upper arms, shoulders, or neck. Addi-
tional features observed include scoliosis (8%), rigid
spine (7%), tremor (5%), facial weakness (3%),
tongue fasciculations (3%), dysarthria (0.5%), or
myotonia (0.5%).

Clinical investigations.Mean serum CK at baseline was
4,562 IU/L (SD 3,937; range 209–23,124 IU/L) with
values falling with increasing age and disease duration.
Serum creatinine was abnormally low in 70% of pa-
tients (mean 36.7 mmol/L; range 11–145 mmol/L, SD
18), likely reflecting reduced muscle mass. Mean serum
urea was within normal range (mean 6.2 mmol/L;
range 1.1–23.9 mmol/L and SD 3.4 mmol/L). Ele-
vated alanine aminotransferase (91%) and aspartate

Table 1 Frequent mutations

No. of
occurrences Mutation Protein effect Class

14 c.5979dupA p.Glu1994ArgfsX3 Frameshift

7 c.3444_3445delinsAA p.Tyr1148X Nonsense

6 c.3112C.T p.Arg1038X Nonsense

6 c.85511delG Intronic Splicing

6 c.4756C.T p.Arg1586X Nonsense

5 c.757C.T p.Arg253Trp Missense

5 c.6124C.T p.Arg2042Cys Missense

5 c.5698_5699delAG p.Ser1900GlnfsX14 Frameshift

5 c.1392dupA p.Asp465ArgfsX9 Frameshift

5 c.264311G.A Intronic Splicing

5 c.2997G.T p.Trp999Cys Missense

Mutations observed on 5 or more instances in the Clinical Outcome Study for dysferlin-
opathy (COS) cohort. Reference sequence NM_003494.3.
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transaminase (93%) levels were seen in most patients,
consistent with muscular dystrophy. Elevated alkaline
phosphatase (6%) and total bilirubin (9%) was less
common.

Baseline MMT. The characteristics of the median
MMT values are summarized in figure 3. Strength
was better preserved in upper limbs than lower limbs:
median MMT scores 8/10 vs 3/10, respectively (p #
0.0001) There was no asymmetry between right and
left in any muscle group. Analysis of MMT scores in
posterior vs anterior muscle groups in the lower limbs
demonstrated a difference in hip muscles with hip
flexion stronger than extension (hip flexion score 6/
10, extension 3/10 [p , 0.0001, Wilcoxon signed-
rank test]).

MMT was evaluated depending on disease severity
scores. In the mild cohort, median MRC power was
$4 in all muscle groups, with lower limbs generally
weaker than upper limbs. Elbow and wrist flexion and
extension, knee extension, and ankle inversion, ever-
sion, and dorsiflexion were typically of normal power.
In the moderate cohort, on average, lower limbs were
weaker in all muscle groups than upper limbs with
median MRC scores of#4 and$4, respectively. Hip
adduction was weakest (median MRC 2.5), and wrist
flexion and extension were strongest (median MRC
52). In the severe cohort, lower limb proximal and

distal muscle groups were similarly affected (median
MRC 1 or 2, with the exception of hip abduction
MRC 32). Ankle dorsiflexion, eversion, and plantar
flexion were weakest (median MRC grade 1). In
upper limbs, there was proximal weakness (median
MRC 32) with distal strength preservation (wrist
flexion/extension median MRC 42/41).

When baseline timed tests were stratified by dis-
ease severity (table 2), there was overlap between
groups, indicating the variability of physical ability
within the cohort.

Cardiac findings. Impaired left ventricular function,
defined as ejection fraction ,55%, was detected by
study-related echocardiography in 7 patients (aged 29–
69) and will be further evaluated by cardiac MRI. To
date, 3 of these are completed—2 are normal and
1 confirms cardiomyopathy (patient aged 51). One
additional patient had cardiomyopathy diagnosed prior
to the study, at age 46 years. Of the 2 patients with
cardiomyopathy, one had reduced FVC at 67%
predicted and used nocturnal ventilation.

Respiratory findings. Increased disease severity was
associated with lower FVC (table 2). Nocturnal non-
invasive ventilation was used by 4 patients, all of
whom reported a diagnosis of sleep apnea, and 3 of
whom had a body mass index of .30. Disease

Figure 1 Age of patients at symptom onset and diagnosis

The mean time from onset to diagnosis was 6 years.
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severity in these 4 individuals ranged from mild to
severe disease with predicted FVC between 50% and
82%.

Previous diagnosis. Clinical features were evaluated by
preexisting clinical diagnosis. All patients with a clini-
cal diagnosis of hyperCKemia fell into the mild cate-
gory. Patients diagnosed as LGMD2B or MM were
seen in mild, moderate, and severe groups. Median
MMT values were similar between LGMD2B and
MM groups, with proximal and distal lower limb
weakness and predominantly proximal upper limb
weakness. Ankle inversion was better preserved in
LGMD2B patients (median MRC 42 vs median
MRC 2 in MM). Patients diagnosed with proximo-
distal dysferlinopathy were more severely affected,
with weakness extending to distal upper limbs (wrist
extension median MRC 2, wrist flexion median
MRC 3), and none had mild disease. Mean symptom
duration was 17 years for the whole cohort. Apart
from hyperCKemia, with median 5 years, this did
not differ according to clinical diagnosis.

DISCUSSION We report the initial findings of an
international observational study of patients with
genetically confirmed dysferlinopathy. This cross-
sectional analysis of a large and geographically
diverse cohort of patients highlights both typical
features and disease course, and outlying characteristics.
This will form the basis for future longitudinal analysis

of clinical outcomes, cardiac and respiratory
evaluations, and muscle MRI data (the latter being
reported separately).

Inclusion criteria for this study aimed to replicate
the strict diagnostic criteria required for clinical trials:
all patients have 2 mutations or a heterozygous muta-
tion with additional evidence of absent or disease-
range dysferlin protein expression by ME or IB.

Genetic data from this cohort support the high
degree of genetic heterogeneity reported previ-
ously.2,7,23 One-third of patients have nonsense mu-
tations, indicating that nonsense read-through
therapies, now licensed in Europe for use in
Duchenne muscular dystrophy, may be a potential
therapy for some patients with dysferlinopathy.

A high percentage of the mutations were missense
mutations. Although usually associated with absent or
reduced dysferlin expression (table e-2), further anal-
ysis is needed to determine the mechanism by which
these missense mutations lead to disease. Some inves-
tigations link missense mutations to protein instabil-
ity causing reduced dysferlin levels.24 Others have
demonstrated that missense mutations can lead to
normal protein expression levels, but abnormal pro-
tein localization, which results in clinical disease.25

Assays for the functionality of dysferlin protein with
various missense mutations are currently being inves-
tigated by the Jain Foundation and may help to refine
the diagnostic process in the future.

Figure 2 Patient stratification by the reported duration of symptoms and disease severity at the time of
assessment

The percentage of patients within each severity category is given. Severity is defined as mild if the adapted North Star
Ambulatory Assessment score is 40–51, moderate: 6–39, severe: 5 or less or nonambulatory. Symptomatic patients for
whom sufficient data were available to assign severity were included (n 5 182). Numbers of patients within each category
are as follows: mild n 5 34, moderate n 5 89, severe n 5 59.
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Most patients included in this study have absent or
reduced dysferlin on IH, IB, or ME. Absence
of dysferlin was more commonly noted than reduction,
irrespective of the severity of the clinical phenotype or
mutation type. We identified 3 patients with 2 DYSF
missense mutations in whom dysferlin protein levels
were normal. The typical diagnostic procedure for dys-
ferlinopathy diagnosis has been to identify absent or
reduced dysferlin protein levels and then sequence the
dysferlin gene. Therefore, patients with pathogenic
DYSF mutations and normal dysferlin protein levels
are rarely identified.26 As genetic testing becomes more
prevalent as a first-line investigation, patients with nor-
mal dysferlin levels may be increasingly recognized and
caution will be required before generalizing results
from this study to that population.

More than 2 dysferlin mutations were found in
3% of cases. However, aside from one novel mutation
(c.6056G.A), all of these missense mutations have
previously been associated with reduced dysferlin
expression when in the homozygous state or in com-
bination with one other mutation,7,25–29 which sup-
ports their pathogenicity.

We identified that time from symptom onset to
diagnosis has reduced. As our data indicate that

30% of patients are moderately affected within 5
years, earlier diagnosis is likely to reduce unnecessary
testing or potentially detrimental steroid treatment.22

As therapies become available, any delay becomes
more costly because the window of opportunity to
treat may be missed. We hope improved awareness
and delineation of the dysferlinopathy phenotype will
continue to improve time to diagnosis.

Dysferlinopathy is often assigned a particular clini-
cal phenotype, most commonly MM or LGMD. The
pattern of weakness between patients given these 2
diagnoses did not differ in our study. A clinical diagno-
sis of proximodistal dysferlinopathy was associated
with more severe disease, and this appears unrelated
to symptom duration. The 3% patients labeled as
hyperCKemia had symptoms for a shorter duration.
Longitudinal study will clarify whether this is a presen-
tation of early disease or a distinct phenotype. We
noted a number of occasionally reported features, such
as tremor or dysarthria, the significance of which is
unclear. Above-average sporting ability before symp-
tom onset has been reported previously in dysferlino-
pathy10 and is supported here with 19% of our cohort
participating in sport at the regional or national level.
The basis for this remains unknown.

Figure 3 Comparison of median manual muscle test scores in the upper and lower limbs

Datawere available for 189 study participants. The 5-pointMedical Research Council power gradewas converted to an 11-point scale (0, 1, 2, 32, 3, 31, 42, 4,
41, 52, and 5). ObservedManual Muscle Testing scores ranged from0 or 1 to 10 for eachmovement assessed, with the exception of wrist extension for which
the lowest observed scorewas 2. Overall, themost severely affectedmuscle groupswere hip adduction, extension, knee flexion and extension, and ankle plantar
flexion, dorsiflexion, and eversion. The least severely affected muscle groups were wrist flexion and extension. Red indicates the upper limb muscles and blue
indicates the lower limb muscles. COS 5 Clinical Outcome Study.
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We stratified patients by a-NSAA score and ambu-
lation status into mild, moderate, and severely
affected. This baseline analysis has demonstrated that
weakness predominantly affects lower limbs in both
proximal and distal muscle groups, regardless of dis-
ease severity. Increasing proximal upper limb weak-
ness is connected with more severe disease. An
increasing proportion of patients are more severely
affected with increasing symptom duration. The rate
of disease progression is variable, with .30% of
patients mildly or moderately affected $30 years
from symptom onset, while a similar proportion
are severely affected after #17 years of symptoms
(figure 2). The cause of this variability is not known,
but differing presentations within a single family or
common genotypes suggest the presence of disease-
modifying factors.30,31 Given this highly variable
severity, pattern of weakness and rate of progression
in dysferlinopathy, we anticipate that longitudinal
data will help to elucidate potentially distinct dis-
ease trajectories.

We observed that 6 patients with moderate or
severe disease had an FVC ,50%, supporting the
need for respiratory function monitoring in moderate
or severe disease.32 Four patients used nocturnal ven-
tilation and reported sleep apnea. This may be coin-
cidental as all have FVC $50% and 3 patients have
body mass index .30. Two patients were identified
with cardiomyopathy. Echocardiogram analysis for
left ventricular dysfunction will be explored further
in this study. Cardiac abnormalities have previously
been reported in dysferlinopathy, but whether
these are a consequence of dysferlinopathy or an alter-
native etiology is not established.9,32–35 Low serum

creatinine seen in 70% of patients is relevant for renal
function monitoring, as creatinine-dependent meth-
ods will be uninformative.36

This analysis has identified a number of findings
pertinent to the clinical care and planning of trials
for patients with dysferlinopathy. Diagnosis is fre-
quently delayed. Detailed analysis of muscle strength
and function across different clinical diagnoses sug-
gests that distinctions in pattern of weakness between
MM, LGMD2B, and other phenotypes are limited.
Emerging longitudinal data will allow us to assess
whether progression of weakness is also similar, allow-
ing patients with different clinical diagnoses to be
considered as a whole in planning clinical studies. A
small proportion of patients have respiratory dysfunc-
tion and cardiac abnormalities. Although the general
phenotype is of a slowly progressive disease manifest-
ing in young adulthood, there are patients with dis-
ease onset at extremes of age and divergent rates of
progression. The etiology of this variability is unclear
but important to understand for clinical trials and
developing validated outcome measures. As longitu-
dinal data on this cohort emerge, we anticipate being
able to contribute to the trial readiness of this patient
group.
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Table 2 Respiratory function and timed tests by disease severity

Stratification of disease severity by a-NSAA and ambulation status

Mild Moderate Severe

% predicted FVC 98 (CI 94–102) 91 (CI 88–94) 81 (CI 76–86)

No. (%) of patients with FVC <80% predicted 3 (8) 16 (18) 25 (43)

No. (%) of patients with FVC <50% predicted 0 (0) 1 (1.1) 5 (8.6)

Timed 10-m walk/run 4.5 s (range 2.2–9 s) (100%) 11.4 s (range 4.8–25.8 s) (96%) 18.11 s (range 9.6–26.8 s) (14%)

Timed Up and Go 6.7 s (range 3.8–10 s) (100%) 13.2 s (range 3.8–35.8 s) (82%) 31.9 s (range 28.8–36.2 s) (5%)

Rise from floor 3.8 s (range 0.9–12.4 s) (100%) 10.2 s (range 2.9–29.3 s) (57%) Not applicablea (0%)

Time to ascend 4 stairs 2.7 s (range 1.1–5.1 s) (97%) 8.4 s (range 2.2–40 s) (83%) 23.1 s (range 6.7–35.2 s) (5%)
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6 min walk/run 495 m (range 304–656 m) (100%) 299 m (range 72–515 m) (92%) 138 m (range 9–295 m) (20%)

Abbreviations: a-NSAA 5 adapted North Star Ambulatory Assessment; CI 5 confidence interval; FVC 5 forced vital capacity.
This table displays respiratory and timed test data according to disease severity at the time of assessment. Mean predicted FVC according to the height
and weight at baseline assessment. Overall, 24% of patients had FVC ,80% predicted and 3.2% had FVC ,50% predicted. Mean duration of symptoms
in the 6 patients with FVC ,50% predicted was 23 years (range 12–33 years). Mean values are provided for timed tests, and the percentage of patients
who completed each test is given in brackets.
aNo patients in the severe category were able to complete the rise from floor test.
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