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Abstract
Background: Many cellular processes involve substantial shape changes. Traditional simulations
of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves.
Here we demonstrate that accurate cell shape changes can be recreated using level set methods
(LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating
boundaries.

Results: We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and
show how this viscoelastic model can be incorporated into LSM simulations to recreate the
observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our
techniques by simulating the cell shape changes elicited by the chemotactic response to an external
chemoattractant gradient.

Conclusion: Our results provide a simple but effective means of incorporating cellular
deformations into mathematical simulations of cell signaling. Such methods will be useful for
simulating important cellular events such as chemotaxis and cytokinesis.

Background
Many cellular processes are characterized by substantial
shape changes. For example, chemotaxing cells become
polarized, assuming a highly elongated form, and crawl
across solid substrates in the direction of increasing con-
centrations of chemoattractant [1]. During cytokinesis, a
single cell undergoes significant cytoskeletal deformation,
reforming into two daughter cells [2]. These cellular proc-
esses are fundamentally mechanical, utilizing force gener-
ation at the molecular scale to generate shape changes.
Properly simulating cellular shape change requires that we
have a description of the underlying mechanical proper-
ties of the cell.

To understand fully the mechanisms that regulate these
cell shape changes requires knowledge of the signaling
pathways as well as their effect on the mechanical proper-
ties of cells. For example, a complete model of chemotaxis
would require a description of the gradient sensing capa-
bility of cells together with a physical model for the cellu-
lar migration [3]. Few such models exist, even though it is
now appreciated that the response of cell-signaling path-
ways can be regulated in response to alterations in cell size
and shape [4]. The traditional method of simulating cellu-
lar deformations is by specifying the boundary of the cell
explicitly through a finite-element model (FEM) [5-7].
One problem is that simulation of biological shape defor-
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mations – which invariably involves solving partial differ-
ential equations on moving boundaries – can be
computationally expensive particularly when the cellular
deformations are not small. During many processes
including cytokinesis and chemotaxis, cellular shape
deformations tend to be large and occur rapidly. Here, we
demonstrate how the Level Set Method (LSM) can be used
to couple mechanical models of the cell with biochemical
models of signaling pathways to simulate large cellular
deformations.

We briefly contrast the LSM approach to other methods
that have been used to account for cellular deformations.

The immersed boundary method (IBM), introduced by
Peskin [8] was developed to simulate the interaction of
flexible tissues with the surrounding incompressible fluid.
It has been used to simulate cell shape changes during
motility [9]. In the IBM, the Navier-Stokes equation
describing the fluid flow can be solved on a fixed grid,
simplifying this computationally expensive step. The
membrane and cytoskeleton is discretized by assigning a
series of nodes that are connected by viscoelastic ele-
ments. As the cell deforms, nodes and their corresponding
links have to be inserted or deleted. This book-keeping
comes at a considerable computational complexity. For
this reason, the IBM may best be used in situations where
the cell shape does not change considerable [10].

More recently, the cellular Potts model (CPM) has
become a popular vehicle to simulate cell shape changes
[11]. In the CPM, a cell is described by a connected
domain of pixels on a regular grid. The shape of the cell is
evolved by updating each pixel based on a set of probabi-
listic rules. This method does not use an explicit viscoelas-
tic description of the cell. Instead, cell shape is
constrained by minimizing an energy function that penal-
izes size-deformations as well as membrane bending. Cel-
lular Potts models have been used to simulate two-
dimensional (2-D) models of cell motility in fish kerato-
cytes [12] and amoebae [13]. Unlike FEM or IBM, mode-
ling large changes in the shape of the cell is no more
computationally expensive than small changes. One
drawback, however, is that the mechanical description of
cells in the CPM framework is not as tightly integrated
with experimentally-based measurements as the method
presented here.

Models of cellular shape changes have all been derived
based on explicit descriptions of the cell morphology that
are updated based on the simulated behavior of the
underlying cytoskeleton. For example, Rubinstein et al.
provide a detailed 2-D computational model of the lamel-
lipodium keratocyte motility [14]. In this model, the cel-
lular domain is updated at each time step based on the

protrusive and retractive forces (actin polymerization and
acto-myosin contraction) and re-gridded. This avoids the
necessity for nodes and keeping track of the mechanical
state of the system. However, the model relies on an elas-
tic (rather than viscoelastic) network which may be appro-
priate for the thin keratocyte, but is not likely to be
applicable to thicker cells.

The rest of the paper is organized as follows. We first pro-
vide some necessary background. We then develop a
mechanical model within the LSM that accounts for the
viscoelastic nature of the cell. We fit this model to experi-
mental data obtained through micropipette aspiration
experiments on Dictyostelium cells. We incorporate this
viscoelastic model into a level set framework and illustrate
how large-scale shape deformations can be accounted by
the model. This is done through simulations by showing
that the model accurately captures the behavior of the
aspirated cell. Finally, using a simple gradient sensing
model to generate internal force profiles, we simulate the
changing morphology of a cell chemotaxing in response
to an externally applied chemoattractant gradient. Using
the framework developed here, we obtain the force pro-
files needed to achieve stable migrating cell morphologies
observed for several strains. The methods developed here
allow us to link forces acting on the cell and mechanical
properties of the cytoskeleton to cell shape deformation
explicitly, and will prove useful in studying cellular proc-
esses undergoing large-scale shape changes.

Biological background
Cells derive their mechanical properties from actin, actin-
associated proteins, and motor proteins such as myosin-II
[2], which are components of the cytoskeleton. Though
distributed throughout the cell, the actin cytoskeleton is
concentrated along the periphery of the cell underneath
the membrane, particularly in Dictyostelium, and is the
molecular machinery that generates cellular shape
changes during cell division and chemotaxis.

Cytoskeletal networks exhibit viscoelastic behavior, hav-
ing both viscous and elastic properties [15-17]. Actin fila-
ments alone do not create significant mechanical
resistance; instead, cross-linking of actin filaments by var-
ious actin binding proteins imparts mechanical rigidity to
the cell. Under applied load, cross-linked actin networks
behave similarly to an elastic solid and can be described
using Hooke's law. However, because cross-linking pro-
teins bind to and dissociate from actin filaments, actin-
based networks may also exhibit viscous flow. Myosin-II,
in filament form, also binds to actin filaments and pro-
vides mechanical resistance of the cell, as well as influenc-
ing the binding kinetics of various actin crosslinkers
[2,18]. The interior of the cell also contains cytoskeletal
polymers, as well as organelles, a nucleus, and cytoplas-
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mic fluid. Thus, owing to their viscoelastic nature, cells
exhibit a time-dependent deformation in response to
mechanical force.

Introduction to level set methods
Cell motion has been traditionally simulated by: discretiz-
ing the cell boundary, computing the displacement of
each of the points according to the local velocity, and
forming a new boundary with the displaced points (Fig.
1A). This method may run into difficulties when the spa-
tial or temporal resolution of the simulations is not suffi-
ciently fine, or when changes in topology occur (Fig. 1B).
The Level Set Method (LSM) can be used to overcome
these difficulties [19]. LSM is a numerical technique for
tracking interfaces and shapes which has been widely used
in various fields including computer graphics [20], image
processing [21], computational fluid dynamics [22] and
material science [23].

Suppose that the cell boundary at time t is described by
the closed-contour Γ(t). The LSM requires a potential
function (Fig. 1C.), denoted as ϕ(x, t), that is related to
Γ(t) according to:

Γ(t) = {x|ϕ(x, t) = 0}.

Thus, Γ(t) is the zero-level set of ϕ(x, t). It follows that, in
the LSM, the cell membrane is represented implicitly
through the potential function which is defined on a fixed
Cartesian grid, thus eliminating the need to parameterize
the boundary. This allows the LSM to handle complex
boundary geometries efficiently (Fig. 1D).

One candidate for the potential function is the signed dis-
tance function [24], defined by:

where S identifies the area occupied by the cell and d(x, Γ)
is the distance of position x to the curve Γ; see Fig. 1E for
an example of a cell shape embedded in a potential func-
tion derived from the signed distance function.

We now manipulate Γ(t) implicitly through the function
ϕ(x, t) according to the equation:

The vector v(x, t) is the velocity of the level set moving in
the outward normal direction. In our case, v(x, t) intrinsi-
cally describes the cell's membrane protrusion and retrac-
tion velocities. These velocities can be driven by externally

applied forces on the cell membrane (e.g. from a micropi-
pette aspirator), or internally generated mechanical forces
(e.g. actin polymerization or myosin-II retraction), or
both. To determine how these forces translate to mem-
brane velocity, however, first requires a mechanical model
of the cell.

As the potential function corresponding to the cell shape
is evolved, it can become quite steep or flat. To reduce the
numerical errors caused by these effects, we re-initialize
the potential function periodically [24]. This can be done
using the re-initialization equation [25]:

where S(ϕ(x, 0)) is taken as +1 inside the cell, -1 outside
the cell and zero on the cell membrane.

Results and Discussion
Viscoelastic model of cell deformation
The LSM relies on a continuum description of the material
properties of the cell [2,26]. We use mechanical models to
describe the viscoelastic behavior of the cell [27]. Our
mechanical model is based on a representation of cells
that assumes a viscoelastic cortex surrounding a viscous
core. For cells where intracellular components, such as the
nucleus, take a considerable fraction of the cellular vol-
ume and play an active role in determining cell shape, the
method described here will not be applicable without
explicitly modeling these internal structures.

We model the cortex connecting the cell membrane and
the cytoplasm with a Voigt model, which consists of the
parallel connection of an elastic element kc (nN/μm3) and
a viscous element τc (nNs/μm3). The latter describes the
association and dissociation dynamics of the cross-link-
ers. We model the cytoplasm by a purely viscous element,
τa (nNs/μm3), which is placed in series with the Voigt
model (Fig. 2A). The element τa includes contributions
from the interior of the cell as well as adhesion, friction
and cytoskeletal reorganization. Strains of the cortex and
cytoplasm are described by the variables xm and xc, respec-
tively. Note that, in our simulations, we use pressure
rather than force to induce the cellular deformations; this
accounts for the extra μm2 found in the denominators of
the parameters in our model.

As shown below, this combined Voigt-dashpot viscoelas-
tic model reasonably approximates the mechanical prop-
erties of Dictyostelium where cross-linking proteins are
predominantly enriched in the cortex. Extending our
framework to other cell types may require different viscoe-
lastic models to describe the cell of interest. For example,
aspiration of chondrocytes suggests that these cells obey a
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Introduction to level set methodsFigure 1
Introduction to level set methods. A. The traditional method of tracking moving boundaries involves discretization of the 
boundary (dotted red) into a set of points, moving each point x = (x, y) according to the local velocity (v(x, t)), leading to a new 
boundary at the new locations (solid red). B. Difficulties can arise, however, when the geometry of the boundary becomes 
irregular. In this case, the point tracking method often fails to preserve the boundary topology. Special attention is required to 
resolve these errors, increasing computational costs. C. In the Level Set Method (LSM), the boundary Γ(t) is embedded into a 
higher dimensional potential function (ϕ(x, t)) as the zero-contour. Γ(t)moves as ϕ(x, t)evolves in time. D. Because the bound-
ary is defined implicitly, the LSM framework overcomes some of the difficulties of boundary point tracking. E. This example 
illustrates how an arbitrary cell shape (black contour) can be embedded into a signed distance function to form the level set 
potential function ϕ(x, t). In this case, the potential function is given by the Euclidean distance to the cell boundary, with posi-
tive (resp. negative) sign when outside (resp. inside) the cell.
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Kelvin model (similar to the Voigt element, but includes
an elastic component in series with the viscous element)
[28]. Once the appropriate viscoelastic model is devel-
oped, the implementation in the LSM framework intro-
duced here is straightforward.

Experimental determination of model parameters
To determine appropriate parameters for the viscoelastic
model, we used micropipette aspiration to apply step
pressures (rapid increase of pressure from 0 to 0.65 nN/
μm2) to individual cells [29,30]. In this technique, a small
negative hydrostatic pressure is created at the tip of a
micropipette. By bringing the micropipette into close

proximity of the cellular surface, the cell is aspirated into
the micropipette.

We applied step pressures to wild type interphase cells and
measured cellular deformation as a function of time (Fig.
2B). Deformation is quantified by the length of cellular
protrusion into the pipette tip, denoted Lp (Fig. 2C). We
aspirated 22 cells with a radius of 4.3–6.1 μm, a pipette
radius of 3.1 μm and a pressure of 0.65 nN/μm2. The cells
deformed in two distinct phases (Fig. 2D). Within the first
several seconds after application of the aspirator, the cel-
lular deformation increased sharply, with the length of
the aspirated cortex increasing to an average value of 4

Viscoelastic model of cellFigure 2
Viscoelastic model of cell. A. Representation of the viscoelastic model of the cell. xc and xm denote the location of the cell 
cytoplasm and membrane, respectively; τc and kc define the mechanical model of the cell cortex; τa includes the viscous defor-
mation of the cytoplasm as well as other components including adhesion. B. To validate our model and determine model 
parameters, we utilized micropipette aspiration technique. Relevant parameters include the radius of the micropipette (Rp), the 
radius of the cell (Rc), and the length of protrusion into the micropipette (Lp). C. Example of a Dictyostelium cell being aspirated 
into the micropipette at 0.65 nN/μm2. Time stamps are in seconds, scale bar shows 10 μm. D. Protrusion into the pipette was 
measured and was accounted for by the model. Different colored circles represent data from 22 individual experiments. Solid 
line represents the deformation defined by Eqn. 6 with parameters kc = 0.098 nN/μm3, τc = 0.064 nNs/μm3 and τa = 6.09 nNs/
μm3.
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μm. The deformation during this phase can be interpreted
as being dominated by the elastic characteristics of the
cytoskeletal network. Thereafter, the trajectory was domi-
nated by slow cellular flow into the micropipette, increas-
ing, on average, about 2 μm over the next 25 s.

The pressure applied by the micropipette aspirator is not
the only pressure experienced by the cell. At rest, the cell
is also under pressure from cortical tension (γten), which
maintains the spherical shape of the cell. Under the corti-
cal shell-liquid drop model [31], we assume that the cor-
tical tension arises as surface tension (ignoring tangential
stress). Following the Young-Laplace equation for liquid
interfaces, the equilibrium pressure experienced by a
spherical cell of radius Rc is

Peq = 2γten/Rc. (3)

The cell's protrusion into the micropipette is driven by the
aspiration pressure. As the cell is aspirated, the portion of
the cell inside the micropipette will be a spherical cap of
radius Rcap <Rc. Given a measured length of protrusion Lp,
the radius of the spherical cap Rcap can be obtained (see
Additional file 1). The cap's smaller radius gives rise to
higher local curvature, creating a rounding pressure:

Pround(LP) = 2γten/Rcap - Peq,

to oppose the aspiration

At the critical aspiration pressure, Pcrit, the cell extends a
perfect hemispherical projection with radius Rp into the
micropipette and does not protrude any further under this
constant pressure. Thus, the critical pressure is:

Pcrit = Pround(Rp) = 2γten(1/Rp - 1/Rc). (4)

The cortical tension has been measured to be 1–1.5 nN/
μm in passive, wild type Dictyostelium cells [18,31,32].
Here, assuming cortical tension of γten = 1 nN/μm, pipette
radius of Rp = 3.1 μm and cell radius of Rc = 5.1 μm, we can
compute Pcrit to be approximately 0.25 nN/μm2. Because
the applied pressure was greater than the critical pressure,
the cell was continuously aspirated into the pipette. Cells
were only tracked for 30 s, as longer timescales are domi-
nated by cortical remodeling and turnover [33,34].

Pascal's law dictates that the hydrostatic pressure, Pext, in
the micropipette is normal to the cell membrane inside
the micropipette and has the same magnitude in all direc-
tions. Similarly, the cell's equilibrium pressure is normal
to the cell membrane everywhere with the same magni-
tude. We used the total pressure, Ptotal = Pext - Pround, as the
input to the cell's mechanical model. This pressure is
applied to the cell membrane region around xm and is

transferred directly to the cell's cortex, formed of cytoskel-
eton and its cross-linkers, just beneath the cell membrane.
The corresponding mathematical model is:

where w0 represents the initial position of the cell cortex
when no force is applied to the system. We define � such
that:

xc = xm - � - w0.

With this variable change, the transformed system can be
written as:

Using the Voigt-dashpot model of Eqn. 5 to account for
the viscoelastic response of the cell to an applied step pres-
sure, the aspirated cellular length into the pipette, Lp, is
given by:

Data from all 22 cells were combined. The following
parameters in the viscoelastic model were obtained using
a least squares fit (using Matlab's curve fitting toolbox): kc
= 0.098 ± 0.007 nN/μm3, τc = 0.064 ± 0.018 nNs/μm3, and
τa = 6.09 ± 1.44 nNs/μm3 (the ± value refer to a 95% con-
fidence interval). With these parameter values, the 1-D
model was able to capture the deformation trends
observed in the experimental data (Fig. 2D). Note that the
elastic constant obtained, when applying the methods of
Theret et al. [35] and Hochmuth [30], is equivalent to an
elastic Young's modulus of 70 pN/μm2, which is similar to
the value of 95 pN/μm2 measured for Dictyostelium using
different techniques [18].

Implementation of micropipette aspiration simulation
During micropipette aspiration, the cell's velocity is gen-
erated by externally applied pressure, as well as internally
generated cellular pressures such as cortical tension. We
now outline how the contribution of each pressure is
computed and applied to the cell's potential function ϕ(x,
t).

We choose to do the simulations in two dimensions. The
level set method is directly applicable to three dimensions
(3-D), and all of the level set equations either carry over
without change into 3-D, or have natural extensions. In
practice, however, the computational burden of 3-D sim-
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ulations is significant and hence we restrict ourselves to
two dimensions. To differentiate the forces (and hence
pressures) which are 2-D, from the scalar pressures used
above, we use bold characters.

Evolving the cell membrane
The simulation accounts for the effects of three pressures:
those generated externally by the micropipette; those gen-
erated internally to maintain constant volume; and
rounding pressure corresponding to the cell's cortical ten-
sion. Together, these pressures generate a velocity field
that evolves the cell's membrane.

Externally applied pressure
To account for the force generated by the hydrostatic pres-
sure in the micropipette, the pressure Pext, uniform in
magnitude and normal to the cell membrane, is used in
the LSM simulation. This force exists only inside the inner
boundaries of the pipette.

Pressure due to volume conservation
We assume that, during aspiration, the cellular volume
(V) remains constant. To enforce this constant volume
condition numerically, we implement a pressure, acting
normal to the surface:

Pvol = Kvol(Vresting - Vactual)n (7)

where n is the outward normal. The cell's volume is eval-
uated by assuming the cell is radially symmetric:

Vactual = ∫cell lengthπr(x)2dx. (8)

To ensure that the cell's volume does not change during
the course of the aspiration requires that Kvol be large. In
our simulations, we set Kvol = 0.1 nN/μm5, which was suf-
ficiently high to ensure that volume changes were mini-
mal (Fig. 3G) while maintaining stability of the
simulations.

Rounding pressure due to cortical tension
Resting cells experience cortical tension [31] which gener-
ates pressure, Peq, as shown in Eqn. 3. When a spherical
cell is aspirated, the cell's cortex resists deformation.

The pressure generated depends on the local surface cur-
vature

and a material property of the cortex referred to as the cor-
tical tension (γten) according to:

Pten(x) = 2γtenκ(x)n. (9)

Therefore the rounding pressure produce by the cell is
Pround = Pten - Peq. This acts inward normal to the mem-
brane.

We have chosen to define Pround as the difference between
the tension and an equilibrium pressure. This is accord-
ance to experiments on neutrophils that found that corti-
cal tension depends on surface area [36]. However, the
latter term can also be incorporated into the volume con-
servation term. In particular, combining Pvol and Pround
leads to:

where  = Vactual + 2γten/(RcKvol).

The coefficient 2 in the pressure equation is introduced to
account for the fact that our curvature calculation is based
on the 2-D representation of cell shape, as the curvature of
a sphere of radius r is 2/r, but the curvature of a 2-D circle
is only 1/r. In the computation of curvature, spline-based
interpolation was used to smooth out discretization
noise.

Total pressure and cell evolution
In the above formulations, the total pressure outward nor-
mal to the cell membrane is:

Ptotal = Pext + Pvol - Pround. (10)

The formulation of  in Eqn. 5 provides us with the

pressure-velocity relationship:

The velocity vector, v, is defined for points on the cell
membrane. This needs to be extrapolated to a velocity

field to evolve the potential function ϕ. It is only the
velocity variations tangential to a given interface that dic-
tate the interface motion [37]. A velocity field that mini-
mizes the normal component of the field variation is
achieved by extrapolating the membrane velocity with the
nearest neighbor method. In other words, the velocity
v(x) at a point x can be set equal to the membrane velocity
v( ) at the membrane location  closest to the point x.
It has been shown that a signed distance function tends to
stay a signed distance function when the closest neighbor
extrapolation method is used [38]. We can now use this
velocity field to evolve the cell membrane according to
Eqn. 2.
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Simulation of micropipette aspirationFigure 3
Simulation of micropipette aspiration. A. To account for the solid surface of the micropipette, we introduce a mask 
potential function (Ψ) defined by the micropipette walls (black line). B. A cross section illustrates how the masking potential 
function is used to clip the evolving level set potential function. Based on the driving equations, the potential function evolves 
from ϕ(t)(solid blue) to ϕ(t + Δt)(dashed blue). However, this new position makes the cell cross into the pipette (defined by 

the mask function Ψ – green line). The level set function is then clipped to  to account for the solid surface. C. Paral-

lel spring-dashpot units are used to represent the viscoelastic state of the cell as the boundary evolves from Γ(t) to Γ(t + Δt). 
Each component consists of a viscoelastic model as defined in Fig. 2A. D. Simulation of micropipette aspiration implementing 
the viscoelastic model of the cell in the LSM (using the adjusted parameters; see main text). Shown is an overlay of simulation 
frames at t = 0 s (spherical cell, light grey), 0.5 s, 1 s, 5 s and 20 s (farthest protrusion, black). E. Measurements from aspiration 
simulations. Assuming an aspiration pressure of 0.65 nN/μm2, the protrusion into the cell from the simulation (black line) can 
account for the experimental data (grey dots; mean square error, MSE, is 0.74 μm; coefficient of determination, R2, of 0.78) 
nearly as well as the data fit (dotted line) from Fig. 2D. (MSE: 0.73, R2: 0.79). With slightly different parameters (see main text) 
the simulation (red line) overlaps the fitted data better (MSE: 0.73, R2: 0.79). Aspiration forces near the critical pressure (0.35 
nN/μm2) can deform the cell initially, but do not draw it in further (green line). F. After 20 s of micropipette aspiration, the 
pressure in the aspirator is dropped, leading to a relaxation in the protrusion distance; a typical example is shown here. Time 
stamp indicate seconds after release of aspiration pressure, scale bar corresponds to10 μm. Note that the cell does not fully 
retract the aspirated portion. G. In a LSM simulation, the cell's retraction can be shown as the decrease of length of protrusion. 
Simulation of cell relaxation accurately demonstrates the lack of complete retraction observed (red). Also shown is the cell's 
volume (blue) during the simulation demonstrating that any volume changes are minimal.
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Eqn. 11 points to a difference between the LSM model of
cellular deformation and the one-dimensional (1-D), sca-
lar model used to obtain the viscoelastic parameters (Eqn.
6). In the latter, the pressure is co-aligned with the direc-
tion of the viscoelastic components, implying that the
direction of motion is also always inline with the direc-
tion of the applied pressure. In the LSM simulation, the
pressure is applied normal to the cell membrane, but the
viscoelastic component, l, does not have to have the same
directionality, and the resultant velocity vector is not
always normal to the cell membrane. While providing us
with good starting point for the parameter estimation, the
1-D formulation therefore can not be expected to explain
the 2-D simulation completely.

Restricting cell shape inside micropipette
As the cell's level set potential function moves into the
micropipette, its shape is restricted to remain inside the
micropipette. This is achieved by first defining a mask
potential function [39], Ψ, for the micropipette (Fig. 3A).
The effect of the mask is to correct for the cell's potential
function by clipping it (Fig. 3B) according to:

This restriction guarantees that the cell boundary never
moves outside of the inner walls of the virtual micropi-

pette. After this restriction, the net change in ϕ is:

 - ϕ(t), which translates (see Additional file 1) to

an effective velocity that is normal to the cell membrane:

Thus, wherever clipping by the micropipette mask occurs,
we must use this effective velocity to evolve the potential
functions in simulation.

Evolution of the viscoelastic state of the cell
In our simulations, the cell can be represented by a series
of parallel viscoelastic systems with the same parameters
(Fig. 3C). These sub-systems are not interconnected, and
the applied pressure on each system, Ptotal as defined in
Eqn. 10, is normal to the cell membrane. We argue that
applying total pressure to the parallel unconnected spring
damper systems used in this model closely approximates
cellular behavior when the following conditions are met:

1. Membrane pressure profile is piecewise smooth. This is
a reasonable assumption as, in practice, pressure profiles
are piecewise smooth. Even when a point force is applied
to a particular location of the cell membrane, membrane
elasticity will diffuse this force and make the pressure
smooth locally.

2. Simulation grid density is dense enough for simulation
stability, but not much denser than the discretization of
the membrane pressure profile. With this assumption, the
interpolation nature of level set method acts like a low
pass filter, where effects of artificial abrupt jumps in the
pressure profile are smoothed.

Let l(x, t), x ∈ Γ(t) be the viscoelastic state of the cell at
time t and at a position x on the membrane. That is, |l|
represents the length of the numerous parallel uncon-
nected spring-damper systems. At a given position, x, on
the membrane, there is a vector with length given by |l(x)|
= |�| in Eqn. 5, representing the state of a single spring-
damper system. Then

where D is the Jacobian operator, [Dl]v represents the dis-

placement of the whole cell membrane, and  as

defined in Eqn. 5. The equation describing the evolution
of l is:

Testing of model: Micropipette aspiration simulation
To summarize, the flow chart of the simulation steps is
shown in Fig. 4. The implementation is derived from the
Level Set Toolbox [39] and is coded in Matlab (Math-
works, Natick, MA). The simulations were implemented
on a fixed grid of 10 μm in size, with density of 20 points/
μm and 4 ms time steps. Simulating 15 seconds of aspira-
tion takes approximately 8 h on a desk-top computer.

We simulated the micropipette aspiration experiment
under several different aspiration pressures. Using an aspi-
ration pressure of 0.65 nN/μm2 (the pressure used to
obtain our viscoelastic model parameters), our simula-
tion reproduced the trend observed in real cells (black line
in Fig. 3E). The result of this simulation did not com-
pletely overlap the least-squares fitted data, though the fit
to the experimental data is nearly as good. The fitted data
has a mean square error (MSE) of 0.73 μm and a coeffi-
cient of determination (R2) of 0.79; the simulation has
0.74 μm and 0.78 respectively. Using different parameter
values: kc = 0.1 nN/μm3, τc = 0.08 nNs/μm3, and τa = 4.6
nNs/μm3, we were able to reproduce the fitted data
slightly more accurately (Fig. 3D and red line in Fig. 3E;
MSE of 0.73 μm and an R2 value of 0.79).

Using 0.35 nN/μm2 of pressure, the cell was rapidly and
partially aspirated into the pipette. Thereafter, it remained
nearly immobile. This simulation recreates the observed
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behavior of Dictyostelium cells at aspiration pressures near
the critical pressure.

To test our model further, we simulated the relaxation of
an aspirated cell and compared this to experimental
results in which a cell is aspirated into the micropipette
for approximately 20 s at which point the applied pressure
is released. The cell responds by rapidly retracting the
aspirated portion (Fig. 3F). The retraction gradually slows
to a near halt, with a significant portion of the cell remain-
ing inside the micropipette. This behavior was reproduced
in our simulations. The simulated cell retraction from the
micropipette is measured in the reduction of length of
protrusion (Fig. 3G), matching the retraction behavior
seen in live cells. As shown in Fig. 3G, the variation in cell
volume during these simulations was less than 1%.

Simulating Dictyostelium cell shape changes using a 
simplified chemotaxis model
Having established that we can recreate the cellular shape
during micropipette aspiration, in which externally
applied pressures are driving cell shape changes, we con-
sider a situation in which the pressures arise as a response
to external stimuli. To this end we simulated the cell shape
behavior of chemotactic Dictyostelium cells.

Dictyostelium cells have the ability to detect spatial differ-
ences in the concentration of the extracellular chemoat-
tractant cAMP. They interpret these spatial differences and
respond by localizing signaling molecules. These signal-
ing molecules in turn bias the locations of actin polymer-
ization driven protrusions and myosin-II motor mediated
retractions, generating internal mechanical forces to

Algorithm for LSM simulation of micropipette aspirationFigure 4
Algorithm for LSM simulation of micropipette aspiration.
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deform the cell as well as propel the cell towards the che-
moattractant [1,40].

Our goal in these simulations is not to propose new
chemotaxis signaling mechanisms, or even to analyze the
large number of proposed mechanisms (reviewed in [3]).
Rather, it is to illustrate how cellular signaling can be cou-
pled to the LSM framework to drive cellular deformations.
Thus, we purposely implement a simple model connect-
ing chemoattractant gradients with intracellular markers.

Implementation and testing
We base our model for pressure generation on a previ-
ously published signaling model that accounts for recep-
tor mediated localization of phosphatidylinositol (3,4,5)-
trisphosphate (PI(3,4,5)P3) [41]. Though recent experi-
mental data suggests that cells employ multiple parallel
pathways to regulate chemotaxis [42,43], localization of
this membrane lipid has been correlated with the appear-
ance of pseudopods [40]. Moreover, elevated levels of
PI(3,4,5)P3 correlate temporally with increased levels of
actin polymerization [44].

Rather than implementing the complete reaction-diffu-
sion equations describing the PI(3,4,5)P3 model, we sim-
plify it by using a steady-state distribution of PI(3,4,5)P3
along the cellular membrane. It was shown that the mem-
brane concentration of PI(3,4,5)P3 is an amplified
response of the relative cAMP concentration observed on
the membrane [41,45]:

PI(3,4,5)P3 ∝ [cAMP/mean(cAMP)]3. (14)

Next, we compute the pressure components contributing
to cell motion, which include protrusion, retraction, vol-
ume conservation, and cortical tension pressures. To com-
pute protrusion pressure, we first assume that actin
polymerization creates a pressure wherever the
PI(3,4,5)P3 concentration is above its mean level:

Similarly, we assume myosin-II retraction occurs wherever
PI(3,4,5)P3 concentration is below its mean level:

Both of these act normal to the cell membrane. We let the
proportionality constant in Eqn. 14 be absorbed into con-
stants Kprot and Kretr. Eukaryotic cells can generate actin

mediated protrusion pressures of 0.5–5 nN/μm2 [46]. We
chose Kprot = 0.5 nN/μm2 and Kretr = 1 nN/μm2.

When computing the conservation of volume pressure, we
assume that the cell is flat with uniform thickness. Thus,
volume conservation is equivalent to conserving the 2-D
area of the cell:

Parea = Karea(A0 - A)n.

The flat cell assumption also implies that the pressure gen-
erated by cortical tension depends only on the 2-D local
surface curvature and the 2-D equilibrium pressure. The
rounding pressure due to cortical tension is therefore
given by:

Pten = Kten(κ(x) - 1/Rc)n. (17)

Values of Karea = 0.2 nN/μm4 and Kten = 1 nN/μm were
used in these simulations.

Summing all these components yields the total force nor-
mal to the cell membrane:

Ptotal = Pprot + Pretr + Parea - Pten.

Finally, the membrane velocity is computed using Eqn.
11, with the same viscoelastic parameters τa, kc and τc. The
simulation algorithm is similar to the micropipette aspira-
tion case, and is summarized in Fig. 5.

This simulation successfully generated chemotaxis behav-
ior (Fig. 6). In response to a chemoattractant gradient, the
cell, whose shape was initialized as a circle, changed shape
and migrated in the direction of the chemoattractant gra-
dient (Fig. 6A). The pressure profile (Fig. 6B) and dis-
placement (Fig. 6C) are shown as functions of local cAMP
concentration and time, respectively. The cell achieved a
velocity of 11.7 μm/min, which is similar to published
velocities of Dictyostelium cells (e.g. 11.8 μm/min[47]).
During the simulation, the cellular area (and hence vol-
ume) remained nearly constant (Fig. 6C).

Membrane pressure profile and cell shape
While our simulations of Dictyostelium recreate the
motion of the cell in response to the chemoattractant gra-
dient, the resultant cell shape change is small and the
steady-state morphology does not resemble that observed
experimentally in chemotaxing. Wild type chemotaxing
Dictyostelium cells become elongated (Fig. 7A). Other
strains, including the amiB- mutants [48] can move stably
in fan-like shapes that are reminiscent of keratocytes (Fig.
7D). Without determining the underlining molecular
methods, we hypothesized that the difference in cell
shape can be accounted for by the way that the force gen-
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eration is distributed along the cell membrane. Our LSM
simulation framework allows us to determine how these
forces are distributed along the cell to generate the result-
ing cell shapes, both for wild type and mutants. To this
end, we set out to replace our initial model, described by
Eqn. 15 and 16, by one based on the observed morpholo-
gies.

Given a stable cell shape Γ0 traveling at velocity u, we let
Γu be the displaced cell at time Δt, and ϕ0 and ϕu be the
potential functions representing Γ0 and Γu respectively.
The effective velocity field necessary for this displacement
is:

If the cell shape is at steady state, we can assume that the
internal viscoelastic network is also in steady state, that is,

. Therefore, from Eqn. 5, we compute the viscoelas-

tic steady state � = Ptotal/kc.

Moreover, the membrane speed at steady state is

expressed as  = Ptotal/τa. Combined with Eqn. 18, we

find Ptotal:

Taking into account the effect of cortex tension, and
assuming that there is no cell volume deviations, we can
compute:

where Pten is the cortical tension-driven rounding pressure
defined in Eqn. 17. Using this formula, and a cell velocity
of 10 μm/min, we calculated the pressure profiles
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Algorithm for LSM simulation of cell shape changes in response to external chemotaxis gradientsFigure 5
Algorithm for LSM simulation of cell shape changes in response to external chemotaxis gradients. This algorithm 
includes only general steps required to generate the pressure profile. To simulate chemotaxis also requires that the chemoat-
tractant gradient be generated and that the protrusive (Pprot) and retractive (Pretr) pressures be computed. These would be 
determined by specific models of chemotactic response. In our simulations, these were generated by Eqn. 15 and Eqn. 16, 
respectively.
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required to generate cell shapes seen in wild type cells as
well as in amiB- cells.

Obtaining these pressure profiles is straight-forward com-
putationally, taking less than one minute of CPU time on
a desk-top computer. It does require, however, a smooth
shape. Thus, a certain amount of image processing is
needed when using segmented images from experiments.
Moreover, the formula in Eqn. 18 is based on a steady-
state shape. Handling transient cell shape changes, such as
protrusions or retractions, needs a local description of the
velocity v(x).

Our results indicate that to generate polarized cell mor-
phologies observed in wild type Dictyostelium cells, the
protrusive forces must be primarily concentrated along
the anterior ≈ 25% portion of the cell; see Fig. 7B. This is

reminiscent of the PI(3,4,5)P3 threshold observed in cells
[45,49]. At the sides, a smaller and less localized retractive
force gives the cell its elongated shape. When this pressure
profile was used to simulate a chemotaxing cell (Fig. 7C),
the resulting virtual cell achieved an elongated shape and
chemotaxed successfully to the source of chemoattractant
achieving a stable velocity of 11.1 μm/min.

Clearly, a different pressure profile is needed to generate a
fan like shape as observed in amiB- cells (Fig. 7D). Here,
the maximum protrusive force is spread out considerably
more at the front, while large amount of retraction force is
still needed to pull the tail region along. Using this pres-
sure profile in the chemotaxis simulation led to a migrat-
ing cell with stable shape similar to that seen
experimentally (Fig. 7F). The resultant fan-shaped cell
achieved the stable velocity of 9.7 μm/min.

LSM simulations of cell shape changes during chemotaxisFigure 6
LSM simulations of cell shape changes during chemotaxis. A. We simulated the change in cellular morphology of a Dic-
tyostelium cell exposed to a point source of chemoattractant (1 μM of cAMP). Shown is the resultant chemoattractant field 
(computed by solving the diffusion equation) as well as the location of the cell at times 0, 1.5, 10, 40, 60, 80 and 100 s. Initially, 
the cell is assumed to be round (red circle). B. In this model, pressure was determined by the concentration of PI(3,4,5)P3 on 
the membrane as described in the text. The maximum and minimum refer to the concentrations experienced by the cell 
around the membrane. C. The position of the cell (blue) was plotted as a function of time, showing fairly constant velocity 
(11.7 μm/min). Also shown is the cell's area (red) during the simulation demonstrating that changes are also minimal.
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Conclusion
We have shown that the simulation framework we have
developed can be used to model cell shape deformations
as well as cell motility. The simulations can produce
deformations seen during micropipette aspiration experi-
ments. This requires parameter values for the viscoelastic
model which can be obtained experimentally. It should
be noted, however, that 2-D simulations using parameters
based on a 1-D model may not reproduce the 1-D model
simulation precisely.

In the simulations of cell shape changes during chemo-
taxis, we saw that our simple model for generating the
cell's protrusive and retractive forces in response to a che-
moattractant gradient does not produce experimentally
observed cell shapes. However, our techniques allow us to
work backwards from shape to obtain the required forces.
We determined that generating the elongated cell shape
requires a large protrusive force at the front (the pressure
profile there is positive). At the sides, there is a large retrac-
tive force (the pressure profile there is negative). While
measuring this pressure profile directly would be difficult,
it is possible to image fluorescently-tagged myosin-II to
infer a measure of the forces acting on the cell. Under the
assumption that the retractive force is being generated by
myosin-II, we expect that myosin-II would be greatly
enriched at the sides. Quantitatively, the spatial distribu-
tion of myosin could be used to estimate how much force
is being generated along the membrane (as has been done
during cytokinesis [50]).
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Pressure profile drives cell shapeFigure 7
Pressure profile drives cell shape. A. During chemotaxis, wild type Dictyostelium cells acquire a polarized, elongated mor-
phology. B. Eqn. 19 was used to compute the pressure profile (red dots) necessary to maintain the elongated cell shape (inset) 
along the cell membrane, and this is plotted as a function of the local chemoattractant (cAMP) concentration. The maximum 
and minimum refer to the concentrations experienced by the cell around the membrane. Pressure profile used in the simula-
tions (blue line) was obtained by fitting the computed pressure profile, details are given in the Additional file 1. C. Chemotaxing 
cell using the pressure profile of panel B. The shapes of the cell are shown at times 0, 1.5, 10, 20, 40, 60, 80 and 100 s. Other 
details in the simulation are as in Fig. 6. D-F. Simulations of chemotaxis in Dictyostelium amiB- cells. These mutant cells acquire a 
fan-like morphology (panel D) and move along their broad axis. This form of movement was recreated using the pressure pro-
file of panel E (colors as in panel B). F. Chemotaxing cell using the force profile of panel E. Times of the shapes are as in panel 
C.
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