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Models that combine transcriptomic with spatial protein
information exceed the predictive value for either single
modality
Ioannis A. Vathiotis 1,2, Zhi Yang 3, Jason Reeves3, Maria Toki 1,2, Thazin Nwe Aung1,2, Pok Fai Wong1,2, Harriet Kluger2,4,
Konstantinos N. Syrigos5, Sarah Warren3 and David L. Rimm 1,2✉

Immunotherapy has reshaped the field of cancer therapeutics but the population that benefits are small in many tumor types,
warranting a companion diagnostic test. While immunohistochemistry (IHC) for programmed death-ligand 1 (PD-L1) or mismatch
repair (MMR) and polymerase chain reaction (PCR) for microsatellite instability (MSI) are the only approved companion diagnostics
others are under consideration. An optimal companion diagnostic test might combine the spatial information of IHC with the
quantitative information from RNA expression profiling. Here, we show proof of concept for combination of spatially resolved
protein information acquired by the NanoString GeoMx® Digital Spatial Profiler (DSP) with transcriptomic information from bulk
mRNA gene expression acquired using NanoString nCounter® PanCancer IO 360™ panel on the same cohort of immunotherapy
treated melanoma patients to create predictive models associated with clinical outcomes. We show that the combination of mRNA
and spatially defined protein information can predict clinical outcomes more accurately (AUC 0.97) than either of these
factors alone.
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Combination immunotherapy targeting both cytotoxic T-
lymphocyte associated protein 4 (CTLA-4) and programmed cell
death 1 (PD-1) immune checkpoints has resulted in a median
progression-free survival (PFS) of 11.5 months and 5-year survival
rates of up to 52% in previously untreated patients with advanced
melanoma.1–3 However, objective response to immune check-
point inhibitors (ICI) is limited to 40% and evidence of clinical
activity is present in up to 65% of patients.4

A number of methods have been tested for their predictive
value for ICI therapy.5 PD-L1 expression by IHC on formalin-fixed,
paraffin-embedded (FFPE) tissue has demonstrated limited pre-
dictive ability in patients with metastatic melanoma. PD-L1 IHC
maintains suboptimal accuracy and reproducibility and offers
limited information about the tumor microenvironment (TME).6–8

High tumor mutational burden (TMB) has also been correlated
with response to ICI. However, TMB provides indirect and
equivocal information about the immune response and has not
been standardized yet.9–11 Recent studies have focused on
generating gene expression profiles (GEP) to address all different
cell types and phenotypes that comprise the complex TME and
describe the crosstalk among different immune-regulatory path-
ways.12–14 GEPs have indeed proved more accurate in predicting
response to ICI, however, transcriptomic assays lack spatial
information that may provide context about the source of the
transcript within the tumor microenvironment.15

To assess the relative power of both spatially informed protein
combined with GEPs, we utilized a cohort of 59 retrospectively
collected melanoma patients that received treatment with anti-PD-
1 (34/59; nivolumab, pembrolizumab) or combination (25/59;
ipilimumab plus nivolumab) immunotherapy in the metastatic
setting at Yale Cancer Center (Supplementary Table 1).16

Unsupervised hierarchical clustering on the 770 mRNA and 132
protein variables (44 DSP targets, measured in three different
compartments) revealed that DSP data mainly clustered away from
bulk mRNA gene expression data, suggesting that RNA and protein
bear discrete, mostly nonoverlapping pieces of biological informa-
tion (Fig. 1a). Next, we compared normalized bulk mRNA counts to
normalized protein counts in three different compartments (the
melanocyte [s100/HMB45] compartment, the leukocyte [CD45]
compartment and the macrophage [CD68] compartment) and the
sum of all three compartments. We saw that mRNAs and protein
products were best correlated in the melanocyte compartment,
possibly reflecting both the abundance of tumor tissue after FFPE
sample macrodissection as well as its transcriptional overactivity
driving gene expression. Most protein derivatives exhibited a
positive correlation with their corresponding mRNAs. We also
found a particular set of proteins that showed weak correlation or
anti-correlation with their mRNAs (CD276, MLH1, MYC, BCL2, MSH2,
MKI67, PMS2, CTNNB1, and STAT3) (Fig. 1b).
Although currently challenging to assess on a single platform,

combined modality (mRNA and protein) models may provide
more detailed and comprehensive biological information, incor-
porating data related to immune regulation and other aspects of
the tumor–stroma interaction and thus, prove superior to the
existing models in predicting response to ICI. To explore this
hypothesis, we extracted 527 variables that were modestly
associated with the best overall response (BOR) (p < 0.10) by
unadjusted univariate analysis (Fig. 2a). After removing moder-
ately correlated predictors (R2 > 0.70), we used Elastic Net
Regularization for feature selection and optimization for inclusion
in different predictive models. We generated three models: a bulk
mRNA gene expression model (n= 770 variables; PD/SD vs PR/CR,
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-0.23; p < 0.0001), a DSP model (n= 117 variables; PD/SD vs PR/CR,
-0.04; p= 0.002) and a combined modality model (n= 44
variables, including 10 protein and 34 mRNA; PD/SD vs PR/CR,
-0.68; p < 0.0001) (Fig. 2b). All proteins included in the DSP model

were quantified in either the s100/HMB45 or the CD68 compart-
ment. Although both PD-L1 mRNA and protein in the CD68
compartment were significantly associated with BOR, neither was
selected in the combined modality model.

Fig. 1 Correlation between mRNA and protein. a Unsupervised hierarchical cluster analysis for 770 mRNA targets acquired using NanoString
nCounter® PanCancer IO 360™ panel and 44 protein targets acquired in three different compartments (s100/HMB45, CD45, and CD68) using
NanoString GeoMx® Digital Spatial Profiler (DSP). DSP data generally cluster separately from bulk RNA profiling data. b Heatmap showing
Spearman ranked correlation coefficient between bulk RNA and corresponding proteins quantified in three different compartments and the
sum of all three compartments. A subset of protein targets shows weak correlation or anti-correlation to their precursor mRNAs (red
dashed box).

Fig. 2 Combination of mRNA and protein improves best overall response (BOR) classification. a Identification of significant predictors for
predictive model generation. Volcano plot showing mRNA and protein variables that are statistically significant for the prediction of BOR by
unadjusted univariate analysis (p < 0.10, n= 527 variables, p < 0.05, n= 228 variables). b Combined modality model is superior to RNA-only or
protein-only models in terms of BOR classification. Box and whisker plots and receiver operator characteristic (ROC) curves comparing a bulk
RNA-only model (n= 770 variables; Area under the curve [AUC], 0.93; 95% confidence intervals [CI], 0.87–1.00; sensitivity, 0.93; specificity, 0.87;
positive predictive value [PPV], 0.85; negative predictive value [NPV], 0.94) with a DSP-only model (n= 117 variables; AUC, 0.87; 95% CI,
0.80–0.94; sensitivity, 0.79; specificity, 0.88; PPV, 0.84; NPV, 0.84) and a combined bulk RNA and DSP model (n= 44 variables; AUC, 0.97; 95 CI,
0.92-1.00; sensitivity, 0.96; specificity, 0.93; PPV, 0.91; NPV, 0.96); feature selection occurs through Elastic Net Regularization after removal of
moderately correlated predictors (R2 > 0.70). On each boxplot, the central line indicates the median and edges indicate the interquartile range.
The upper whisker extends from the 75th percentile to the largest value at most the 1.5x interquartile and the lower whisker extends from the
25th percentile to the smallest value at most the x1.5 interquartile.
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We observed improvement in the classification of BOR for the
44-variable combined modality model (Area under the curve
[AUC], 0.97; 95 confidence intervals [CI], 0.92 to 1.00; sensitivity,
0.96; specificity, 0.93; positive predictive value [PPV], 0.91; negative
predictive value [NPV], 0.96). This exceeded the AUC for both the
770-variable transcriptomic model (AUC, 0.93; 95% CI, 0.87–1.00;
sensitivity, 0.93; specificity, 0.87; PPV, 0.85; NPV, 0.94) and the 117-
variable DSP model (AUC, 0.87; 95% CI, 0.80–0.94; sensitivity, 0.79;
specificity, 0.88; PPV, 0.84; NPV, 0.84). Model improvement was
more prominent over DSP rather than bulk mRNA, possibly
because of the increased number (~ 5-fold) of features derived
from the RNA dataset that were introduced in the analysis. The
features, or variables, while fractionally increasing the AUC, can
make the application of the model impractical or non-
reproducible.
Toward the goal of generating a clinical test, we extended the

analysis of the data to find the minimal subset of variables that
need to be included in the model without causing substantial
decline in model performance, representing the optimal trade-off
between efficacy and simplicity. To accomplish this, we ranked the
top ten sets of variables that demonstrated the highest predictive
ability, based on AUC, for any given number of variables included
in the model (K). Then, we constructed new sets that were
composed of the most frequently appearing variables for each K
value. Finally, we calculated AUC, sensitivity, specificity, PPV, and
NPV to compare these sets for K values between 4 and 13 (Fig. 3a
and Supplementary Fig. 1a–d). The first peak in all five curves was
observed when the number of variables was equal to eight (K= 8).
Hence, we selected the 8-variable (CCNO, ID4, IER3, IL2RB, MGMT,
NRDE2, TNFAIP6, and MSH2 in s100/HMB45) (Fig. 3b) hereafter
referred to as the Yale Mixed Modality Model (YMMM) (Supple-
mentary Table 2). We then tested the YMMM for the prediction of
BOR to ICI in patients with advanced melanoma (AUC, 0.88; 95%
CI, 0.78–0.95; sensitivity, 0.85; specificity, 0.83; PPV, 0.79; NPV, 0.88)
(Fig. 4a, b). It was apparent that YMMM incorporated three distinct
components; a component pertaining to cell cycle regulation and
oncogenesis (CCNO, ID4, and IER3), a component related to
unrepaired DNA damage, accumulation of mutations, and
microsatellite instability (MGMT, NRDE2, and MSH2 in S100/
HMB45) and a component directly linked with the immune
response towards the primary tumor (IL2RB and TNFAIP6).17–21

YMMM performance for the prediction of progression-free
survival (PFS) and overall survival (OS) needs to be considered in
the context for which it will be used. For this analysis, we
calculated the optimal, based on the Youden’s index, cutpoint for
the prediction of BOR and used it to create high and low risk
subgroups. Patients with high score according to YMMM
performed significantly better in terms of both PFS (HR, 0.20;
95% CI, 0.10–0.41; log rank p < 0.0001) and OS (HR, 0.16; 95% CI,
0.06–0.43; log rank p < 0.0001) in comparison with patients with
low YMMM score (Fig. 4c, d). Previous studies have demonstrated
that conventional biomarkers carry suboptimal predictive ability
for melanoma patients treated with ICI, as they are only able to
illuminate one or limited aspects of the tumor-TME interaction and
are designed to implement binary patient stratification (positive/
negative), failing to incorporate the dynamic range of responses to
this particular type of therapy.22 YMMM represents a multi-
modality approach that selects and encompasses essential
information about multiple elements related to response to ICI.
Furthermore, it functions as a continuous score, rather than a
binary variable, enabling precise as well as dynamic benefit
stratification to optimize clinical decision making.
But in practice, especially in the metastatic setting, many

predictive assays do not use the optimal area under the curve
since it is critical to provide patients the greatest opportunity to
benefit by maximizing sensitivity. An example of this is ERBB2 in
breast cancer. The current assay combination of IHC, then FISH has
high sensitivity (as high as 95%) but relatively low specificity23,24

for predictive response to HER2 targeting therapy. In fact, even in
the adjuvant setting where 65–70% of patients showed long-term
survival with placebo,25 the same assay is used in effort to leave
no patient behind, although many patients will not benefit from
the drug (low specificity). Similarly, as we build the YMMM assay
with a limited, accessible and highly reproducible biomarker set,
we need to design the assay for high sensitivity, even at the
expense of specificity. Our model suggests that for prediction of
response with 95% sensitivity the assay would have a specificity
between 0.63 and 0.94.
In summary, this is a proof of concept study and further

analyses are required to construct and validate the YMMM. As
such, a limitation of this work is the absence of validation using
cohorts in the literature since no previous cohort has collected
both spatial protein and transcriptomic information. Another

Fig. 3 Generation of Yale Mixed Modality Model (YMMM) for the prediction of best overall response to immunotherapy in patients with
advanced melanoma. a Identification of the optimal number of predictors for final model inclusion. Area under the curve (AUC) and 95%
confidence intervals based on the number of predictors included in the model; AUC curve peaks when 8 predictors are included in the model.
b Heatmap showing the most frequently appearing predictors for any given number of variables included in the model (K); calculations are
based on the top ten highest AUC models for different K values. For K= 8, selected predictors are CCNO, ID4, IER3, IL2RB, MGMT, NRDE2,
TNFAIP6, and MSH2 in s100/HMB45.
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limitation is the relatively small size of the cohort and the fact that
it is comprised of patients that received either single-agent or
combination immunotherapy. Future studies are planned to
validate the 8-variable YMMM, including retrospective collections
of patients with melanoma, as well as other tumor types, treated
with ICI and ultimately, prospective clinical trials. In addition,
YMMM or similar models should be correlated with other
predictive assays, including PD-L1 IHC score and TMB. Finally, in
an era where immunotherapy indications are relentlessly expand-
ing, YMMM or similarly constructed mixed modality models could

be used to develop predictors for single agents or therapeutic
combinations that may have distinct, compartment-specific
mechanisms of action.

METHODS
Tissue microarray and patient cohorts
Tissue specimens were prepared in a tissue microarray (TMA) format as
described previously.26 After review by a board-certified pathologist,
representative 0.6mm cores from areas with high tumor content were

Fig. 4 Yale Combined Modality Model (YMMM) predicts response to immunotherapy in patients with advanced melanoma. a, b Predictive
value of YMMM for best overall response (BOR). Box and whisker plot (a) and receiver operator characteristic (ROC) curve (b) for the prediction
of BOR (AUC, 0.88; 95% CI, 0.78 to 0.95; sensitivity, 0.85; specificity, 0.83; PPV, 0.79; NPV, 0.88); on each boxplot, the central line indicates the
median and edges indicate the interquartile range. The upper whisker extends from the 75th percentile to the largest value at most the 1.5x
interquartile and the lower whisker extends from the 25th percentile to the smallest value at most the ×1.5 interquartile. c Predictive value of
YMMM for progression-free survival (PFS). Kaplan–Meier curve showing that patients with high YMMM score have significantly prolonged PFS
in comparison with patients with low YMMM score (HR, 0.20; 95% CI, 0.10-0.41; p < 0.0001). d Predictive value of YMMM for overall survival
(OS). Kaplan–Meier curve showing that patients with high YMMM score have significantly prolonged OS in comparison with patients with low
YMMM score (HR, 0.16; 95% CI, 0.06-0.43; p < 0.0001). Cutoff point for high and low-risk subgroup stratification was calculated based on
Youden’s index.
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obtained from FFPE specimens and arrayed in a recipient block. FFPE normal
tissue was used as a control. All specimens were collected from the Yale
Pathology archives. The study cohort (YTMA376) is a retrospective collection
of 59 pretreatment melanoma tumor specimens resected between 2011 and
2016. Uveal melanoma was excluded. The corresponding patients were
treated with anti-PD-1 (nivolumab, pembrolizumab) or combination
(ipilimumab plus nivolumab) immunotherapy in the metastatic setting at
Yale Cancer Center. Clinicopathological data were collected from clinical
records and pathology reports; the data cut-off date was September 1,
2017.27 Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 were used
to determine best overall response (BOR) as complete response (CR), partial
response (PR), stable disease (SD), or progressive disease (PD), and objective
response rate (ORR; CR/PR), durable clinical benefit rate (DCBR; CR/PR/SD≥
6 months), disease control rate (DCR; CR/PR/SD).28 All patients provided
written informed consent or waiver of consent. The study was approved by
the Yale Human Investigation Committee protocol #9505008219 and
conducted in accordance with the Declaration of Helsinki.

mRNA gene expression
For the gene expression analysis, pretreatment FFPE whole tissue sections from
the 59 melanoma patients included in YTMA 376 were employed. Two slides
from each patient were macrodissected and RNA was extracted. The mRNA
transcripts were hybridized to 4-color, 6-spot optical barcodes, exclusive for
each of the targets included in the 770-plex PanCancer IO360 panel. Barcodes
were then measured by a fluorescence microscope on the nCounter platform.
Finally, RNA counts were normalized for technical efficiency by the geometric
mean of internal control probes, and then, to account for sample-specific RNA
content, against the geometric mean housekeeping genes present on the
panel. For analysis, normalized counts were log2 transformed.

Digital spatial profiling
The NanoString DSP is a novel platform that allows spatially-resolved,
high-plex quantitative measurement of target proteins on a single FFPE
slide. In this study, TMA slides were incubated with cocktails of 44
unique, previously validated, oligonucleotide-conjugated antibodies
(Extended Data Table 3). Each TMA spot was represented by a unique
region of interest (ROI). We hypothesized that immune markers,
including immune checkpoints, have differential expression patterns
among immune cell populations that comprise the tumor microenviron-
ment and carry different predictive significance with respect to the cell
type that they are expressed. So, on each ROI, different compartments,
called areas of interest (AOI), were created based on fluorescent staining
with antibodies targeting s100 with HMB45 for melanocytes, CD45 for
tumor-infiltrating leukocytes, and CD68 for tumor-infiltrating macro-
phages (Extended Data Fig. 2). Oligos from each AOI were then released
upon exposure to UV light. Photocleaved oligos were collected via
microcapillary tube inspiration by sequential assignment of the CD68+ ,
CD45+ , and finally s100/HMB45+ AOI and transferred into a microwell
plate with a spatial resolution of approximately 10 mm. Photocleaved
oligos were then hybridized to 4-color, 6-spot optical barcodes
producing uniquely labeled tags per AOI for each of the 44 antibodies
included in the original mix. Digital counts from barcodes corresponding
to protein probes were first normalized with internal positive and
negative controls to account for system variation, and then normalized
to the area of their compartment.

Statistical analysis and predictive model generation
After excluding five controls from the analysis including Histone H3, Mouse
IgG1, Mouse IgG2a, Rabbit IgG, and S6, a total of 887 targets (770+ (44 –
5) × 3) remained to build an elastic net regularized regression model for
predicting BOR. A more predictive subset of variables (n= 527) was
formed with p-value less than 0.10 in univariate logistic regression models.
To minimize the multicollinearity issue among 527 predictors, an iterative
pruning procedure was performed by ranking predictors in descending
order of its univariate R-squared in predicting BOR and only keeping those
with the highest AUC by removing other moderately correlated predictors
(correlation coefficient > 0.7). Therefore, only 72 predictors with pair-wise
correlation coefficients less than 0.7 remained to enter the next phase of
modeling training to tune two important parameters in regularization
models, the elastic net mixing parameter α and the regularization
parameter λ. Melanoma tumor specimens were split into 80% training
set and 20% testing set stratified by BOR. Models were built on the training

set in which α and λ were tuned simultaneously in four-fold cross-
validation.29 AUC values were used to evaluate model performance and to
select the optimal parameters. The process was performed by looping
across levels of α ranging from 0 to 1 in steps of 0.05 in which λ was
selected at the highest value of AUC for a given α. To stabilize the tuning
process for the parameter determination, the previous looping step was
performed for 40 replicates to obtain the maximized averaged AUC values
for the best combination of parameters (α= 0.15, λ= 0.642). To further
reduce overfitting on training a small dataset, instead of fitting the entire
data with the tuned parameters, an optimal subset of predictors was
constructed by those most frequently selected predictors, with non-zero
coefficients, from fitting the elastic net models on bootstrapped data over
1000 replicates, which returned a model size of 59 at its median value.
Then, α= 0.15, λ= 0.642 were applied to the data consisting of the top 59
most frequently selected predictors in which 44 of 59 returned non-zero
coefficients. Results of utilizing both proteins and bulk mRNA were
compared to two other scenarios where either only proteins or bulk mRNA
were used in model building. To further assess the predictive performance
of different combinations within these 44 targets, the top ten highest AUC
with corresponding targets were recorded to determine the most
predictive subset over a range of the number of desirable predictors, K,
from 4 to 13. It is noted that the following results are based on the
coefficient derived from the final model without refitting any new models.
When K is greater than five, 2,000,000 unique combinations were created
using the Monte Carlo method instead of an exhaustive search of all
combinations of all predictors. Among all possible combinations of a given
size of K, predictors were ranked by its frequency based on the results from
the top ten highest AUC value in which K number of predictors were
selected. To calculate the 95% confidence intervals of AUC, sensitivity,
specificity, positive predictive value, and negative predictive value the
smoothed bootstrap from the kernel boot package was applied to draw
samples with replacement from the empirical distribution for 1,000 times
which estimates the uncertainty of each measurement.30 The best subset
of eight predictors (CCNO, ID4, IER3, IL2RB, MGMT, NRDE2, TNFAIP6, and
MSH2 in s100/HMB45) was selected which had the largest improvement
on the AUC value. The variable importance was calculated based on the
decrease in AUC after 1,000 replicates of permutation in each predictor.31

Signature scores of these eight predictors, the sum of the product of
expression level and coefficients, were used to estimate the AUC value and
95% CI in predicting BOR. Kaplan-Meier analyses were performed on
overall survival and progression-free survival data between high-score
groups and low-score groups, which the cutoff of scores was determined
at the highest Youden’s index in predicting BOR.32 The entire analysis was
performed using R 3.6.3.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following data
record: https://doi.org/10.6084/m9.figshare.14345894.33 The data are housed in Yale
AQUAmine in the files ‘376_2_1_Nanostring_IO360_panel_IxV.txt’, ‘376_1_3_Nanos-
tring_2nd_run_immune_panel_mxt.txt’ and ‘376_3_2_Nanostring_immune_panel_mxt.
txt’. These files are not publicly available as they contain information that could
compromise research participant privacy. However, the data can be made available
upon reasonable request to the corresponding author Dr David L Rimm.

CODE AVAILABILITY
The data were processed and analyzed using R version 3.6.3 which is tested on both
Linux and Windows systems. The R packages and versions used are kernelboot(0.1.7),
caret(6.0-86), lattice(0.20-41), OptimalCutpoints(1.1-4), glmnetUtils(1.1.5), patchwork
(1.0.0), survminer(0.4.6), ggpubr(0.2.5), magrittr(1.5), pROC(1.16.2), DT(0.13), glmnet
(3.0-2), Matrix(1.2-18), survival(3.1-8), pheatmap(1.0.12), ggrepel(0.8.2), ggplot2(3.3.0),
readxl(1.3.1), and rsq(1.1). The datasets generated and/or analyzed during the current
study are available in the data folder of the GitHub repository, https://github.com/
Nanostring-Biostats/TSCOL_0137-Vathiotis_Rimm.
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