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Abstract

The prefrontal cortex (PFC) plays a pivotal role in goal-directed cognition, yet its representational 

code remains an open problem with decoding techniques ineffective in disentangling task-relevant 

variables from PFC. Here we applied regularized linear discriminant analysis to human scalp EEG 

data and were able to distinguish a mental-rotation task versus a color-perception task with 87% 

decoding accuracy. Dorsal and ventral areas in lateral PFC provided the dominant features 

dissociating the two tasks. Our findings show that EEG can reliably decode two independent task 

states from PFC and emphasize the PFC dorsal/ventral functional specificity in processing the 

where rotation task versus the what color task.
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1. Introduction

The prefrontal cortex (PFC) is central to goal-directed cognition and has been implicated in 

encoding both stable and dynamic representations of task-relevant variables such as goals, 

rules, and rewards (Duncan, 2001; Fuster, 2013; Miller and Cohen, 2001; Rougier et al., 

2005). Therefore, characterizing the representational code of PFC holds promise to open 

important new avenues in the study of decision-making, cognitive control, planning, and 

reasoning. Multivariate pattern analysis (MVPA) methods are crucial to achieving this goal 

(Norman et al., 2006). These methods, instead of focusing on individual signals (e.g. 
voxels), search for reproducible spatial patterns of activity that differentiate across 

experimental conditions. This is accomplished through the use of powerful machine learning 

classifiers that decode the information that is represented in activity patterns.

A growing number of studies with machine learning classifiers report reliable decoding of 

neural representations from multiple areas in the brain (Brouwer and Heeger, 2009; Harrison 

and Tong, 2009; Horikawa et al., 2013; Kamitani and Tong, 2005; Lemm et al., 2011; Muller 

et al., 2008; Wolpaw and Wolpaw, 2012). However, decoding PFC signals remains a 

challenge for both fMRI and electrophysiological non-invasive EEG measurements 

(Bhandari et al., 2018). Here, we assessed whether EEG can reliably measure 

representational information in PFC. Specifically, we investigated whether engagement in 

two distinct tasks, a mental-rotation and a color-perception task, could be predicted by EEG 

PFC features.

The mental-rotation and color-perception tasks used the same set of stimulus images, which 

displayed objects of varying spatial orientation and color, to control for sensory effects. We 

hypothesized that visual information from the primary visual cortex would propagate 

through the dorsal pathway processing “where” information preferentially for the rotation 

task (spatial manipulation) (Goodale and Milner, 1992; Hesse et al., 2014) and the ventral 

pathway processing “what” information preferentially for the color task (visual perception) 

(Kravitz et al., 2013; Mishkin et al., 1983), with subsequent representational patterns 

reflecting this dorsal/ventral organization decodable in PFC. To assess whether EEG signals 

could resolve these patterns, we localized EEG signals across major cortical areas spanning 

both PFC and non-PFC regions. We then extracted EEG features across canonical frequency 

bands and trained a regularized linear discriminant analysis classifier to discriminate 

between the two tasks. A systematic relationship between PFC signals and task performance 

would provide evidence for the role of PFC EEG features in encoding task-relevant 

information. In addition, the activation patterns detected by the classifier would provide 

insights into the representational format of the PFC.
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2. Materials and methods

2.1. Participants

Twenty healthy individuals (age: 22.8 ± 2.6; 10 men and 10 women) participated in this 

study. The study was conducted in accordance with the ethical guidelines established by the 

Institutional Review Board of Korea University (No. 1040548-KU-IRB-14–28-A-2) and the 

Declaration of Helsinki (World Medical Association, 2013). Participants had normal or 

corrected-to-normal vision, and none were color-blind, as determined by the Ishihara color 

test. Participants provided informed consent prior to the study.

2.2. Materials and procedure

Pairs of stimuli randomly drawn from a set of red or green objects (Fig. 1) were presented 

bilaterally on a black background at an eccentricity of 5 ° visual angle on a computer 

monitor, which was placed in front of the participant at a distance of 65 cm. In the center of 

the monitor, a small gray fixation cross was presented. Each stimulus spanned 5 ° visual 

angle and was presented for 5 sec. Stimulus presentation was followed by a variable inter-

stimulus interval ranging from 2.2 to 2.8 sec with a mean value of 2.5 sec. All types of 

stimuli appeared pseudo-randomly with equal probability.

Using the same stimulus set, the present study consisted of two tasks, a mental-rotation and 

color-perception task, which were counterbalanced in their presented order and were 

designed to activate different PFC areas. An essential function of the lateral PFC [LPFC; 

including both dorsolateral PFC (DLPFC) and ventrolateral PFC (VLPFC)] is executive 

control functions such as volitional responses to achieve an intended goal (Fuster, 2008; 

Royall et al., 2002; Sarazin et al., 1998). Dorsal route activation (DLPFC; processing 

“where” information) was predicted during the mental-rotation task (Shepard and Metzler, 

1971). In contrast, ventral route activation (VLPFC; processing “what” information) was 

predicted during the color-perception task. In the mental-rotation task, participants were 

instructed to determine whether the shapes of two images were identically matched when 

rotated (see Fig. 1). In the color-perception task, participants were instructed to determine 

whether the colors of two presented objects were the same. During these two tasks, 

participants were instructed to fix their eyes on a fixation dot presented on the center of 

monitor. Participants were also instructed to respond by pressing a button with one hand as 

quickly as possible whenever the two images were identical in the task-relevant feature of 

the images (shape or color, respectively) and to otherwise press another button with the 

opposite hand. Response hands were counterbalanced across participants. Each task 

comprised 4 blocks with a short break in between; each block included 80 trials. In each 

block, 4 levels of task-difficulty and 2 types of object-pair (identical vs. mirror-reflected) of 

10 different shapes of objects were presented as stimuli in a random order. Participants 

underwent a training session to become familiar with the task before the experimental 

session.

Four different levels of the task difficulty were generated for each task. For the rotation task, 

the degrees of object-rotation were 0 °, 45 °, 90 °, and 135 ° clockwise, which is the order of 

the increasing task-difficulty (difficulty 1 to 4, respectively; see the top panel in Fig. 1 as 
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examples). When the object is rotated more, its identification becomes more difficult. For 

the color-perception task, the saturation values of red and green varied from 100%, 50%, 

10% and 5% (difficulty 1 to 4, respectively; see the bottom panel in Fig. 1 as examples). The 

isoluminant RGB values for red and green were used for the experiment. As the difference 

in saturation values between two presented objects decreased, identification became more 

difficult. Since an easy task would not effectively induce differences in brain activity 

between these two tasks, the easiest task-difficulty (i.e. difficulty 1) was not included for 

further analysis. Reaction times and accuracies of task-performance in each task-difficulty 

were measured for the behavioral analysis. Reaction times values outside of mean ± 1.98 SD 

for each individual were considered outliers and were discarded from further analyses.

2.3. EEG Acquisition

The EEG was measured using a BrainAmp DC amplifier (Brain Products, Germany) with 64 

Ag/AgCl electrodes in an actiCAP (Brain Products, Germany) in accordance with the 

international 10–10 system. An electrode was placed on the tip of the nose as reference, and 

a ground electrode was placed at electrode AFz. Electrode impedances were maintained 

below 5 k Ω prior to data acquisition. The EEG was recorded at 500 Hz. For further 

analyses, EEG data were epoched from 500 ms prestimulus to 7000 ms poststimulus. Eye 

movement activity was monitored with an EOG electrode placed sub-orbitally to the left eye, 

and vertical and horizontal electro-ocular activity was computed using two pairs of 

electrodes placed vertically and horizontally with respect to both eyes (i.e. Fp1 and EOG for 

the vertical EOG, F7 and F8 for the horizontal EOG). All epochs were visually inspected for 

artifacts, and epochs containing eye movements or other artifacts (maximum amplitude ± 

100 μV and maximal gradient voltage step 50 μV/ms) were automatically rejected from 

further analyses. Only the trials with correct responses were collected for further analysis. 

Three participants were excluded from further analyses because of poor data quality.

2.4. Data Analysis

We assessed whether a decoder could detect task engagement in humans using source-level 

EEG signals from 15 Brodmann areas (BAs) comprising cortical areas in both dorsal and 

ventral visual routes up to PFC. Figure 2 depicts a flowchart of the analytic procedure.

2.4.1. Source reconstruction—First, source-level cortical activity was estimated from 

the scalp EEG signals measured using exact low-resolution tomography analysis 

(eLORETA) (Pascual-Marqui, 1999; Pascual-Marqui, 2007; Pascual-Marqui et al., 2002; van 

der Loo et al., 2011). eLORETA outputs were modeled as a set of 2,394 voxels of 7 × 7 × 7 

mm forming a 3D description of the cortex. The transformation criteria for source 

localization take advantage of a brain model based on the Talairach coordinate system 

included in the anatomical brain atlas (MNI-305) (Collins et al., 1994; Evans et al., 1993; 

Oakes et al., 2004; Talairach and Tournoux, 1988) and the international 10–10 system data. 

eLORETA provides more precise and accurate information because it has higher spatial 

resolution than sLORETA (Jatoi et al., 2014).

2.4.2. Extraction of signals in brain regions of interest—To investigate which 

brain areas encode task-related information, we selected the following 12 regions of interest 
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(ROIs), which spanned the area of 15 BAs (Fig. 3). For lateral and anterior PFC, the DLPFC 

(BA 9 and 46), VLPFC (BA 45 and 47), and anterior prefrontal cortex (BA 10) were chosen. 

The orbitofrontal cortex (BA 11) and anterior cingulate cortex (BA 24) were selected for the 

orbital and medial frontal cortex, respectively. BA 5 and 40 were selected for the posterior 

parietal cortex (PPC) (Aflalo et al., 2015). The primary motor cortex (BA 4) and premotor 

area (BA 6) were selected to assess motor activity, while the primary visual cortex (BA 17), 

secondary visual cortex (BA 18), associative visual cortex (BA 19), and inferior temporal 

gyrus (BA 20) were analyzed for primary and extrastriate visual processing. All of these 

anatomical areas were delineated based on the atlas embedded in LORETA software 

(Pascual-Marqui et al., 2002).

The following five canonical frequency bands were used in the present study: delta (0.5 to 4 

Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta (13 to 30 Hz), and gamma (30 to 50 Hz) 

(Buzsaki and Draguhn, 2004). However, since the dominant peak frequency within each 

frequency band varied between participants, we estimated individual dominant frequencies 

(IDF) for each participant and frequency band separately, based on the power spectrum 

average across all training trials and voxels belonging to the 15 selected BAs. It was difficult 

to clearly identify peak frequency in every frequency band for most individuals. In the 

present study, we aimed to fine tune the selection of frequency bands to improve 

discrimination between them and assess their contribution to decoding performance. The 

IDF for each frequency band was selected at the maximum power spectral density within 

each frequency band during the entire 5-sec poststimulus period.

Following the determination of IDFs, the source-level cortical activities were bandpass 

filtered within a range of IDF ± 1 Hz for each frequency band. The source-level IDF-

bandpass-filtered time series were then averaged across the corresponding voxels of each 

BA. Signals were averaged across voxels because the limited spatial resolution of non-

invasive EEG recordings did not allow inferences at a voxel level, and we focused on the 

differences in information encoded between BAs. Last, the envelopes of the source-level 

IDF-bandpass-filtered EEG time series of the 15 BAs for each frequency band were 

computed using the Hilbert transform. To reduce feature dimensionality, the extracted 

envelopes of the time series were averaged within 50-ms non-overlapping sliding windows, 

yielding down-sampled time series over the entire 5-sec poststimulus period.

2.4.3. Classification using regularized LDA—The averaged envelope of the source-

level IDF-bandpass-filtered EEG time series in each ROI over the entire 5-sec poststimulus 

period was used as input features to the classifier. With this feature representation, we then 

applied a linear discriminant analysis (LDA) (Duda et al., 2001) to extract a class-

discriminative feature fn and built a Gaussian classifier. Given a test sample X, we used the 

following decision rule:

C =
C1, if p f ∣ C1 > p f ∣ C2
C2, otℎerwise

(1)

where p f ∣ Ci  is a likelihood of a feature f conditioned on the class i.
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Classical| LDA is optimal in the sense that it minimizes the risk of misclassification for new 

samples drawn from known Gaussian distributions (Duda et al., 2001). Particularly, 

regularized LDA (rLDA) is a powerful machine learning technique that yields excellent 

results for single-trial event-related potential classification, which are superior to classical 

LDA when the ratio of features to trials is high (Blankertz et al., 2011; Lemm et al., 2011; 

Tomioka and Müller, 2010). Thus, in the present study, rLDA with shrinkage was used as a 

classification algorithm. In order to handle a singular sample covariance matrix Ŝ, estimated 

with EEG signal features, we used a regularized covariance S = (1 − λ)S + μλIp, where Ip 

denotes an identity matrix with p diagonal entries, μ is mean of the eigenvalues of S (i.e. 

∑i = 1
p Sii/p) and λ ∈ [ 0, 1] is a ‘shrinkage’ hyperparameter. The shrinkage parameter λ was 

computed analytically using the Ledoit-Wolf estimator (Ledoit and Wolf, 2004). The rLDA 

uses this regularized sample covariance, instead of the original sample covariance Ŝ 
(Friedman, 1989).

After fixing the parameters of the rLDA with shrinkage on the training data, the resulting 

calibrated classifier was used for out-of-sample prediction, i.e. novel unseen EEG trials 

could be decoded. We performed a 5-fold cross-validation (Lemm et al., 2011) to obtain the 

performance of out-of-sample classification. Thus, with trials remaining after artefact-

rejection, we designated 512 trials for training and the remaining 128 trials for testing, out of 

all 640 trials (320 trials per each task) per participant. Model (hyper-)parameters were 

chosen during the cross-validation process, and this procedure was iterated 5 times to 

provide different combinations of training and test data sets. The resulting decoding 

accuracies were averaged. This decoding procedure was performed for each participant 

separately. The decoded signals were evaluated in terms of whether the information encoded 

in the task could be successfully reconstructed (i.e. whether the task that the participant 

performed was correctly decoded). For classification, the rates of successful classification of 

the test data were compared for evaluating the decoding performance. The decoding 

accuracy was computed based on the estimated activities of all 15 BAs (with activities 

averaged across right and left hemispheres). Given that PFC signals are weak and we had no 

prior hypothesis on hemispheric laterality, we averaged signals across hemispheres to 

increase the signal-to-noise ratio. To enhance performance, we applied a filter-bank method 

(Ang et al., 2008) that concatenates all features of all frequency bands (delta, theta, alpha, 

beta, and gamma bands) as input features and trained rLDA.

2.4.4. Computation of activation pattern—Regarding the direction type of 

classification models (i.e. forward or backward), our classification model corresponds to a 

backward model. Given observed EEG signals, our model finds the source or task label 

information that possibly induces the observations. In order to gain better understanding of 

the classifier with respect to the neurophysiological basis of the extracted task-relevant 

signal, an ‘activation pattern’ approach (Haufe et al., 2014) was adopted in the present study. 

Due to the linear property and independence among vectors in the weight matrix Ŵ, it is 

straightforward to obtain its counterpart A = (Ŵ −1)⊤ in a forward model, where each 

column is considered as an ‘activation pattern’. The observed EEG signals are then 

understood as a linear combination of the activation patterns in A. The learned parameters of 

linear classifiers such as rLDA (i.e. their weight vectors) cannot be interpreted with respect 
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to the origin of the signal of interest because the parameters of the models are a function of 

the task-relevant signal and the task-uninformative signals (i.e. noise signals) (Blankertz et 

al., 2011; Haufe et al., 2014; Lemm et al., 2011). Therefore, in order to visualize how the 

extracted signal is encoded in the features that are used by the classifier, a so-called 

‘activation pattern’ has to be computed (Dähne et al., 2015; Haufe et al., 2014). To assess the 

impact of different cortical areas, we converted the weight vectors of the rLDA classifier to 

activation patterns, which provide neurophysiologically interpretable values (Haufe et al., 

2014).

Assuming that the task-relevant and task-uninformative signals are uncorrelated, the 

activation pattern is given by the covariance between the classifier output and the input 

features to the classifier (Haufe et al., 2014). To compare classification contributions across 

15 BAs, input features were normalized by dividing with its maximum value in each trial. In 

practice, we estimated an activation pattern involving all 15 BAs by multiplying the 

covariance in the normalized input features of 15 BAs with the classifier weight as follows:

A = ΣX(W )⊤
(2)

where ΣX and Ŵ denote the covariance matrices of normalized input features of 15 BAs and 

classifier weight vectors, respectively.

2.4.5. Interpretation of activation pattern—The activation patterns based on the 

rLDA provide neurophysiological insights related to the class label (i.e. task types in this 

study). The sign of the activation pattern was directly related to the direction of the 

classification. As a linear classifier was used in the present study, the sign of the pattern 

depended on how the classes were coded, here + 1 for the mental-rotation task and −1 for 

the color-perception task. Thus, a positive sign in the activation pattern means that the 

corresponding feature has larger values for the class coded as + 1, which is the mental-

rotation task. Similarly, a negative sign in the activation pattern represents the contribution 

of the class coded as −1, which is the color-perception task. To extract neurophysiologically 

interpretable brain–machine interfacing (BMI) features decisive in decoding performance, 

the activation pattern values of DLPFC were compared with those of VLPFC.

2.4.6. Comparison of PFC contribution to decoding performance—To compare 

the amount of contribution (i.e. feature strength) of each BA to the decoding accuracy, the 

activation patterns (normalized by the mean value of 15 BA absolute signals in each 

participant) of each BA were compared. As both positive DLPFC and negative VLPFC 

activities were dominantly and contrastively observed over the entire 5 sec in the grand 

average, the activation patterns of all 15 BAs were compared based on the time window 

when these most pronounced activation patterns (i.e. when a maximal gap between positive 

DLPFC and negative VLPFC activities was detected) were individually observed for each 

participant within the shared time window between stimulus onset and button-pressing for 

both the rotation and the color task. To compute the LPFC contribution in the activation 

pattern to decoding performance, the mean values of the absolute LPFC (i.e. BAs 9, 45, 46, 

and 47) activation pattern values were compared with those of the remaining non-LPFC 
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region. Similarly, the contribution comparison between PFC and non-PFC was computed 

using the ratio of the absolute activation pattern values of PFC and non-PFC.

In order to arrive at a comparable single activation pattern for each condition that could be 

visualized as a 3D topographical map, the grand-averaged activation patterns of each 

frequency band were normalized by the mean value of 15 BA absolute signals in each 

participant. Hence, based on the activation patterns, it allows us to gain a neurophysiological 

insight of the input channels, i.e. Brodmann areas, associated with the classification task. 

This is an important aspect of activation pattern analysis; thus, the contribution of PFC to the 

decoding of EEG signals for BMIs, reflected in the values of activation patterns is 

interpretable in terms of neurophysiological concepts.

2.4.7. Statistical analyses—All of the measures were analyzed using two-tailed 

paired-sample t-tests, and one-sample t-test was used to statistically examine whether the 

classification accuracies were significantly higher than by chance (50%). A false discovery 

rate (FDR) of q < 0.05 (Benjamini and Hochberg, 1995) was used to correct for multiple 

comparisons. To statistically assess whether DLPFC activity fluctuated primarily in the 

positive domain of the activation pattern and VLPFC activity oscillated mostly in the 

negative domain of the activation pattern, we computed the 95% confidence intervals of each 

mean throughout the entire 5 sec of the task performance in each frequency band. All 

analyses were performed using MATLAB (ver. R2018b, MathWorks, USA) or Python 

(Python Software Foundation, https://www.python.org).

3. Results

3.1. Behavioral performance in mental-rotation and color-perception tasks

We observed significant differences in behavioral responses for the different levels of task 

difficulty (Fig. 4). Both tasks had consistently higher reaction times with increasing task 

difficulties (mental-rotation task: difficulty 1: 1136.1 ms, difficulty 2: 1520.8 ms, difficulty 

3: 1793.2 ms, difficulty 4: 1964.6 ms; color-perception task: difficulty 1: 733.4 ms, difficulty 

2: 777.8 ms, difficulty 3: 1032.6 ms, difficulty 4: 1416.7 ms). Similarly, performance 

accuracies declined with higher task difficulty, though not all differences were statistically 

significant (mental-rotation task: difficulty 1: 98.8%, difficulty 2: 98.2%, difficulty 3: 

96.0%, difficulty 4: 92.1%; color-perception task: difficulty 1: 98.5%, difficulty 2: 98.5%, 

difficulty 3: 97.7%, difficulty 4: 89.0%).

3.2. Decoding task engagement from EEG time courses of 15 Brodmann areas

The beta band provided the highest decoding accuracy of 83.72% (t(16) = 18.711, q < 0.05, 

FDR-corrected) among all frequency bands (Fig. 5), but this did not differ between bands as 

all other frequency bands yielded decoding accuracies well above chance level (delta 

74.26%: t(16) = 11.009, q < 0.05, FDR-corrected; theta 80.03%: t(16) = 16.868, q < 0.05, 

FDR-corrected; alpha 80.50%: t(16) = 17.943, q < 0.05, FDR-corrected; gamma 83.45%: 

t(16) = 20.756, q < 0.05, FDR-corrected). A filter-bank method (Ang et al., 2008) using the 

combinational features of all frequency bands increased decoding accuracy to 86.99% (t(16) 

= 23.347, q < 0.05, FDR-corrected).
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3.3. Contribution of subregions of LPFC to decoding performance

Different behavior dependent activation patterns were observed between DLPFC and 

VLPFC (Fig. 6). DLPFC activity was prominently observed in a positive domain of 

activation patterns (95% confidence intervals) supporting the mental-rotation task (delta 

[0.200–0.517], theta [0.011–0.368], alpha [0.082–0.438], beta [0.024–0.350], gamma 

[0.153–0.481]), whereas VLPFC activity was predominantly detected in a negative domain 

of activation patterns indicating more feature strength for the color-perception task (delta 

[−0.132–0.098], theta [−0.364–−0.118], alpha [−0.420–−0.185], beta [−0.369–−0.139], 

gamma [−0.339–−0.089]) throughout the entire 5 sec of the task performance.

Activation patterns within each BA averaged across participants are shown in Figure 7. 

Overall, the activation pattern values of the DLPFC were significantly higher than those of 

the VLPFC in all frequency bands: delta (t(16) = 3.763, q < 0.05, FDR-corrected; DLPFC: 

0.642 vs. VLPFC: −0.447), theta (t(16) = 6.654, q < 0.05, FDR-corrected; DLPFC: 0.671 vs. 

VLPFC: −0.544), alpha (t(16) = 9.410, q < 0.05, FDR-corrected; DLPFC: 0.923 vs. VLPFC: 

−0.655), beta (t(16) = 2.345, q < 0.05, FDR-corrected; DLPFC: 0.902 vs. VLPFC: −0.064), 

and gamma bands (t(16) = 4.545, q < 0.05, FDR-corrected; DLPFC: 0.922 vs. VLPFC: 

−0.600). The sign of the activation pattern (feature strength) is indicative of the class label 

(i.e. task types in this study), with positive values relevant to the mental-rotation task and 

negative values relevant to the color-perception task. Since the DLPFC consistently 

exhibited a positive feature strength while the VLPFC demonstrated a negative feature 

strength based on 95% confidence intervals of their mean activities during the task 

performance, the DLPFC features reflected the mental-rotation task and the VLPFC features 

were linked to the color-perception task. These observations are consistent with the dorsal 

(for rotation task) and ventral (for color task) stream processing model. Furthermore, the 

averages of the absolute LPFC activation patterns were higher than those of the non-LPFC in 

all frequency bands: delta (t(16) = 2.284, q < 0.05, FDR-corrected; LPFC: 1.205 vs. non-

LPFC: 0.926), theta (t(16) = 2.803, q < 0.05, FDR-corrected; LPFC: 1.221 vs. non-LPFC: 

0.920), alpha (t(16) = 2.135, q < 0.05, FDR-corrected; LPFC: 1.247 vs. non-LPFC: 0.910), 

beta (t(16) = 3.917, q < 0.05, FDR-corrected; LPFC: 1.420 vs. non-LPFC: 0.847), and 

gamma bands (t(16) = 4.144, q < 0.05, FDR-corrected; LPFC: 1.374 vs. non-LPFC: 0.864). 

These findings demonstrated that the most dominant feature for distinguishing two tasks was 

observed in the LPFC.

The grand-averaged activation patterns of all frequency bands are displayed on the cortex 

(Fig. 8). It is noteworthy that the DLPFC-centered dominant positive value was observed 

across all frequency bands. In contrast, the color-task-relevant features of negative activation 

patterns were evident in the VLPFC and occipital visual processing areas.

The LPFC contribution to the decoding accuracy in the activation patterns was enhanced 

compared to non-LPFC contribution in the theta, beta, and gamma bands (Fig. 9); delta 

(t(16) = 1.984, n.s.), theta (t(16) = 2.597, q < 0.05, FDR-corrected; LPFC: 56.16% vs. non-

LPFC: 43.84%), alpha (t(16) = 1.872, n.s.), beta (t(16) = 3.898, q < 0.05, FDR-corrected; 

LPFC: 61.26% vs. non-LPFC: 38.74%), and gamma bands (t(16) = 3.978, q < 0.05, FDR-

corrected; LPFC: 60.33% vs. non-LPFC: 39.67%). The averaged LPFC contribution to 
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decoding accuracy was 57.8% across all frequency bands, and 59.2% for the theta, beta, and 

gamma bands.

4. Discussion

EEG activation pattern analysis using source reconstructed data distinguished mental-

rotation vs. color-perception tasks. The most salient features selected by the rLDA classifier 

were concentrated in LPFC known to be central to virtually all cognitive tasks, including 

working memory and decision-making among others (Fuster, 2008; Royall et al., 2002; 

Sarazin et al., 1998). The mental-rotation task required continuous spatial information 

processing and utilization of mental manipulation, and the color-perception task required 

holding information online to make a successful match; both processes are known to engage 

LPFC. We observed that EEG signals distinguishing the two tasks were maximal in LPFC.

Differential activation patterns between DLPFC and VLPFC demonstrated that LPFC 

signals can categorize each task performance. The sign of the activation pattern predicts the 

direction of classification (positive for the mental-rotation task and negative for the color-

perception task) (Haufe et al., 2014). Positive classification features for mental rotation were 

reliably observed in DLPFC regions while negative classification features for color 

perception were detected in VLPFC regions. These findings are in accord with proposals 

that DLPFC is the end point for the dorsal stream (i.e. the “where” pathway for the mental-

rotation task) (Goodale and Milner, 1992; Hesse et al., 2014) and VLPFC is the end point 

for the ventral stream (i.e. the “what” pathway for the color-perception task) (Kravitz et al., 

2013; Mishkin et al., 1983). We observed that spatial information processing and mental 

manipulation during object rotation engaged more DLPFC resources, as compared to the 

color-perception task, which was weighted toward VLPFC and posterior visual cortices. 

Notably, beta and gamma bands (Fig. 7 DE) had positive activation patterns in the mental-

rotation task in BA 5 and 40, which belong to the dorsal stream. In contrast, negative values 

of activation patterns indicating relevancy to the color-perception task were observed particu 

larly along with occipito-temporal visual cortices such as BA 17, 18, 19, and 20, 

encompassing the ventral stream (Fig. 7). These observations provided a neurophysiological 

signature for the dissociation of the dorsal “where” route for the mental-rotation task and the 

ventral “what” route for the color-perception task.

The selective contribution of LPFC to decoding accuracy was most pronounced in the theta, 

beta, and gamma bands (Fig. 9). We identified frequency-specific effects contributing to 

LPFC decoding accuracy, but we did nor observe differential decoder performance across 

frequency bands. All five canonical bands supported task discrimination (Fig. 5) and their 

activation patterns shared numerous spatial similarities (Fig. 8). Thus, it is reasonable to 

expect that a corresponding analysis with a broadband signal would achieve similar 

discrimination results as shown in Figure 5. PFC-based decoding performance could be 

improved using different combinations of analytic approaches (e.g. wide-band filters), and 

optimal methods for decoding should be explored in future work.

The entire PFC (including not only LPFC but also BA 10 and 11) provided a further 

enhanced contribution to decoding accuracy compared to the non-PFC region in the alpha, 
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beta, and gamma bands (Fig. S1). The role of neural oscillations in PFC-mediated mental 

processing has been highlighted in recent studies with humans (Johnson et al., 2018) and 

monkeys (Miller et al., 2018). PFC-dependent top-down processing integrates and controls 

bottom-up visual information from occipital cortices (Barcelo et al., 2000). Reciprocal 

connections between the PFC and the occipital cortices (Hwang and Luna, 2013; Wakana et 

al., 2004) through the fronto-occipital fasciculi provides a neuroanatomical substrate for 

control. The extensive and reciprocal connections between the PFC and other brain regions 

provide further neuroanatomical substrates for PFC control of diverse cognitive processes 

(Barbas, 2000). Functional interactions between the PFC and posterior cortical regions have 

been consistently reported during executive control (Gazzaley et al., 2004; McIntosh et al., 

1996). For instance, electrocorticography studies report phase coupling between fronto-

parietal cortices during spatial attention control (Szczepanski et al., 2014) and over the 

posterior cortex during visual tasks (Voytek et al., 2010).

Taken together, our observations provide evidence that PFC activity reliably decodes the 

implementation of intended goals in the mental-rotation/color-perception paradigm. Both 

PFC and PPC have been linked to goal-directed movement planning (Brandi et al., 2014; 

Fincham et al., 2002; Gremel and Costa, 2013; Lindner et al., 2010; Niedermeyer, 1998; 

Pereira et al., 2017; Petzschner and Kruger, 2012; Rosenberg-Katz et al., 2012). PFC signals 

provided enhanced decoding performance in the present tasks compared to sensorimotor and 

parietal regions. For instance, LPFC features were more robust than the sensorimotor 

features in the mental-rotation paradigm (Figs. 7 and 8). DLPFC signals exhibited dominant 

features of mental-rotation processing over these motor-related cortical areas across all 

frequency bands. Presumably, the mental-rotation task did not require sensorimotor activity 

for efficient performance. This may be due to the fact that pure mental-manipulation of a 

visualized object does not need to induce efferent commands to move peripheral muscles, 

which are engaged in motor imagery BMI paradigms typically requiring imagining 

movement of peripheral limbs. The current findings reveal that higher-order PFC-based 

cognitive brain signals, which encode goal-directed intentions instead of details on how to 

perform reaching, enlarge the repertoire of BMI control signals.

Activation patterns for the color-perception task were enhanced in both VLPFC and 

occipital areas. This is likely due to the dominant visual processing of color features in 

occipital cortices (Hadjikhani et al., 1998; Tootell et al., 2004). These results indicate that 

neural features are dependent on the characteristics of the assigned cognitive task. This 

suggests that depending on task type, the brain regions inducing the most dominant control 

features can be selectively manipulated overcoming limitation of classical BMI task 

paradigms.

PFC provides rich signal space for cognitive BMI applications yet despite the prominent role 

in goal-directed cognition, PFC has largely been ignored in BMI research (Min et al., 2017). 

Advances in BMI technology have been applied to scenarios ranging from therapeutic 

approaches to consumer applications (Dornhege et al., 2007; Min et al., 2010; Wolpaw and 

Wolpaw, 2012). For example, BMI has been used to assist patients with motor deficits, such 

as amyotrophic lateral sclerosis (McCane et al., 2014), as well as by healthy individuals for 

lifestyle enhancement including biofeedback and other relaxation metrics (Blankertz et al., 
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2010; Millán and Carmena, 2010; Millán et al., 2010; Muller et al., 2008; Tan and Nijholt, 

2010). The majority of non-invasive BMI brain signals utilize primary sensorimotor cortex 

activity including mu and beta rhythms focused on motor control (Muller-Putz et al., 2005; 

Pfurtscheller and Neuper, 1997), posterior parietal scalp potentials including the P300 (Kleih 

and Kubler, 2013; Sellers and Donchin, 2006), or SSVEP paradigms (Muller-Putz and 

Pfurtscheller, 2008). Recent studies report that direct invasive recordings from the human 

posterior parietal cortex can decode higher-level aspects of movement and these signals can 

effectively control a robotic arm for a tetraplegic patient with implanted electrodes and can 

be used as potent BMI control signals for decoding higher-level aspects of movement 

(Aflalo et al., 2015; Hauschild et al., 2012; Lindner et al., 2010), suggesting that the 

association cortex provides reliable control signals. However, it is noteworthy that LPFC 

contributed more to decoding performance than the posterior parietal cortex (BA 5 and 40) 

in the present study. This suggests that PFC provides a novel signal source for goal-directed 

intention applicable to BMI (Carlson and Millan, 2013; Iturrate et al., 2015). The current 

findings provide evidence for use of prefrontal brain activity for non-invasive cognitive 

BMI-control signals that are goal-directed and task-specific, including attention, memory 

implementation, and domain-general decision making (Fuster, 1997). This technology can 

be applied to various higher-order PFC-dependent cognitive functions, such as planning and 

performance-monitoring independent of how actions are executed through button pressing, 

speech, or eye movement.

PFC-based decoding approaches have recently received growing attention in both EEG and 

MEG studies. For example, using a deep-learning technique, more than 85% accuracy was 

observed when decoding imaginary vowels using frontal EEG signals (Parhi and Tewfik, 

2021). In a MEG study, classifiers were trained to distinguish the MEG field patterns during 

the presentation of two probabilistic outcomes (reward, loss), and then applied to decode 

such patterns during deliberation (Castegnetti et al., 2020). Decodable outcome 

representations predominantly captured in the PFC during probabilistic decision-making 

predicted subsequent action with a classification accuracy of 70%. Taken together, these 

findings support the use for decoding of cognitive signatures of goal-directed tasks for 

development of reliable and robust PFC-mediated EEG/MEG-based BMIs.
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Fig. 1. Mental-rotation and color-perception tasks.
Upper panel: Example stimuli of the mental-rotation task, with degrees of object-rotation 

ranging 0 °, 45 °, 90 °, and 135 ° clockwise, which progressively increase task-difficulty 

(difficulty 1 to 4, respectively). Lower panel: Example stimuli of the color-perception task, 

which varied saturation values of red and green to 100%, 50%, 10% and 5% (difficulty 1 to 

4, respectively). Participants performed a two-alternate forced-choice task reporting whether 

the shapes of the two objects are identical when rotated (mental-rotation task) or the colors 

of the two objects are the same (color-perception task).
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Fig. 2. Flowchart of analyses procedures.
Following source reconstruction, a sequence of processing steps extracted signals from 15 

BAs by IDF-bandpass filtering, aggregated across voxels, applied Hilbert transform, and 

aggregated across time. Last, an rLDA classifier was used to compute decoding accuracies 

and activation patterns. BA: Brodmann area; IDF: individual dominant frequencies. rLDA: 

regularized linear discriminant analysis.
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Fig. 3. Cortical locations of 15 Brodmann areas.
The viewpoints of the cortical maps are left-lateral (A) and left-medial (B) (asterisks 

indicate the anterior direction). For the right hemisphere, the corresponding areas are 

symmetrically placed.
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Fig. 4. Behavioral performance.
Reaction times and performance accuracy in the mental-rotation task (A) and color-

perception task (B). Error bars indicate standard errors of the mean. Note a significant 

systematic increase in reaction times at higher task difficulties. *q < 0.05 and NS = non-

significant, FDR-corrected.
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Fig. 5. Decoding task engagement (mental-rotation vs. color-perception) using spectral features 
of 15 BAs across different frequency bands.
Decoding accuracy is significant in all frequency bands. A filter-bank method combining 

features from all frequency bands yielded the highest decoding accuracy of 87%. * q < 0.05, 

FDR-corrected. Error bars indicate standard errors of the mean.
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Fig. 6. Dissociative activation patterns between DLPFC and VLPFC.
Time courses of activation patterns (feature strength) between DLPFC (red curves) and 

VLPFC(blue curves) in the (A) delta, (B) theta, (C) alpha, (D) beta, and (E) gamma bands. 

The scales were normalized by the mean value of 15 BA absolute signals within each 

individual. Error bands indicate standard errors of the mean; the vertical black error bars 

represent 95% confidence intervals of mean activities throughout the entire 5 sec of the task 

performance. DLPFC patterns are primarily in the positive domain, whereas VLPFC are in 

the negative domain. Black lines below curves represent the stimulation period; the vertical 
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blue dotted line represents the grand-averaged response onset for the color-perception task, 

and the vertical red dotted line represents the grand-averaged response onset for the mental-

rotation task.
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Fig. 7. Grand-averaged activation patterns in the 15 BAs.
Activation patterns across 15 different BAs were averaged across participants in the (A) 

delta, (B) theta, (C) alpha, (D) beta, and (E) gamma bands. The scales were normalized by 

the mean value of 15 BA absolute signals within each individual. An upward direction 

(positive domain) of the activation pattern (red bars) represents a classification feature 

relevant to the mental-rotation task while a downward direction (negative domain) of the 

activation patterns (blue bars) indicates relevancy to the color-perception task. Error bars 

indicate standard errors of the mean. The 15 BAs in the x-axis are order based on their 
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relative anatomical locations starting from frontal and ending to occipital regions. The mean 

values of the absolute LPFC (BA 9, 46, 45, and 47) activation pattern values were 

statistically compared with those in the remaining non-LPFC regions. Note, the LPFC region 

yielded significant contributionsin the decoding accuracy as compared with the non-LPFC 

region. * q < 0.05 and NS = non-significant, FDR-corrected two-tailed paired t-tests between 

LPFC and non-LPFC regions as well as across DLPFC (i.e. BA 9 and 46) and VLPFC (i.e. 
BA 45 and 47).
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Fig. 8. Cortical maps of activation patterns.
Cortical maps of grand-averaged activation patterns of 15 BAs are shown in the (A) delta, 

(B) theta, (C) alpha, (D) beta, and (E) gamma bands. In each set of cortical maps, the 

viewpoints are left-lateral, superior, right-lateral, left-medial, right-medial, anterior, inferior, 

and posterior (asterisks indicate the anterior direction). The scales were normalized by the 

mean value of 15 BA absolute signals within each individual. The maximum of the color-

coding scale is set to the maximum value across all frequency bands. Red regions represent 

the most dominant features for classifying the rotation task, whereas blue regions indicate 
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the most dominant features for classifying the color-perception task. Within the PFC, 

DLPFC exhibits red activation, and VLPFC displays blue activation.
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Fig. 9. LPFC versus non-LPFC contributions (%) in activation patterns of each frequency band.
*q < 0.05, FDR-corrected two-tailed paired t-tests between LPFC (red) and non-LPFC 

(blue) regions. Error bars indicate standard errors of the mean.
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