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A B S T R A C T

In the past few decades, great progress has been made in prenatal diagnosis of congenital heart disease (CHD).
Fetal echocardiography is recognized as the main prenatal screening and diagnostic tool that can accurately
detect approximately 85 % of fetal cardiac abnormalities. Evaluation of the fetal heart remains a major challenge
in prenatal ultrasound screening and diagnosis due to fetal position, involuntary movement, small and complex
fetal cardiac anatomy, maternal abdominal wall conditions, and lack of expertise in fetal echocardiography by
some physicians engaged in obstetric ultrasound. Artificial intelligence (AI) can automate and standardize the
display of each diagnostic section of the fetal heart and thus contribute to accurate diagnosis, which significantly
optimizes the clinical application of fetal echocardiography. In this review, we not only clarify the role of AI but
also highlight its significance and future solutions in the field of fetal echocardiography.

1. Introduction

Congenital heart disease (CHD), which accounts for 1 % of all neo-
nates, is the most common birth defect and the main cause of death in
neonates with congenital birth defect [1]. Accurate prenatal diagnosis
can significantly improve the perioperative treatment effect and surgical
success rate of CHD as well as reduce neonatal mortality. Fetal echo-
cardiography has become a major screening and diagnostic tool for fetal
CHD because of its noninvasive, nonradiative, real-time, and dynamic
advantages [2]. In the past two decades, important advances have been
made in the accuracy of prenatal CHD diagnosis. Emerging studies have
reported that fetal echocardiography can accurately detect CHD with an
accuracy rate of up to 85 % [3,4].

However, owing to the lack of professional fetal heart screening
personnel and imperfect prenatal screening conditions in some areas,
the prenatal CHD detection rate is significantly different [5]. Quarter-
main et al. conducted a large study that showed that only 34 % of CHD
were detected before delivery in some communities [6]. In some coun-
tries, the prenatal detection rate of CHD is as low as 14 % [6–8]. In
recent years, the rapid development of artificial intelligence (AI) in the

field of fetal cardiac ultrasound has enabled automated and standard-
ized display of each diagnostic section of the fetal heart and accurate
diagnosis, which is expected to reduce the dependence on operator
experience [9]. Therefore, this would improve the difference in CHD
detection rates between different regions. In this review, the concept of
AI and discussion of the application of AI in fetal echocardiography will
also be highlighted.

2. Characteristics of AI

AI is a field of computer science that focuses on the development of
algorithms that learn, reason, and self-correct in a human-like manner,
which can simulate, extend human intelligence, and perform related
tasks [10]. Machine learning (ML) is an important subset of AI that can
learn from data, identify images, and make decisions [10]. In the field of
machine learning, deep learning (DL), which is the most widely used
strategy, is a powerful evolution of ML. In the DL structure, convolu-
tional neural networks (CNN) are commonly used in medical image
processing tasks and have great potential for the automatic analysis of
ultrasound images [11–13].
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Current DL algorithms of CNN include ResNet, U-Net, DeepLab, and
generative adversarial networks. The ResNet network architecture is
used in the field of image recognition. U-Net and DeepLab are primarily
used in image segmentation, whereas generative adversarial networks
are primarily used to generate fake images to overcome the problem of
insufficient data.

3. Application of AI in fetal echocardiography

At present, research on AI in fetal echocardiography is more exten-
sive, mainly focusing on image acquisition, image optimization, auto-
matic measurement, recognition of outliers, disease diagnosis, and
classification.

3.1. Fetal heart ultrasound image acquisition

The first step in any diagnostic ultrasound process is obtaining an
appropriate image. Compared to adult echocardiograms, obtaining im-
ages of fetal echocardiograms depends heavily on a number of factors,
including fetal position and the operator’s experience in acquiring and
recognizing the images. The subsequent steps in the diagnostic process
are also affected by the quality and ability to obtain images. Automating
the process of identifying and storing the optimal fetal heart plane can
improve sonographer efficiency, reduce image variability, produce high-
quality images, and improve prenatal CHD detection. Fetal intelligent
navigation echocardiography (FINE) is a new technology that has
developed in recent years. It uses a four-cavity incisal plane as the basic
section to collect fetal heart volume data and mark the intracardiac
structural targets. Intelligent and standardized fast and automatic gen-
eration of nine standard sections is required for CHD screening [14].

In recent years, studies on FINE have mainly focused on the display
of standard fetal echocardiography sections and the diagnostic efficacy
of fetal CHD. Garcia et al. [15] conducted a prospective clinical study
that included 207 normal fetuses, each of whom underwent routine fetal
echocardiography and FINE. The results showed that the section rate of
standard fetal echocardiography with diagnostic value successfully ob-
tained by FINE was 98–100 %. Our team [16–18] conducted a series of
studies on fetuses with scleroconus arteriae (right ventricular double
outlet, complete transposition of the great arteries, and tetralogy of
Fallot) diagnosed by echocardiography during middle and late preg-
nancy using FINE and VIS-Assistance® to obtain a standard diagnostic
plane. The display success rates of key diagnostic sections and diagnostic
elements of trunk conus artery malformation were obtained by
observing the FINE. The results showed that the FINE had a high display
rate of diagnostic sections and diagnostic elements for common fetal
CHD and had good repeatability and consistency. The results showed
that the FINE technique was helpful in the screening and diagnosis of
fetal trunk conical artery malformations, which has potential clinical
value in remote consultation and teaching. Yeo et al. [19] showed that
FINE had a sensitivity of 98 % and specificity of 93 % in detecting CHD;
therefore, it was recommended to implement FINE in routine screening
to improve the detection rate of prenatal CHD.

Another potential use of AI is to automatically acquire nine standard
diagnostic sections from a fetal heart echocardiogram imaging database.
Baumgartner et al. [20] first introduced the SonoNet model and used a
CNN to detect standard diagnostic sections from a set of ultrasound
videos, eliminating the need for sonographers to stop and obtain the
necessary images. The SonoNet model automatically detected the four-
chamber heart, left ventricular outflow tract, right ventricular outflow
tract, and three-vessel section using ultrasound images of approximately
1000 healthy fetuses, with detection rates of 95.00 %, 78.50%, 73.08 %,
and 81.90 %, respectively. Recently, Arnaout et al. [21] developed a
CNNmodel that can automatically identify fetal heart sections. Based on
1326 two-dimensional ultrasound grayscale images, the model distin-
guished five standard sections of normal and abnormal fetal hearts
(abdominal plane, four-cavity heart, left ventricular outflow tract, three-

vessel section, and three-vessel trachea section). With an area under
curve of 0.99, 95 % sensitivity, 96 % specificity, and 100 % negative
predictive value were achieved, while the model sensitivity was com-
parable to that of clinicians and could significantly improve the detec-
tion rate of fetal CHD.

3.2. Fetal heart ultrasound image optimization and quality control

In addition to image acquisition, image quality is critical for accurate
diagnosis of fetal CHD. However, owing to the influence of involuntary
fetal movement, small and complex heart size, ultrasonic speckle noise
and artifacts, and the lack of professional knowledge of fetal echocar-
diography by obstetrical ultrasound doctors, the image quality of
echocardiography is uneven. In recent years, there have been few re-
ports on the automatic quality control of fetal heart ultrasound images.
Abdi et al. [22] used the CNN regression model to compare 6919 ul-
trasound images of the four-chamber incisal surface of the fetal heart
with the corresponding quality scores determined by cardiologists, and
the results showed that the average absolute error between the training
model and the experts was 0.71 ± 0.58, thus the automatic quality
assessment of the four-chamber incisal surface of the heart apex was
realized.

Abdi et al. [23] proposed a DL model based on recurrent neural
networks (RNNs), that could automatically distinguish the five standard
sections of fetal echocardiography (four-chamber heart, three-chamber
heart, two-chamber heart, major artery brachyaxis, and left ventricu-
lar brachyaxis papillary muscle level) and correlated them with the
corresponding quality scores determined by cardiologists. The study
included 509 cases, including 2450 fetal echocardiograms tested on five
standard sectional datasets, and the model achieved an average quality
score accuracy of 85 % compared to expert-determined quality scores.
Dong et al. [24] proposed a general DL framework for quality control of
four-chamber incisions of the fetal heart The framework is composed of
three CNN-based networks (B-CNN, D-CNN, and ARVBNet), which are
used for rough classification, classification refinement, and anatomical
structure detection. Experiments on fetal echocardiography datasets
demonstrate the effectiveness of the quality control framework and
demonstrate the generalization and adaptability of ARVBNet, which
type of algorithm can provide a quantitative assessment of image quality
in clinical practice and provide real-time image optimization informa-
tion for novices.

3.3. Intelligent automatic measurement of fetal echocardiography

The measurement of fetal heart structure, function, and Doppler
spectrum is an important part of fetal echocardiography workflow. The
advantages of applying AI to workflows include reduced acquisition
time, energy savings for standard measurements, and improved
repeatability. Automation of real-time measurements also prevents
measurement anomalies due to time delays. Sulas et al. [25] developed
an algorithm that uses a fully connected neural network to automatically
recognize Doppler patterns in fetal echocardiography with an average
accuracy of 88 %, which has good practical value for patients with
abnormal rhythms or subtle physiological changes related to CHD. In
order to predict fetal left ventricular volume more accurately and
effectively, Yu et al. [26] proposed a two-dimensional ultrasound single-
plane low-pressure volume measurement method based on reverse
neural network to calculate fetal left ventricular volume. It was found
that the reverse neural network method had the highest consistent
correlation coefficient [ICC = 0.9691 (95 % CI: 0.9663–0.9717)] and
intra-group correlation coefficient [CCC = 0.9401(95 %CI:
0.9348–0.9449)], and the left ventricular function parameters obtained
by this model also had the best consistency with the data obtained by 4D
ultrasound. The average deviation of this model in the assessment of
fetal stroke volume was 0.03 mL, while the 95 % confidence interval was
− 0.15 ~ 0.20 mL.
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Bridge et al. [27] used the end-to-end neural network framework for
the first time to directly predict the heart cycle from the normal fetal
echocardiography video and used the DL model to automatically iden-
tify, annotate, and extract features from the fetal echocardiography of
four cavities, three vessels, and left ventricular outflow tract. This lays a
foundation for the automatic measurement and diagnosis of abnormal
fetal heart sections in the future. Cai et al. [28] proposed a fetal heart
ultrasound image segmentation network model based on knowledge
distillation technology to finely segment the three-vessel sections of
1300 fetal heart ultrasound images, and the results showed that this
model obtained more accurate segmentation boundaries than the most
commonly used existing segmentation models (U-Net model and Deep-
Labv3+model). The average IoU (%), PA (%) and Dice (%) were 68.6 %,
81.4 %, and 81.3 %, respectively. Xu et al. [29] used the DW-Net model
to automatically segment multiple anatomical structures of the four-
cavity incised surfaces of 895 fetal heart apices. The results showed
that DW-NET had a better segmentation effect than other mainstream
image segmentation methods. The Dice similarity coefficient was 0.827,
the pixel accuracy was 0.933, and the area under the ROC curve was
0.990. The DW-Net model can accurately and automatically segment the
four-chamber view of the fetal apex, which is conducive to further
extracting useful clinical indicators of early fetal echocardiography and
improving the accuracy and efficiency of the prenatal diagnosis of CHDs.

3.4. Identification of fetal CHD

Improving the ability of AI to detect prenatal CHDs is an ongoing
research goal. Komatsu et al. [30] developed an SONOmodel using CNN
to detect the anatomical structure of 363 fetal hearts and marked the
structural abnormalities in the continuous cross-sectional videos around
the four-chamber heart section and the three-vessel section. The areas
under the ROC curves for the heart and blood vessels were 0.787 and
0.891, respectively. The automatic detection of each key heart structure
in fetal echocardiography is realized, and is suitable for the detection of
abnormal fetal heart structures. Zhou et al. [31] proposed a DL model-
DGACNN based on a generative adversarial network. In this study,
3596 static pictures of the four-chamber heart section at the end of
normal and abnormal systole and 100 dynamic video images were taken
as training, test, and verification sets to train, test, and verify the

DGACNN model. It was found that when the false-positive rate was in
the range of 20 %, the accuracy of the model was 84 %, and the area
under the ROC curve was 0.881, which has great potential for prenatal
screening. Gong et al. [32] proposed a DGACNN model that used
110,000 video images to enhance the fetal video dataset and used video
transfer learning to classify whether the images were likely to have CHD,
and the recognition rate of CHD from fetal ultrasound video clips
reached 85 %.

Nurmaini et al. [33] used a Mask-RCNN (MRCNN) to process 764
fetal echocardiographic images for the detection and segmentation of
fetal septal defects. The model automatically divided the fetal heart into
atria, ventricles, and aorta, achieving good detection performance of the
heart cavity, with a detection rate of 97.59 % for the right atrium. The
detection rates for the left atrium, left ventricle was 86.17 %, right
ventricle, and aorta were 99.67 %, 86.17 %, 98.83 %, and 99.97 %,
respectively. The mAP of the MRCNN was 99.48 % to identify the
location of the atrial and ventricular septal defects. Anda et al. [34]
proposed an intelligent decision support system (ISs) based on DL, which
could collect and analyze data, communicate with other system frame-
works, learn from experience, and adapt accordingly to new cases, and
was the first AI for CHD screening in early pregnancy. Arnaout et al. [21]
used neural networks on a large fetal ultrasound dataset, which included
1326 fetal echocardiograms of approximately 400 patients with severe
CHD, to first classify various cardiac sections using a supervised model
and then classify normal or abnormal anatomical structures to identify
complex CHDS. In addition, 4, 180 fetuses with 0.9 % CHD were used as
a test set, and standard fetal cardiothoracic measurements were calcu-
lated using a segmentation model, showing >95 % sensitivity and
specificity. These results are very promising, as they bring the AI algo-
rithm closer to expert accuracy.

4. Challenges and future directions

AI research on fetal CHD is still in the preliminary stage, and the
generality of AI is limited because of the small datasets used in many
studies. To address this issue, it is important to adopt broader and larger
datasets; however, the infrastructure to support these studies in the fetal
field is relatively scarce. Diller et al. [35] proposed an innovative solu-
tion to this problem, using ML to expand the training image pool by

Fig. 1. A schematic diagram of this review AI, artificial intelligence; ML, machine learning; DL, deep learning. Current applications of AI in fetal echocardiography
commonly focus on image acquisition (Fig2) [18], image optimization (Fig3) [24], automatic measurement (Fig4) [26] and identification of CHD (Fig5) [21].
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generating synthetic frames from existing images. Training the seg-
mentation network on these data produced results comparable to the
original database. A similar approach can be applied to AI in fetal
echocardiography. Vendor-specific algorithms limit the generalization
of models to a wider population, and most models use supervised
learning algorithms that require quantitative manual data labeling. In
addition, as new technologies emerge, resource-limited regions may use
them less, potentially affecting the growing gap between communities,
building robust AI-assisted ultrasound models, and creating more robust
and effective ultrasound models. Further multicenter, diverse data
should be included in future studies, and data quality control standards
must be established to ensure the quality of datasets.

AI has significant potential to improve the detection of fetal CHD.
This review demonstrates that AI has made important advances in image
acquisition, automated measurement, and identification of disease
states in fetal echocardiography(Fig. 1). However, the growth of AI in
the field has been limited by issues such as lack of data and limited re-
sources to implement new technologies. Nevertheless, AI technology
still has great potential and room for improvement in the field of medical
imaging,and is expected to become a routine diagnostic tool for fetal
heart echocardiography.

5. Conclusion

AI can automate and standardize fetal heart diagnosis, which is
beneficial for optimizing the clinical application of fetal echocardiog-
raphy. Future studies should focus on real-world application and
continuous improvement of AI in fetal echocardiography.
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