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The role of cyclooxygenase-2 (COX-2), its lipid metabolite prostaglandin E2 (PGE2),
and Eicosanoid (EP) receptors (EP; 1-4) underlying the proinflammatory mechanistic
aspects of Burkitt’s lymphoma, nasopharyngeal carcinoma, cervical cancer, pros-
tate cancer, colon cancer, and Kaposi’s sarcoma (KS) is an active area of investiga-
tion. The tumorigenic potential of COX-2 and PGE2 through EP receptors forms the
mechanistic context underlying the chemotherapeutic potential of nonsteroidal
anti-inflammatory drugs (NSAIDs). Although role of the COX-2 is described in several
viral associatedmalignancies, the biological significance of the COX-2/PGE2/EP re-
ceptor inflammatory axis is extensively studied only in Kaposi’s sarcoma-associated
herpes virus (KSHV/HHV-8) associated malignancies such as KS, a multifocal endo-
thelial cell tumor andprimary effusion lymphoma (PEL), a B cell-proliferative disorder.
The purpose of this review is to summarize the salient findings delineating the molec-
ular mechanisms downstream of COX-2 involving PGE2 secretion and its autocrine
and paracrine interactions with EP receptors (EP1-4), COX-2/PGE2/EP receptor sig-
naling regulating KSHV pathogenesis and latency. KSHV infection induces COX-2,
PGE2 secretion, and EP receptor activation. The resulting signal cascades modulate
the expression of KSHV latency genes (latency associated nuclear antigen-1 [LANA-
1] and viral-Fas (TNFRSF6)-associated via death domain like interferon converting
enzyme-like- inhibitory protein [vFLIP]). vFLIP was also shown to be crucial for the
maintenance of COX-2 activation. The mutually interdependent interactions be-
tween viral proteins (LANA-1/vFLIP) and COX-2/PGE2/EP receptors was shown to
play key roles in the biological mechanisms involved in KS and PEL pathogenesis
such as blockage of apoptosis, cell cycle regulation, transformation, proliferation,
angiogenesis, adhesion, invasion, and immune-suppression. Understanding the
COX-2/PGE2/EP axis is very important to develop new safer and specific therapeutic
modalities for KS and PEL. In addition to COX-2 being a therapeutic target, EP recep-
tors represent ideal targets for pharmacologic agents as PGE2 analogues and their
blockers/antagonists possess antineoplastic activity, without the reported gastroin-
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testinal and cardiovascular toxicity observed with few a NSAIDs. (Translational Re-
search 2013;162:77–92)
Abbreviations: cIAP-1 ¼ Cellular inhibitor of apoptosis protein-1; COX-2 ¼ cyclooxygenase-2;
CREB ¼ cAMP response element-binding; C-X-C motif ¼ chemokine; EBV ¼ Epstein-Barr virus;
ERK ¼ Extracellular signal-regulated kinase; FAK ¼ focal adhesion kinase; HTLV ¼ human lym-
photropic virus; ID4 ¼ inhibitor of DNA binding 4; IFN-g ¼ interferon-g; KS ¼ Kaposi’s sarcoma;
KSHV ¼ Kaposi’s sarcoma associated-herpes virus; LANA-1 ¼ latency associated nuclear anti-
gen; LMO2 ¼ LIM domain only 2; LRMP ¼ lymphoid restricted membrane protein; MnSOD2 ¼
manganese superoxide dismutase; MYC ¼ v-mycmyelocytomatosis viral oncogene homolog;
NFAT¼ nuclear factor of activated T cells; NSAIDs¼ nonsteroid anti-inflammatory drugs; NSAIDs
¼ nonsteroidal anti-inflammatory drugs; PDGF-b ¼ platelet derived growth factor b; PEL ¼ pri-
mary effusion lymphoma; PGE2 ¼ prostaglandin E2; PI3-K ¼ Phosphatidylinositide 3-kinase;
ROS ¼ reactive oxygen species; SDF-1 ¼ stromal cell-derived factor-1; STAT-1a ¼ Signal trans-
ducer and activator of transcription 1-alpha; TGF-b ¼ Transforming growth factor beta; TLR5
¼ Toll-like receptor 5; VCAM-1¼ vascular-cell adhesionmolecules; VEGF¼ vascular endothelial
growth factor; XCR4 ¼ receptor 4; X-IAP ¼ X-linked inhibitor of apoptosis protein
In the 19th century, Rudolf Virchow first proposed a po-
tential link between inflammation and cancer based on
his observations on the presence of leukocytes in tu-
mors.1 Inflammation is a physiological mechanism
evolved for wound healing and therefore is counter-
intuitive to consider it to be oncogenic. Nevertheless, in-
flammation is a ‘double-edged sword’ with a pathologic
edge that can promote various aspects of tumorigenesis
deregulated such as cell proliferation, migration, angio-
genesis, and apoptosis.1 Within the last decade, a multi-
tude of studies demonstrating the a) abundance of
inflammatory cells such as macrophages and fibroblasts
in cancer biopsies, b) the role of proinflammatory mol-
ecules such as cyclooxygenase-2 (COX-2), prostaglan-
din E2, leukotrienes, transforming growth factor beta
(TGF-b), hypoxia inducible factor-1 alpha, vascular en-
dothelial growth factor (VEGF), nitric oxide synthase,
nitric oxide, reactive oxygen species (ROS), cytokines
and chemokines in the pathogenesis of several cancers,
and the tumorigenic nurturing properties of the proin-
flammatory tumor microenvironment strongly indicates
that inflammation plays a pathogenic role in several can-
cers.1-8 Chronic persistent inflammation is believed to
play an important role in the pathogenesis of 15% of
all malignancies.1-5 Depending on the type and stage
of cancer, the physiological to pathologic switch of
inflammation is triggered by various factors such as
genomic instability, epigenetic changes, somatic
mutations, tumor suppressor and oncogene mediated
carcinogenesis, chronic persistent infections, and
environmental stressors such as pollutants.1,7,8

The role of tumor viruses in chronic persistent inflam-
mation associated carcinogenesis is demonstrated in
several malignancies such as Kaposi’s sarcoma
associated-herpes virus (KSHV/HHV-8) in Kaposi’s
sarcoma (KS) and primary effusion lymphoma (PEL),
Epstein-Barr virus (EBV) in Burkitt’s lymphoma and
nasopharyngeal carcinoma, human papillomavirus
(HPV) in cervical cancer, hepatitis B (HBV) and hepa-
titis C viruses (HCV) in hepatocellular cancer, and
human T-lymphotropic virus (HTLV) in T-cell
leukemia.6,9-11 Viruses are obligate intracellular
parasites and use host proteins for genome replication
and production of progeny.12 Piracy of inflammatory
mechanisms is a recurring theme in the story of infec-
tions by KSHV, EBV, HCV, HPV, HBV, and HTLV
because of the proliferative, angiogenic, immune-
suppressive, and antiapoptotic niche that persistent in-
flammation provides.11 The purpose of this review is
to highlight the salient findings demonstrating how
KSHVuses the pivotal COX-2/PGE2/EP receptor medi-
ated inflammatory axis for its survival and pathogenesis
and, therefore, plays a crucial role in KSHV-associated
malignancies.

COX-2 AND CANCERS

COX or prostaglandin-endoperoxide synthase cata-
lyzes the conversion of arachidonic acid (AA) into pros-
taglandin H2, which is further converted into the
proinflammatory lipid metabolites such as PGE2,
PGI2, PGF2, and thromboxane-2 by specific enzymes
and play crucial roles in diverse physiological functions
such as platelet aggregation, inhibition of gastrointesti-
nal (GI) acid secretion, regulation of glomerular
function, and labor.13 The COX-1 isoform has a consti-
tutively active promoter whereas COX-2 has an induc-
ible promoter activated by stress, growth factors,
cytokines, and infections.13 Numerous studies have
demonstrated the induction of COX-2 and associated in-
flammatory pathways in the pathogenesis of several
cancers such as colorectal, prostate, lung and breast can-
cers, as well as several hematological malignancies in-
cluding chronic lymphocytic leukemia, Hodgkin’s and
non-Hodgkin’s lymphomas (NHLs), and multiple mye-
loma.5,14-18 In recent years, COX-2 has been investi-
gated as a potent chemotherapeutic target due to the
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well-studied anticancer properties of nonsteroid anti-
inflammatory drugs (NSAIDs).5,13

The major lipid metabolite of COX-2 implicated in
tumorigenesis is PGE2.19 PGE2 is an autocrine and
paracrine lipid signal inducer with a circulating half-
life of approximately 30 seconds and normal plasma
levels varying from 3-15 pg/mL.20 PGE2 exerts its ef-
fects through the 7-transmembrane rhodopsin family
of G protein coupled (GPCR) eicosanoid (EP) recep-
tors, namely, EP1, EP2, EP3, and EP4 (EP 1-4) that ini-
tiate signal transduction through Calcium (Ca)21,
Cyclic adenosine monophosphate (cAMP), protein ki-
nase A (PKA), and Phosphatidylinositide 3-kinase
(PI3K).5,21 EP receptor induction has been associated
with several oncogenic pathways including Src, PI3K,
PKC, NFkB, Ras/Raf, ERK, VEGF, AKT/PI3K,
PPAR, and interleukin (IL)-10/DAF and, therefore,
forms the mechanistic context underlying the diverse
aspects of COX-2 mediated tumorigenesis.22-24 In
recent years, the link between EP receptors and
tumorigenesis had also revealed the possibility of
using highly specific EP receptor antagonists such as
SC-51322 (EP1 antagonist), AH6809 (EP2 antago-
nist), and AH23848 (EP4 antagonist) as anticancer
drugs.25-27
VIRAL INFECTIONS AND COX-2

Infections by several viruses have been shown to reg-
ulate COX-2 expression and PGE2 production such as
HBV in hepatocytes,28,29 HCV in Huh-7 cells,30 human
herpesvirus 6 (HHV-6) in monocytes,31 human cyto-
megalovirus (CMV) in Peripheral blood mononuclear
cells (PBMCs), smooth muscle cells, and fibro-
blasts,32-35 murine gammaherpesvirus 68 (MHV-68) in
NIH 3T3 cells,36 HIV in monocytes,37,38 HTLV-1 in
PBMCs,39 influenza virus in PBMCs,40 enterovirus 71
in human neuroblastoma cells,41 dengue virus in den-
dritic cells,42 Severe acute respiratory syndrome
(SARS)-associated coronavirus in 293T cells,43

Theiler’s murine encephalomyelitis virus in astro-
cytes,44 encephalomyocarditis virus in macro-
phages,45,46 coxsackie virus B3 in monocytes,47

respiratory syncytial virus in macrophages and dendritic
cells,48 and canine distemper virus in monocytes.49

COX-2/PGE2 has been implicated in a multitude of vi-
ral mechanisms such as genome replication (HBV),
(CMV, HTLV), gene expression (MHV-68), transmis-
sion (HTLV), cell tropism (rhesus CMV), cell invasion
(CMV), T cell regulation (HIV), and even has identified
a viral homologue of COX-2 in rhesus CMV revealing
the significance of COX-2 in the evolution of inflamma-
tion mediated viral pathogenesis.28-45,47-51 Among the
herpes viruses, studies using COX inhibitors have
shown the role of COX-2/PGE2 pathways for replica-
tion and successful lytic cycle in HSV, CMV, HHV-6,
and MHV-68.31,34-36,51-58 However, the role of the
extensive molecular framework underlying the COX-
2/PGE2/EP receptor inflammatory axis in herpes viral
latency is described only in KSHVassociated malignan-
cies such as KS and PEL.59-65
KSHV ASSOCIATED DISEASES

KSHV/HHV-8 is grouped in the g-2 herpes virus fam-
ily and is the etiologic agent underlying KS, PEL, and
multicentric Castleman’s disease.66-70 Like other
herpes viruses, the KSHV life cycle is characterized
by 2 phases, the latent and the lytic cycles.70 After infec-
tion, KSHVenters the latency phase, where the virus re-
mains evasive by transforming the infected cell into
a stable reservoir.66-70 The lytic cycle results in the
replication of the viral genome and production of new
viral progeny.70 Both life cycles are associated with dis-
tinct viral proteins.70 Gene expression profiles of KS,
PEL, and multicentric Castleman’s disease biopsies
have shown that the majority of tumor cells express la-
tency transcripts with 1%-3% of tumor cells undergoing
the lytic cycle at a given time point and both stages of
the life cycle are implicated in the pathogenesis of
KSHV associated diseases.70 Although, there are no
specific treatments targeting KSHVassociated diseases,
highly active antiretroviral therapy (HAART) and con-
sequent immune reconstitution is demonstrated to be
beneficial in treating AIDS-KS.70-72

KS. Epidemiologically, KS is classified into 4 sub-
groups: (1) classical KS as described by Moritz Kaposi
in elderly men of Mediterranean origin in 1872,73 (2)
endemic KS in sub-Saharan Africa, (3) epidemic KS
in AIDS patients, where KS forms the most common
AIDS associated malignancy, and (4) transplant
defining KS.74-76 Pathologically, KS is a multifocal
angioproliferative tumor of vascular nature
characterized by extravascular erythrocytes, spindle
shaped cells of endothelial origin, inflammatory cells
such as monocytes, fibroblasts, neutrophils, and
lymphocytes interspersed between narrow, irregular
angulated slits within a proinflammatory and
angiogenic microenvironment.70 Fatality by KS is
often due to systemic spread into the respiratory
system, gastrointestinal tract, lymph nodes, and other
organs.70

PEL. PEL is a rare, yet aggressive form of B cell
lymphoma that accounts for 2%-4% of all AIDS
associated NHLs with a prognosis of less than 6
months.66,67,69,71,77 PEL is characterized by primary
lymphomatous aggregations within the major body
cavities such as the pleura, pericardium, and the
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peritoneum.66,67,69,71,77 Pathologically, PEL cells
show varying phenotypes, such as immunoblastic,
plasmablastic, and anaplastic, and are proposed to
lie between the pro-B cell and plasma cell
lineage.66,67,69,71,77 PEL cells are characterized by B
cells transformed by persistent KSHV infection and
consists of multiple copies (in the order of 50-150
copies/cell) of episomal KSHV genomes with the
latent viral gene expression pattern involving latency
associated nuclear antigen (LANA)-1, viral
homologues of host proteins cyclin (vCyclin) and
FLICE-inhibitory protein (Viral-FLICE-inhibitory
protein (vFLIP)), a pre-microRNA transcript encoding
viral microRNAs, as well as vIRF3/K10.5/LANA-2
and a homologue of IL-6 (vIL-6) is also expressed in
some PEL cells.66,67,69,71,77 PEL cells express
a variety of cell surface markers from different stages
of B cell development such as the activation markers
CD30, CD38, and CD71 and several plasma cell
markers including CD138, VS38c, and MUM-1/IRF4
but are devoid of the B cell markers CD19 and
CD20.66,67,69,71,77
KSHV LATENCY, INFLAMMATION, AND COX-2

KSHV latency is proposed to be a symphony of well-
orchestrated interactions betweenviral and host proteins
leading to the transformation of infected cells for viral
survival through successful genome replication and im-
mune evasion.70,78-81 The host and viral protein
interactions initially established by KSHV infection
for survival through the establishment and
maintenance of latency progress pathologically as
KS and PEL under conditions of persistent selective
pressures such as AIDS related or transplant associated
immune suppression.70,79-81 The decrease in the
incidence of KS post-HAART therapy in AIDS patients
is suggestive of this scenario.70-72 The host mechanisms
underlying the establishment andmaintenance ofKSHV
infection and KSHV associated malignancies include
cell signaling, anti-apoptosis, angiogenesis, immune
modulation, and cell proliferation mediated by cyto-
kines, growth factors, and inflammatory mole-
cules.70,79-81 Thus, identification of molecules used by
the KSHV latency program will enable us to delineate
the pathogenesis of KS and PEL as well.
Studies by Naranatt et al (2004)82 and Sharma-Walia

et al (2006)61 first indicated the induction of COX-2 dur-
ing de novo KSHV infection of human microvascular
dermal endothelial (HMVEC-d) cells Studies by intro-
duced a novel idea regarding the functional significance
of COX-2/PGE2 within the context of the KSHV la-
tency program. KSHV infection induced COX-2/
PGE2 and PGE2 supplementation reversed the COX-1/
COX-2 inhibitor mediated downregulation of latency
gene LANA-1. Therefore, the studies for the first time
generated a hypothesis that KSHV infection induced
COX-2/PGE2 is crucial for establishment and mainte-
nance of latency.61 Considering the oncogenic potency
of COX-2 through the activation of inflammatory mech-
anisms, the proinflammatory mechanisms underlying
KS and PEL pathogenesis, and the well characterized
roles of COX-2 in other viral tumors such as Burkitt’s
lymphoma and cervical cancer, the study by Sharma-
Walia et al (2006)61 also raised several important ques-
tions as follows. (1) What are the different biological
mechanisms regulated by COX-2 in KS? (2) What are
the mechanisms underlying sustained COX-2 activation
in the KSHV latency program? (3) How does COX-2/
PGE2 regulate the KSHV latency program? (4) What
is the role of COX-2 in PEL? (5) Do NSAIDs and EP
receptor antagonists hold chemotherapeutic potential
in treating KS and PEL? (6) Does simultaneous
blockade of COX-2 andEP receptors provide synergistic
anticancer effects?
INDUCTION OF COX-2 AND EP RECEPTORS BY KSHV

Several gene array studies have demonstrated the in-
duction of COX-2 in a multitude of malignant and pre-
malignant human cancer lesions with progressive
increase in expression as the stage of the cancer ad-
vances.83 We demonstrated CD31-COX-2 double
stained spindle shaped cells in tissue microarray of
human KS sections (eye orbit, tonsil, mouth, and small
bowel) (Sharma-Walia et al (2010).59 Similarly, abun-
dant expression of mPGES, PGE2, and EP1-4 was
observed in human KS biopsies (George Paul et al
(2010).62 Collectively, these findings corroborate with
earlier in vitro observations61,82 and is the first
detailed investigation of COX-2 and EP receptors in
human KS and is the first detailed investigation of
COX-2 and EP receptors in human KS biopsies. There
are several possible mechanisms underlying COX-2/
PGE2/EP receptor induction in KS lesions are several
such as persistent KSHV infection, persistent chronic
inflammation, and pathologic stress from chronic per-
sistent infection and inflammation in KS patients.
The association of COX-2 and cancer is attributed to

its inducible promoter activated by stress, infection, and
inflammation.13,24 The role of infection mediated
signaling in COX-2 induction is demonstrated by sev-
eral viruses such as CMV (ROS, cAMP/nuclear factor
of activated T cells (NFAT)), HBV (Ca21/ROS,
cAMP/NFAT), HCV (Ca21/ROS), encephalomyocardi-
tis virus (EMCV) (NFkB/MAPK/c-Jun N-terminal
Kinases/p38), Enterovirus 71 (NF-kB/AP-1/PKA/
cAMP/Src/EGFR/p300/cAMP response element-
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binding (CREB)), SARS (NFkB/CEBP), and Dengue
virus (NFkB/AP-1).28-31,41-43,45,46 We examined
whether similar molecular mechanisms were at work
in the induction of COX-2 in KS and demonstrated
that de novo KSHV infection and exogenous PGE2 up-
regulates COX-2 promoter activity through Src, PI3K,
PKC, focal adhesion kinase, JNK, p38, cAMP, PKA,
and NFkB.60 Promoter analysis using COX-2 promoter
deletion constructs and mutation reporter constructs
identified transcription factors CREB and NFAT cells
downstream of the signal cascades synergistically mod-
ulating COX-2 promoter activity.60 A multitude of sim-
ilar pathways are also activated by early KSHV binding
and infection such as PI3K-PKC-z-MEK-ERK,84,85

Src-PI3K-RhoGTPase,86 RhoA-GTP-Diaphenous-2
microtubules,87,88 NF-kB,89 FAK,90 VEGF,91 and lipid
rafts92 indicating that KSHV entry associated signal
transduction events and infection-induced PGE2 secre-
tion work in concert to activate the COX-2 promoter.60

However, the presence of strong COX-2 expression in
KS lesions strongly suggests the existence of viral
mechanisms that sustain COX-2 expression post estab-
lishment of KSHV latency.
COX-2 induction has been demonstrated by other vi-

ral proteins as well such as Tax protein (HTLV-1),
gp120 (HIV), HBx (HBV), and CoV N-protein (SARS
virus).29,37,43,93 KSHV latency protein vFLIP and
lytic proteins KSHV G protein-coupled receptor,
a constitutively active lytic phase protein with
significant homology to the human IL-8 receptor, and
K15 are the viral proteins proposed to be capable of in-
ducing COX-2. v-FLIP has been shown to induce COX2
in other studies,94,95 Recently, we64 delineated the de-
tailed mechanistic aspects of vFLIP mediated COX-2
expression that is mediated through NFkB, p38, RSK,
and transcription factor CREB. In addition, vFLIP acti-
vated COX-2 expression and PGE2 secretion was dem-
onstrated to be part of a signaling loop where COX-2/
PGE2 was required for vFLIP-induced NF-kB activa-
tion.64 The induction of COX-2 by lytic proteins
KSHV G protein-coupled receptor and K15 also raises
the question of whether COX-2 plays a role in the lytic
cycle and is still being investigated.96,97

The induction of EP receptors by viral infections is
largely an unexplored arena. Studies by George Paul
et al (2010)62 demonstrated that EP1, EP3, and EP4
protein levels are significantly upregulated in long-
term-KSHV-infected endothelial cells. We observed
upregulation of EP1-4 receptors in de novo KSHV in-
fected HMVEC-d cells65 too. EP receptors are present
in endothelial cells because of their general homeo-
static functions such as GI mucosal protection.13 How-
ever, their pathologic upregulation is a characteristic of
many malignancies such as colorectal cancer19 and,
therefore, the work by George Paul et al (2010)62

and George Paul et al (2013)65 is strongly suggestive
of their role in KS pathogenesis. Further work is re-
quired to characterize the signaling and transcriptional
mechanisms underlying the induction of EP receptor
expression.

BIOLOGICAL MECHANISMS REGULATED
BY COX-2 IN KS

The pathogenesis of KS lesions consisting of spindle
shaped endothelial cells, neovascular structures, and in-
flammatory cells is profoundly influenced by growth
factors (GFs), proinflammatory cytokines (ICs), angio-
genic factors (AFs) such as basic and acidic fibroblast
growth factor (bFGF, aFGF), IL-1a and IL-1b,
granulocyte-monocyte colony stimulating factor (GM-
CSF), platelet derived growth factor b (PDGF-b),
VEGF, interferon-g (IFN-g), IL-6, tumor necrosis fac-
tor-a (TNF-a), angiopoietin-2, angiogenin, heme
oxygenase-1, TGF-b, adhesion molecules like
intercellular/vascular-cell adhesion molecules (ICAM-
1 and VCAM-1), and matrix metalloproteinases
(MMPs) like MMP-1, -2, -3, -9, and -19.68,79-81 The
combined effect of these molecules contributes to
the different aspects of KS pathogenesis such as
neovascularization, angiogenesis, maintenance of
KSHV latency, and metastasis whereas the
mechanisms underlying the sustained activation of
these molecules is still an active area of investigation.
Considering the well-established roles of COX-2 in
the progression of several cancers, Sharma-Walia et al
(2010)59 characterized the role of COX-2 in KSHV
pathogenesis related processes such as secretion of
GFs, ICs, AFs, MMPs, and ICAMs in endothelial cells.
In de novo infected HMVEC-d cells, keymolecules pro-
posed to be important for KS pathogenesis, such as im-
mune modulators (TNF-a, IFN-g, Stromal cell-derived
factor-1, growth regulated oncogene, Regulated on
activation, normal T cell expressed and secreted), cyto-
kines (IL-8, IL-1b, IL-1 a,/b, ILs-2/-3/-8/-P40/-16),
chemokines (MCP-2, MCP-3, TARC, MIP-1d, ENA-
78, I-309, MIF, GCP-2, MIP-3-a, eotaxins -2/-3, IP-
10, NAP-2, CK-b8-1), growth and angiogenic factors
(VEGF-A/C, PDGF-BB, MCSF, G-CSF, GM-CSF, an-
giogenin, oncostatin M, thrombopoeitin, SCF, insulin-
like growth factor-binding protein (-2, -3, and -4),
BDNF, PIGF, HGF, osteoprotegerin, NT-3, NT-4), and
anti-inflammatory cytokines (IL-4, IL-13, and IL-15)
and MMP-1, -9, and -10, were downregulated by the
pharmacologic (NS-398, indomethacin) and small inter-
fering RNA based inhibition of COX-2.59 COX-2 induc-
tion by KSHV infection thus play key roles in various
aspects of KS pathogenesis such as angiogenesis and
lymphangiogenesis (VEGF–A/C), regulation of T cell
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response (IFN-g, SDF-1, GRO, RANTES), chemotaxis
of immune cells (SDF-1 and IL-8), inflammasome acti-
vation (IL-1b), and cell migration and metastasis
(MMP-1, -9, 10, and SDF-1).59 Further characterization
of the biological significance of COX-2 in KSHV in-
fected cells has demonstrated that pharmacological
and small interfering RNA based inhibition of COX-2
downregulated the (1) formation of intricate in vitro
capillary tubes and (2) cell adhesion and cell invasion
capability of HMVEC-d cells.59We64 have added an ad-
ditional dimension to these observations by demonstrat-
ing that COX-2 inhibition could downregulate vFLIP
mediated pathogenic mechanisms such as (1) expres-
sion of immune cell regulators and recruiters such as
chemokines (CXCL-5 and CXCL-6), cytokines (IL-6
and IL-8), C-C ligand related molecules (CCL-2,
CCL-5, CCL-20, MCP-1, RANTES-2, and MIP-3a),
(2) expression of cell adhesion molecules ICAM-1,
VCAM-1, and E-selectin and metalloproteinase
MMP-10, (3) induction of actin cytoskeleton modula-
tors FAK, Src, AKT, and Rac1GTPase, (4) ROS regula-
tion through mitochondrial antioxidant enzyme
manganese superoxide dismutase (MnSOD2), (5)
endothelial-mesenchymal transitions (EMT) by down-
regulating EMT specific master regulator genes (snail,
twist, slug, and laminin-g1) and upregulating E-
cadherin, and (6) anoikis resistance and anchorage re-
sistant colony formation by upregulating proapoptotic
proteins BIM and DR5.64
REGULATION OF KSHV LATENCY BY EP RECEPTORS

PGE2 and EP receptors are proposed to be the tumor-
igenic workhorses of COX-2.5 EP receptors are GPCRs
and have been well-characterized in the pathogenesis of
a multitude of cancers such as melanoma, breast cancer,
and colon cancer by contributing to proliferation, im-
munosuppression, angiogenesis, invasion and blocking
apoptosis through the activation of Src kinase, cAMP/
CREB, PI3K/Akt, Ras/Raf, ERK-1/2, NFkB, EGFR,
PPARd/b, and GSK-3b/b-catenin pathways.22-24 The
role of Src kinase, PI3K, Akt, ERK, and NFkB during
the early events of KSHV infection and establishment
of latency is well-characterized.84-86,89,98 Collectively,
studies by Sharma-Walia et al (2010; 2012)59,64

demonstrated that pathways downstream to COX-2
when activated by viral and nonviral mechanisms or
both participate in enriching the tumor microenviron-
ment and consequently various pathologic processes
underlying KS such as endothelial transformation, neo-
vascularization, andmetastasis.59,64 However, pathways
downstream of COX-2 resulting in the activation of Src,
cAMP, PI3K, Akt, Ras/Raf, ERK, NFkB, EGFR, and
GSK-3b/b-catenin pathways, which form the first line
of signal transducers in a molecular avalanche eventu-
ally resulting in the induction of ICs, GFs, AFs, and
MMPs, is still an active area of investigation. We62

identified the involvement of EP receptors in the induc-
tion of various signaling molecules downstream of
COX-2 in KSHV latency program. Specifically, the
EP1 receptor was implicated in the activation of Ca21,
PI3K, and NF-kB, the EP2 receptor in PI3K, PKCz/l,
and NFkB activation and the EP4 receptor in PI3K,
PKCz/l, ERK 1, ERK 2, and NF-kB activation in
long-term-infected cells.62

EP1, EP2, and EP4 antagonists could also downregu-
late the expression of major KSHV latency gene
LANA-1 by inhibiting the induction of Ca21, phosphor-
ylation of Src, PI3K, PKCz/l, and NFkB signaling.62

The signal molecules that regulate the COX-2 promoter
and PGE2 induced LANA-1 promoter activity were
found to be similar to the EP receptor mediated signal
transduction pathways in latently infected endothelial
cells and COX-2 gene expression and PGE2 secretion
was also significantly downregulated by the pharmaco-
logic inhibition of EP2 and EP4 receptors.62 These ob-
servations implicate for the first time the role of EP
receptors in any form of herpesvirus latency and, thus,
substantiating the earlier observations by Sharma-
Walia et al (2006)61 and elucidated signal transduction
network through EP receptors, initiated by KSHVinfec-
tion mediated COX-2 activation and PGE2 secretion.62

PGE2 in the tumor microenvironment activates EP
receptor mediated signal cascades in a paracrine and au-
tocrine fashion that exert its effects on LANA-1 and
COX-2 expression.62 Consequently, a self-sustained
positive feedback loop networking the KSHV protein
LANA-1 to the proinflammatory pathways regulated
by COX-2/PGE2/EP receptors is created by viral infec-
tion. Recent work by Dupuy et al (2012) further substan-
tiates the role of EP receptors in KS pathogenesis by
reporting the use of PGE2 inhibitors as an attractive ap-
proach to treat aggressive KS, as they could restore acti-
vation and survival of tumoricidal NK cells.99 These
studies provided strong evidence that down-
modulation of NKG2D is mediated by inflammatory
PGE2, known to be released by KS cells, and also
showed that PGE2 acts by preventing IL-15-mediated
activation of NK cells.99 The role of EP receptors in
the induction of several KSHV associated signal net-
works and consequently various pathogenic mecha-
nisms is indicative of how KSHV subverts the COX-2/
PGE2/EP receptor mediated protumorigenic signal
pathways to sustain viral and host gene expression.62

However, these studies also demonstrated that neither
chemical inhibitors (NS-398 and indomethacin) nor si-
COX-2 could completely abolish the induction of ICs,
GFs, MMPs, and AFs indicating the presence of
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a multitude of host molecules like COX-2 subverted by
KSHV infection.59,60,62-64
ROLE OF COX-2 IN KSHV ASSOCIATED B CELL
NEOPLASIA (PEL)

PEL is comprised of B cells transformed by KSHV
latent infection.77,100,101 Studies have proposed the
cumulative interdependent vitality of the expression
of KSHV latency genes, the proinflammatory
environment, and the manipulation of canonical
anticancer host defense machinery, such as p53
and p21, in the metamorphosis of PEL
neoplasia.63,77,100,101 The mechanistic role of COX-2
in hematological malignancies18 and KSHV latency
program in endothelial model systems is well estab-
lished.59-62,64 The study byPaul et al (2011)63 for the first
time delineated the role of COX-2 in PEL pathogenesis
using the COX-2 inhibitor nimesulide. Nimesulide
downregulated KSHV latency genes vFLIP and
LANA-1 and induced G1 cell cycle arrest and apoptosis
through the activation of the p53/p21 tumor suppressor
pathway and downregulation of cell survival kinases p-
Akt1/2 and p-GSK-3b, and angiogenic factor VEGF-C
in PEL cells.63 LANA-1 is a multifunctional protein
and a major marker for KSHV latency.70,102 The
diverse roles of LANA-1 inKSHV latency includemain-
tenance of viral episomes, host gene manipulation
through the recruitment of chromatin binding proteins,
cell cycle regulation and blockade of apoptosis by down-
regulating p53 and Rb.70,102 vFLIP is one of the key
KSHV latent proteins; it performs multiple functions
such as IL-8 and IL-6 upregulation, induction of
NFkB, spindling of infected endothelial cells, and mod-
ulation of cell proliferation, and immune eva-
sion.64,95,103-106 PEL consists of transformed B cells
with in vitro clonogenic properties attributed to
a multitude of molecules.77 A key observation by Paul
et al (2011) is the inhibition of the colony formation ca-
pacity of PEL cells by nimesulide because it encapsu-
lates the pathologic consequence of COX-2 inhibition
mediated latency blockade, G1 arrest, and apoptosis in-
duction in PEL cells.63 Nimesulide mediated prolifera-
tion arrest, alteration in cell cycle profile, and
apoptosis in PEL cells could be related to the downregu-
lation of KSHV latency proteins LANA-1 and vFLIP re-
sulting in the blockade of virus induced prosurvival
mechanisms in PEL.107-114 However, considering the
oncogenic potential of COX-2/PGE2/EP receptors in
other cancer systems that are also important for PEL
pathogenesis, the antigrowth effects of nimesulide could
also be due to the drug’s effects on these pathways as
well as independent of viral proteins.5,15,115-123
CHEMOTHERAPEUTIC POTENTIAL OF NSAIDS IN
TREATING PEL

NSAIDs consist of COX-1/COX-2 inhibitors such as
aspirin, indomethacin, and diclofenac and COX-2 spe-
cific inhibitors such as nimesulide and the COXIB (cel-
ecoxib, rofecoxib, valdecoxib, and lumiracoxib)
family.124,125 COX-2 specific drugs such as COXIBs
have gained popularity and notoriety in the last 2 de-
cades because of their potent antipyretic and analgesic
effects and numerous trials strongly suggesting an in-
crease in cardiovascular events from the chronic use
of rofecoxib and celecoxib, respectively.124,125 From
a chemotherapeutic perspective after considering the
severe side effects of existing anti-PEL drug regimens,
which provide no specific cure for PEL, the goal should
be to identify a drug with potent anti-KSHV and anti-
cancer activity with the least side effects. Several lines
of work are currently underway to develop anti-PEL
therapies based on PEL pathogenesis such as the proap-
optotic agents bortezomib and azidothymidine, antipro-
liferative antibiotic rapamycin, p53 activator nutlin-3a,
antiviral compounds cidofovir and IFN-a, reactive oxy-
gen species hydrogen peroxide, activation of unfolded
protein response, and KSHV latency gene blocking
agents glycyrrhizic acid, and small RNA tran-
scripts.77,113,114,126-138 The well-established tumori-
genic potential of COX-2/PGE2/EP receptor
pathway,18,24 the availability of well-characterized EP
receptor antagonists and Food and Drug
Administration-approved COX-2 inhibitors with
known anticancer effects,18 the demonstration of
COX-2/PGE2/EP receptors in KSHV latency59,61,62

and the correlation between COX-2 expression and
poor NHL prognosis18 provided an excellent context
to examine the chemotherapeutic potential of NSAIDs
in treating PEL by Paul et al (2011).63 The study by
Paul et al (2010) and work by George Paul et al
(2013)65 examined the chemotherapeutic potential of
nimesulide and celecoxib against PEL and several
NHL cell lines, respectively. Nimesulide is a well-
characterized COX-2 inhibitor with known anticancer
properties and is already prescribed to approximately
500 million people in 50 different countries since its in-
troduction in 1985.14,121,139 Celecoxib was introduced
in 1998, and several lines of work have strongly
suggested the anticancer effects of both nimesulide
and celecoxib.140,141 Celecoxib’s anticancer effect is
proposed to be due to COX-2 inhibition and non-COX
dependent antigrowth effects.142 Nimesulide could in-
duce significant proliferation arrest on a multitude of
KSHV1/EBV- (BC-3, KSHV-BJAB), KSHV-/EBV1
(Akata/EBV1, LCL, Raji), KSHV1/EBV1 (JSC-1),
and KSHV-/EBV- (Loukes, Ramos, Akata/EBV-)
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NHL cell lines with selective potency against KSHV1/
EBV- cell lines suggesting that the proliferation arrest
induced by nimesulide on all NHL cell lines tested is
not due to the generalized antiproliferative effects of
NSAIDs on tumor cell lines.63 In the work by
Paul et al (2013),65 celecoxib had significant
antiproliferative effects on KSHV1/EBV- (BCBL-1
and BC-3), KSHV-/EBV1 (Akata/EBV1), KSHV1/
EBV1 (JSC-1), and KSHV-/EBV- (BJAB) cell lines.
The chemotherapeutic potential of EP receptor antag-

onists in any NHLs is still unexamined. The study by
Paul et al (2013)65 investigated the anticancer effects
of EP receptor blockade on various NHL cell lines.
The study demonstrates for the first time the anticancer
effects of SC-51322 (EP1 antagonist), AH6809 (EP2
antagonist), and GW 627368X (EP4 antagonist) on
NHL cell lines. EP1 and EP4 receptor antagonist had
significant antiproliferative effects on KSHV1/EBV-
(BCBL-1 and BC-3), KSHV-/EBV1 (A-kata/EBV1),
KSHV1/EBV1 (JSC-1), and KSHV-/EBV- (BJAB)
cell lines. EP1 and EP4 antagonists also induced apo-
ptosis in BCBL-1, Akata/EBV1, and Akata/EBV- cells
but not in BJAB cells.
An intriguing idea proposed by the studies by Paul

et al (2010) and current work (Paul et al 2013) is the
multimodal anticancer and anti-KSHV effects of
COX-2 inhibition on the PEL cell lines.63 The specific-
ity of the ‘knock-out’ punch of nimesulide on PEL cells
might be due to the additive antiviral (blockade of
KSHV latency genes LANA-1 and vFLIP), anti-
inflammatory/antisurvival properties (downregulation
of VEGF-C, AKT 1/2, and GSK-3b), anti-PEL specific
properties (downregulation of syndecan-1, VDR, and
aquaporin-3) as well as anticancer (induction of G1 ar-
rest and apoptosis) properties (Paul et al 2011).63

COMBINATIONAL BLOCKADE OF COX-2 AND EP
RECEPTORS

Previous work examining the role of COX-2mediated
tumorigenesis has proposed the combination of lower
doses of COX-2 inhibitors with EP receptor antagonists
to reduce the adverse effects of NSAIDs such as GI and
cardiovascular toxicities.5,27 However, potential
synergistic anticancer effects of combinational
blockade of COX-2 and EP receptors are still unexam-
ined. The current study by Paul et al (2013)65 demon-
strates that combining 1.0 mM each of celecoxib,
SC-51322 (EP1 antagonist) and GW 627368X (EP4 an-
tagonist) can potentiate the proapoptotic effect of cele-
coxib on KSHV1/EBV- and KSHV-/EBV1 cells. This
strongly suggests the chemotherapeutic potential of
a novel paradigm based on concurrent inhibition of
COX-2 and EP receptors to obtain potent additive anti-
cancer effects. The study shows that simultaneous inhi-
bition of COX-2 and EP1/EP4 receptors modulates
several classes of genes proposed to be important for
KSHVand EBVassociated lymphoma pathogenesis in-
cluding tumor suppressors, and genes belonging to lym-
phoma survival, cell cycle arrest, cell adhesion,
apoptosis, PI3K/Akt signaling, and epigenetic
regulation.135,143-156 Furthermore, the study also
shows the activation of several host genes proposed to
be downregulated by either KSHV/EBV infection or
respective viral proteins such as chemokine (C-X-C
motif) receptor 4 (CXCR4), LIM domain only 2
(LMO2), v-myc myelocytomatosis viral oncogene
homolog (MYC), Toll-like receptor 5 (TLR5), inhibitor
of DNA binding 4 (ID4), TGF-b1), antigen identified by
monoclonal antibody Ki-67 (MKI67), ATM, lymphoid-
restricted membrane protein (LRMP), TP53, membrane
metallo-endopeptidase (MME), TIMP3, MLH1, CDH1,
DLC1, CDKN1C, glutathione S-transferase pi 1
(GSTP1), HIC1, and RASSF1.157-180 Overall, the
study by Paul et al (2010)62 and Paul et al (2013)65

propose that the anticancer effects of concurrent target-
ing of COX-2 and EP1/EP4 receptor is due to the simul-
taneous inhibition of viral and nonviral mediated
tumorigenic mechanisms acting at multiple levels.
CONCLUSIONS AND FUTURE STUDIES

A key aspect of chronic inflammation and oncogene-
sis attributable to inflammation is the sustenance of the
driving factors such as COX-2 activity, PGE2 secretion,
and PGE2 mediated functional autocrine and paracrine
signaling.5,27 An interesting finding in the study by
George Paul et al (2010)62 is the downregulation of
COX-2 gene expression and PGE2 secretion by EP2
and EP4 antagonists indicating a positive feedback
loop mediated through EP2 and EP4 receptor signaling
that simultaneously regulates LANA-1 and COX-2 ex-
pression.62 Mechanistically, the stability of the COX-2
messenger RNA (mRNA) transcript has been shown
to be mediated by p38/MK2 dependent signaling acting
on the ARE sequences in the 30 UTR region of the COX-
2 mRNA.181 Interestingly, the KSHV protein kaposin B
is also shown to stabilize mRNA transcripts with 30UTR
ARE sequences through p38/MK2 signaling.182 Further
studies are critical to fully understand this pathway,
such as examining the effect of EP receptor antagonism
on the gene expression of Kaposin B, cytokine and p38/
MK2 activation, and COX-2 protein levels. Multiple
promoters (Lti, Ltc, Ltd) have been identified in the
KSHV latency locus and account for the transcripts of
LANA-1, vFLIP, vCyclin, viral microRNAs, and Kapo-
sins.183,184 Therefore, the induction of the LANA-1 pro-
moter by PGE2 and EP receptor agonists also raises the
question whether the PGE2 and EP receptors could



Fig 1. Model summarizing the role of the cyclooxygenase-2 (COX-2)/Prostaglandin E2/Eicosanoid receptor

pathway in Kaposi’s sarcoma (KS) and primary effusion lymphoma (PEL) pathogenesis. During the early stages

of Kaposi’s sarcoma associated-herpes virus (KSHV) infection of target cells, KSHV binds to the cell surface re-

ceptors via its envelope glycoproteins, and by using multiple overlapping pathways, the virus enters the host

cell.98,193 KSHV interactions with receptors, while binding and entering the target cell, induces a variety of

overlapping cell signaling cascades (Extracellular signal-regulated kinase, Phosphatidylinositide 3-kinase, Rho

family of GTPases, Focal adhesion kinase, Src, nuclear factor kappa-light-chain-enhancer of activated B cells,

and protein kinase C) and transcription factors (c-Fos, c-Jun, c-Myc, and Signal transducer and activator of

transcription 1-alpha) early during infection.59,84-90,92,193-198 KSHV infection via the induction of signal

pathways also reprograms and modulates various host cell genes,82 and one of these molecules is the angiogenic

stress response gene COX-2.61,82 KSHV infection induced COX-2 led to the secretion of its inflammatory metab-

olite PGE2.61 A variety of transcription factors (NF-kB, NFAT, NF-IL-6/cEBP, AP-1, and CRE) can stimulate

COX-2 expression. KSHVentry associated signal cascades involving FAK, Src, JNK, and p38 activate transcrip-

tion factors NFAT and Cyclic adenosine monophosphate response element-binding CREB, which stimulate

COX-2 gene expression and PGE2 secretion.60 PGE2 exerts its effect through the family of 7-transmembrane

G-protein-coupled rhodopsin-type EP (1-4) receptors, which alongwith COX-2 and PGE2were detected in human

KS lesions.59,62 Besides manipulating host genes, KSHV establishes latency in the host cell as observed by

increased expression of its viral latent genes latency associated nuclear antigen (LANA)-1 and vFLIP. PGE2 in

the microenvironment of the infected cell functions in paracrine and autocrine fashion to augment its goal to

establish and maintain the expression of viral latency protein LANA-1 through Ca21, Src, PI3K, NK-kB, and

ERK1/2mediated signal cascades.62 EP receptor antagonists downregulate LANA-1 expression through inhibition

of Ca21, p-Src, p-PI3K, p-PKCz/l, and p-NF-kB while exogenous PGE2 and EP receptor agonists induced the

LANA-1 promoter by activating transcription factors (yin-yang1, Specificity Protein 1, octamer transcription fac-

tor-1, octamer transcription factor-1, CCAAT-enhancer-binding proteins, and c-Jun).62 Collectively, our studies

demonstrate that KSHV has pirated the proinflammatory PGE2 and its receptors for maintaining its latency in

the host cell. Conversely, viral latency protein vFLIP mediated signaling sustains COX-2 expression and PGE2

secretion.64 KSHVoncogenic protein vFLIP induces COX-2/PGE2 to enhance its transforming ability (anchorage

independent colony formation), metastatic potential (matrix metalloproteinase (MMP)-10), and inflammatory

phenotype (inflammatory cytokines: monocyte chemotactic protein-1, RANTES, GRO-a/b, interleukin 8, and

interleukin 6; inflammation-related adhesion molecules: ICAM-1, VCAM-1; and chemokines: CXCL-6 and

CXCL-5), and to promote anoikis resistance and prolong infected cell survival (cell survival genes: Cellular
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activate other latency promoters as well. Elucidating
such mechanisms, if any, would provide a comprehen-
sive perspective on howKSHVutilizes PGE2 and EP re-
ceptors for regulating latency.
Studies with LANA-1 promoter deletion constructs

identified a PGE2 response region in the KSHV latency
locus.62 The KSHV latency locus is known to be regu-
lated by Sp1, CTCF, and several other unidentified tran-
scription factors (TFs).185,186 Among the TFs identified
within the minimal region of the LANA-1 promoter re-
quired for PGE2 mediated LANA-1 promoter activity,
there are several transcription factors that could be po-
tentially stimulated by PGE2 and the EP receptor such
as Sp1, C/EBP, c-Jun, Oct-1, and Oct-6.22,187 The
functional significance of these TFs in inducing the
LANA-1 promoter, their specific binding sites, and in-
fluence of PGE2 and EP receptors over these TFs re-
mains to be determined. Key concept introduced by
George Paul et al (2010)62 is the role of the EP1 receptor
in inducing Ca21 signaling in the KSHV latency
program. The study had identified a specific type of
calcium signal induced by EP1 receptor in long-term-
infected cells leading to several questions such as the ef-
fector molecules and the transcription factors activated
by calcium signaling.
One of themost intriguing findings of the study by Paul

et al (2011)63 was the downregulation of syndecan-1,
VDR, and AQP3 expression by nimesulide in PEL cells.
Syndecan-1/CD138, VDR, and AQP3 are uniquely over-
expressed in PEL cell lines unlike other NHLs.69,188 The
role of transmembrane proteoglycan syndecan-1 in cell
migration through Rac-1/PKCa signaling and the signif-
icance of syndecan secretion in proteoglycan signaling
are key aspects of oncogenesis.189 VDR is the natural re-
ceptor for 1a25-dihydroxyvitamin D3.190 Induction of
VDR is associated with chromatin remodeling and is
inhibitor of apoptosis protein-1, Cellular inhibitor of apoptos

Superoxide dismutase 2, B-cell lymphoma 2, immediate ear

lymphoma 2, myeloid leukemia cell differentiation protein,

diator of cell death, and BAX translocation to the cytopla

AKT).64 In addition KSHV- induced COX-2/PGE2 regulate

as secretion of proinflammatory cytokines and growth facto

beta of interleukin 12/cytotoxic lymphocyte maturation

gamma-induced protein 10, neutrophil-activating protein-2, O

tors, Flt3-ligand, Fractalkine, Insulin-like growth factor-bind

(vascular endothelial growth factor [VEGF]-A/-C), and invas

latently infected endothelial cell adhesion/invasion, surviva

fected cells at G1/S phase).59 Similar to COX-2/PGE2 dow

that COX-2 contributes to PEL pathogenesis via viral gene i

ade reduced KSHV latent (LANA-1 and vFLIP) gene expres

activated the p53/p21 tumor-suppressor pathway in PEL cel

anisms in PEL cells via regulating cell survival (p-Akt and p-

E/A and cdc25C), angiogenesis (VEGF-C), transforming po

modulation of PEL defining genes (syndecan-1, aquaporin-3

servations provide a comprehensive molecular framework li

and identify the chemotherapeutic potential of targeting CO
also proposed to increase the risk of esophageal squa-
mous, prostate, and pancreatic cancers by the activation
of osteopontin and Ran-GTPase.190 AQP3 is a channel
protein involved with the transportation of water and
glycerol, and ATP generation.191 In lung adenocarci-
noma, colorectal cancer, and squamous cell carcinoma,
AQP3 has been proposed to play a role in promoting
cell migration through actin depolymerization and ATP
generation.191 The link between COX-2 and the expres-
sion of syndecan-1, AQP3, and VDR within the context
of PEL raises several important questions such the role
of proteoglycan mediated signaling, chromatin remodel-
ing, and ATP metabolism in PEL and how COX-2 might
be contributing to PEL pathogenesis through such a novel
signal network.
Overall, the studies reviewed here provide a glimpse

of the molecular framework underlying the angiogenic
stress response proinflammatory protein COX-2, its in-
famous lipid metabolite PGE2, and EP receptors in the
establishment and maintenance of KSHV latency and,
therefore, implicated COX-2 inhibitors and EP receptor
antagonists as potent chemotherapeutic modalities in
treating KSHV related lymphomas (Fig 1). Thus, the
studies add a novel paradigm in the pathogenesis of
KSHV associated diseases and raise several questions
that could expand our understanding of the role of
chronic persistent inflammation in KS and PEL.
Currently, NHLs are the fifth most common cancer in

the United States and account for 5% of all cancers with
an annual incidence increasing by 1%-2%.126,192

Keeping in mind the ultimate aim of cancer treatment
is to inhibit the growth of precancerous and cancerous
cells without affecting the normal cells, could the
studies reviewed here suggest the antiproliferative
effects of COX-2 inhibitors and EP receptor antagonists
against various NHL cell lines? The data emanating
is protein-2, X-linked inhibitor of apoptosis protein,

ly response gene X-1; antiapoptotic proteins: B-cell

B-cell lymphoma-extra large, Bcl-2 interacting me-

sm; and cell survival kinases; NF-kB, PI3K, and

d multiple events involved in KS pathogenesis such

rs (Interleukin-1 alpha, Interleukin-1 beta, Subunit

factor 2, Tumor necrosis factor alpha, Interferon

ncostatin M, thrombopoeitin, fibroblast growth fac-

ing protein and Osteoprotegerin), angiogenic factors

ive factors (MMP-2/-9).59 COX-2 blockade reduced

l and proliferation (shortened S phase, arrested in-

nstream effects in KS pathogenesis, we established

ndependent and dependent pathways. COX-2 block-

sion, disrupted p53-LANA-1 protein complexes, and

ls.63 COX-2/PGE2 contributed to prosurvival mech-

GSK-3b), cell cycle and apoptosis blockade (cyclins

tential (colony forming capacity of PEL cells), and

, and vitamin-D3 receptor).63 Collectively, these ob-

nking COX-2/PGE2 with KS and PEL pathogenesis

X-2-PGE2-EP axis in treating KS and PEL.
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from our in vitro studies is valuable, informative, and re-
quires further examination (ongoing studies) using an
in vitro angiogenic model and an in vivo nude mice
model to further validate COX-2, PGE2 inhibitors,
and EP receptor antagonists as novel therapeutics to tar-
get latent KSHV infection, viral pathogenesis, and asso-
ciated diseases; KS and PEL.

The authors thank Keith Philibert for critically reading the review.
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