
micromachines

Article

Retention-Aware DRAM Auto-Refresh Scheme for
Energy and Performance Efficiency

Wei-Kai Cheng * , Po-Yuan Shen and Xin-Lun Li

Department of Information and Computer Engineering, Chung Yuan Christian University,
Taoyuan 32023, Taiwan
* Correspondence: wkcheng@cycu.edu.tw; Tel.: +886-3265-4714

Received: 30 July 2019; Accepted: 6 September 2019; Published: 8 September 2019
����������
�������

Abstract: Dynamic random access memory (DRAM) circuits require periodic refresh operations
to prevent data loss. As DRAM density increases, DRAM refresh overhead is even worse due
to the increase of the refresh cycle time. However, because of few the cells in memory that have
lower retention time, DRAM has to raise the refresh frequency to keep the data integrity, and hence
produce unnecessary refreshes for the other normal cells, which results in a large refresh energy and
performance delay of memory access. In this paper, we propose an integration scheme for DRAM
refresh based on the retention-aware auto-refresh (RAAR) method and 2x granularity auto-refresh
simultaneously. We also explain the corresponding modification need on memory controllers to
support the proposed integration refresh scheme. With the given profile of weak cells distribution in
memory banks, our integration scheme can choose the most appropriate refresh technique in each
refresh time. Experimental results on different refresh cycle times show that the retention-aware
refresh scheme can properly improve the system performance and have a great reduction in refresh
energy. Especially when the number of weak cells increased due to the thermal effect of 3D-stacked
architecture, our methodology still keeps the same performance and energy efficiency.

Keywords: DRAM refresh; retention time; refresh interval; refresh cycle time; auto-refresh

1. Introduction

Dynamic random access memory (DRAM) is widely used in electronic devices. DRAM has a
high performance and low cost, and a DRAM cell is composed of an access transistor and one leaky
capacitor, each DRAM cell stores one-bit of data as an electrical charge in a capacitor. DRAM cells
leak charge over time, causing stored data lost. To prevent this situation, DRAM cells require recharge
periodically. These recharge operations are also known as DRAM refresh.

There are two important parameters for DRAM refresh, refresh interval (tREFI) and refresh cycle
time (tRFC). The memory controller sends a refresh command to DRAM devices every tREFI (7.8 us
as usual), and the duration of a refresh command is referred to as tRFC. However, the value of tRFC
worsens when the DRAM capacity increases. As described in Table 1 [1], we calculate refresh overhead
by tRFC/tREFI. This value is 890 ns/7.8 us in a 32 Gb DRAM, it takes about 12.49% of refresh time to
refresh all its cells. The larger the memory size, it will have more serious performance degradation and
energy consumption.

In the JEDEC standard [2], DRAM cells are refreshed every 64 ms at normal temperature (<85 ◦C)
and 32 ms at high temperature (>85 ◦C). However, most of the DRAM cells have a longer retention
time (tRET) than 64 ms. Research [3] indicated that in a 32 GB DDR3 DRAM device, only about 30 cells’
retention time is less than 128 ms, and only about 1000 cells require a refresh interval shorter than
256 ms. We define these low retention cells as weak cells, and a memory row that contains weak cells
is defined as a weak row. It is obvious that a refresh of all rows every 64 ms is unnecessary since only a

Micromachines 2019, 10, 590; doi:10.3390/mi10090590 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-2867-6200
http://www.mdpi.com/2072-666X/10/9/590?type=check_update&version=1
http://dx.doi.org/10.3390/mi10090590
http://www.mdpi.com/journal/micromachines


Micromachines 2019, 10, 590 2 of 19

few memory rows are weak rows. Because of the few low retention time cells, this fixed minimum
refresh interval scheme leads to a large amount of unnecessary refresh power consumption and also
degrades the service efficiency of memory requests [3].

Table 1. Refresh cycle time among different density.

Density tRFC

1 Gb 110 ns
2 Gb 160 ns
4 Gb 260 ns
8 Gb 350 ns
16 Gb 530 ns
32 Gb 890 ns

Because of the restriction of cell retention time, except the fixed refresh interval problem, another
cause of a degrading memory access performance comes from the fact that DRAM refresh operation
must have higher priority than memory request service. While in the refresh period, the memory
request service of the rank being refreshed is forced to wait. In general, the memory controller issues
an auto-refresh command at a fixed interval. It cannot ensure that the memory refresh and memory
access request does not collide. Commodity DRAM device performs refresh operations at rank-level
and leads to the idling of all banks in the rank during the refresh period.

There has been some research on reducing the overhead of DRAM by retention-aware refresh
or refresh scheduling [3–12]. Research [4] proposed a RAAR technique to reduce refresh energy and
performance degradation, only part of refresh bundles need a refresh in each refresh interval, while
other refresh bundles can skip at least 50% of refresh operations. Although this methodology could
reduce a lot of redundant refreshes, because it chose a unique refresh scheme all over the RAAR
period, it still wastes quite a number of refresh time on normal cells. Research [5] improved this
phenomenon by integrating all the RAAR refresh schemes and chose the optimal refresh scheme for
different refresh bundles to minimize refresh time and refresh energy. Research [6] integrated the
RAAR scheme with the bank reordering technique to gather up weak rows in adjacent banks, and
hence less refresh bundles need refresh in each refresh interval. As observed in research [7], a refreshing
bundle that contains weak rows still contain lots of normal cells even if we choose the optimal refresh
scheme for it. Therefore, research [8] proposed an integration scheme to integrate RAAR and built-in
self-repair (BISR) technique, selected weak rows are repaired with the BISR technique to minimize
refresh overhead of refresh bundles.

Other related works to improve refresh efficiency are introduced below. Research [3] grouped
DRAM rows into retention time bins and applied a different refresh rate to each bin. Research [7]
presented a DRAM refresh technique that simultaneously leveraged bank-level and subarray-level
concurrency to reduce the overhead of distributed refresh operations in the hybrid memory cube. A
bundle of DRAM rows in a refresh operation was composed of two subgroups, both subgroups of
DRAM rows were refreshed concurrently during a refresh command to reduce refresh cycle time.
Research [9] proposed to issue per-bank refreshes to idle banks in an out-of-order manner instead
of round-robin order. Research [10] applied a refresh interval longer than the conventional refresh
interval (64 ms), and memory controller issued read operations to the weak rows every required refresh
interval in order to retain the data in weak rows. Research [11] proposed an extension to the existing
DRAM control register access protocol to include the internal refresh counter and introduced a new
dummy refresh command hat skipped refresh operations and simply incremented the internal counter.
Research [12] proposed a set of techniques to coordinate the scheduling of low power mode transitions
and refresh commands such that most of the required refreshes were scheduled in the low power
self-refresh mode. Research [13] mitigated refresh overhead by a caching scheme based on the fact that
ranks in the same channel were refreshed in a staggered manner.



Micromachines 2019, 10, 590 3 of 19

In summary of the related works that addressed the RAAR technique, although research [5] had
proposed an integration refresh scheme, it did not integrate the 2x granularity auto-refresh and hence
the performance improvement was less than 10%. Research [6] and research [8] also reveal the fact that
although they integrated RAAR scheme with bank ordering and BISR technique, respectively, there
was still very little performance improvement achieved. All these were because that weak cells only
occupy a low percentage of all memory cells, if the 2x granularity was not integrated into the refresh
scheme, all other optimization techniques can only obtain limited reduction on refresh overhead. For
other related RAAR related techniques [3,9–11], they also did not take into account the 2x granularity
issue in their works. Based on these observations, in this paper, we propose an integration scheme
for DRAM refresh based on the retention-aware auto-refresh (RAAR) method and 2x granularity
auto-refresh simultaneously, and the corresponding memory controller needs to support the proposed
integration refresh scheme. With a given profile of weak cells distribution in memory banks, our
integration scheme can choose the most appropriate refresh technique in each refresh time.

The rest of this paper is organized as follows. Section 2 shows the background of DRAM
organization, refresh interval, refresh cycle time, and refresh command. Section 3 illustrates the
motivation of our integration refresh scheme. In Section 4, we propose the 2x granularity auto-refresh,
integration refresh scheme, and corresponding memory controller. Section 5 shows the evaluation
results of our methodology on different weak row percentage and refresh cycle time. Finally, we draw
concluding remarks in Section 6.

2. Background

The modern DRAM system is a hierarchical organization [9]. The hierarchies from high to low
levels are rank and bank as shown in Figure 1. Each channel connects one or more ranks to a memory
controller. Furthermore, banks are an array structure containing rows and columns, in which each cell
stores one bit of data. However, cells leak charge over time which causes data loss.

Micromachines 2019, 10, x  3 of 20 

 

transitions and refresh commands such that most of the required refreshes were scheduled in the low 
power self-refresh mode. Research [13] mitigated refresh overhead by a caching scheme based on the 
fact that ranks in the same channel were refreshed in a staggered manner. 

In summary of the related works that addressed the RAAR technique, although research [5] had 
proposed an integration refresh scheme, it did not integrate the 2x granularity auto-refresh and hence 
the performance improvement was less than 10%. Research [6] and research [8] also reveal the fact 
that although they integrated RAAR scheme with bank ordering and BISR technique, respectively, 
there was still very little performance improvement achieved. All these were because that weak cells 
only occupy a low percentage of all memory cells, if the 2x granularity was not integrated into the 
refresh scheme, all other optimization techniques can only obtain limited reduction on refresh 
overhead. For other related RAAR related techniques [3,9–11], they also did not take into account the 
2x granularity issue in their works. Based on these observations, in this paper, we propose an 
integration scheme for DRAM refresh based on the retention-aware auto-refresh (RAAR) method and 
2x granularity auto-refresh simultaneously, and the corresponding memory controller needs to 
support the proposed integration refresh scheme. With a given profile of weak cells distribution in 
memory banks, our integration scheme can choose the most appropriate refresh technique in each 
refresh time. 

The rest of this paper is organized as follows. Section 2 shows the background of DRAM 
organization, refresh interval, refresh cycle time, and refresh command. Section 3 illustrates the 
motivation of our integration refresh scheme. In Section 4, we propose the 2x granularity auto-refresh, 
integration refresh scheme, and corresponding memory controller. Section 5 shows the evaluation 
results of our methodology on different weak row percentage and refresh cycle time. Finally, we 
draw concluding remarks in Section 6. 

2. Background 

The modern DRAM system is a hierarchical organization [9]. The hierarchies from high to low 
levels are rank and bank as shown in Figure 1. Each channel connects one or more ranks to a memory 
controller. Furthermore, banks are an array structure containing rows and columns, in which each 
cell stores one bit of data. However, cells leak charge over time which causes data loss. 

Rank 1

Bank

Channel Rank 0

Bank

Memory
Controller

 
Figure 1. Dynamic random access memory (DRAM) hierarchical organization. 

Multiple ranks sharing one channel is common in a modern memory system. In a multi-rank 
system, all ranks’ refresh operations are staggered, there is no overlap among each rank’s refresh. 
The advantage of a multi-rank memory system is that while one rank is refreshing, the other ranks 
can still serve memory requests. Figure 2 shows a staggered refresh in a four-rank memory system. 

Figure 1. Dynamic random access memory (DRAM) hierarchical organization.

Multiple ranks sharing one channel is common in a modern memory system. In a multi-rank
system, all ranks’ refresh operations are staggered, there is no overlap among each rank’s refresh. The
advantage of a multi-rank memory system is that while one rank is refreshing, the other ranks can still
serve memory requests. Figure 2 shows a staggered refresh in a four-rank memory system.Micromachines 2019, 10, x  4 of 20 

 

Rank0

Rank1

Rank2

Rank3

tREFI

Refresh Memory
access  

Figure 2. Staggered auto-refresh in a four-rank system. 

There are three major parts that contribute to the power consumption of DRAM, background 
power, active power, and refresh power. Background power comes from peripheral circuitry energy 
consumption. Low power mode disables some peripheral circuitry to reduce background power 
consumption. Active power is only consumed while servicing a memory request. To service a 
memory request, the target row must be first activated and precharged. Since a DRAM cell is 
composed of an access transistor and a leaky capacitor, the DRAM is required to be refreshed 
periodically and thereby dissipating its refresh power. According to our evaluation, refresh power 
accounts up to 25%–27% of the total energy consumption in a 32 GB DRAM device, and this 
percentage will even increase as the DRAM size increased in the future [3]. Therefore, refresh power 
reduction becomes a crucial issue in the future. 

Refreshing all rows at the same time leads to long refresh latency. Therefore, to avoid long 
refresh latency, the total rows in a bank are divided into 8K groups [13]. It is evenly distributing the 
refresh latency among runtime. That is to say, 8K auto-refresh commands are issued to refresh a 
subset of rows in 64 ms interval. As the example shown in Figure 3, 8K auto-refresh commands are 
issued every 64 ms/8K = 7.8 us. 

tREFI = 7.8us

REF0 REF1 REF8191REF2

tREFI = 7.8us

tREFT = 64ms

 
Figure 3. All rows are refreshed by 8K refresh commands. 

Commodity DRAM device supports all-bank auto-refresh. All banks are unavailable for tRFC 
cycle times while all-bank auto-refresh commands are issued. In contrast, per-bank auto-refresh [14] 
is also a supported refresh technique in a standard DRAM device. Per-bank refresh divides one all-
bank refresh into eight per-bank refreshes. Per-bank refreshes only refresh one bank at a time. In 
other words, only one bank is idle for refresh and the other banks can still serve memory requests. 
The advantage of per-bank refresh is that it is more efficient for one bank refresh than all-bank refresh 
due to shorter tRFC. Figure 4 illustrates the comparisons of all-bank refresh and per-bank refresh, 
tRFCpb is about 2.3x shorter than tRFCab. 

Figure 2. Staggered auto-refresh in a four-rank system.



Micromachines 2019, 10, 590 4 of 19

There are three major parts that contribute to the power consumption of DRAM, background
power, active power, and refresh power. Background power comes from peripheral circuitry energy
consumption. Low power mode disables some peripheral circuitry to reduce background power
consumption. Active power is only consumed while servicing a memory request. To service a memory
request, the target row must be first activated and precharged. Since a DRAM cell is composed of an
access transistor and a leaky capacitor, the DRAM is required to be refreshed periodically and thereby
dissipating its refresh power. According to our evaluation, refresh power accounts up to 25–27% of
the total energy consumption in a 32 GB DRAM device, and this percentage will even increase as the
DRAM size increased in the future [3]. Therefore, refresh power reduction becomes a crucial issue in
the future.

Refreshing all rows at the same time leads to long refresh latency. Therefore, to avoid long refresh
latency, the total rows in a bank are divided into 8K groups [13]. It is evenly distributing the refresh
latency among runtime. That is to say, 8K auto-refresh commands are issued to refresh a subset of
rows in 64 ms interval. As the example shown in Figure 3, 8K auto-refresh commands are issued every
64 ms/8K = 7.8 us.

Micromachines 2019, 10, x  4 of 20 

 

Rank0

Rank1

Rank2

Rank3

tREFI

Refresh Memory
access  

Figure 2. Staggered auto-refresh in a four-rank system. 

There are three major parts that contribute to the power consumption of DRAM, background 
power, active power, and refresh power. Background power comes from peripheral circuitry energy 
consumption. Low power mode disables some peripheral circuitry to reduce background power 
consumption. Active power is only consumed while servicing a memory request. To service a 
memory request, the target row must be first activated and precharged. Since a DRAM cell is 
composed of an access transistor and a leaky capacitor, the DRAM is required to be refreshed 
periodically and thereby dissipating its refresh power. According to our evaluation, refresh power 
accounts up to 25%–27% of the total energy consumption in a 32 GB DRAM device, and this 
percentage will even increase as the DRAM size increased in the future [3]. Therefore, refresh power 
reduction becomes a crucial issue in the future. 

Refreshing all rows at the same time leads to long refresh latency. Therefore, to avoid long 
refresh latency, the total rows in a bank are divided into 8K groups [13]. It is evenly distributing the 
refresh latency among runtime. That is to say, 8K auto-refresh commands are issued to refresh a 
subset of rows in 64 ms interval. As the example shown in Figure 3, 8K auto-refresh commands are 
issued every 64 ms/8K = 7.8 us. 

tREFI = 7.8us

REF0 REF1 REF8191REF2

tREFI = 7.8us

tREFT = 64ms

 
Figure 3. All rows are refreshed by 8K refresh commands. 

Commodity DRAM device supports all-bank auto-refresh. All banks are unavailable for tRFC 
cycle times while all-bank auto-refresh commands are issued. In contrast, per-bank auto-refresh [14] 
is also a supported refresh technique in a standard DRAM device. Per-bank refresh divides one all-
bank refresh into eight per-bank refreshes. Per-bank refreshes only refresh one bank at a time. In 
other words, only one bank is idle for refresh and the other banks can still serve memory requests. 
The advantage of per-bank refresh is that it is more efficient for one bank refresh than all-bank refresh 
due to shorter tRFC. Figure 4 illustrates the comparisons of all-bank refresh and per-bank refresh, 
tRFCpb is about 2.3x shorter than tRFCab. 

Figure 3. All rows are refreshed by 8K refresh commands.

Commodity DRAM device supports all-bank auto-refresh. All banks are unavailable for tRFC
cycle times while all-bank auto-refresh commands are issued. In contrast, per-bank auto-refresh [14] is
also a supported refresh technique in a standard DRAM device. Per-bank refresh divides one all-bank
refresh into eight per-bank refreshes. Per-bank refreshes only refresh one bank at a time. In other
words, only one bank is idle for refresh and the other banks can still serve memory requests. The
advantage of per-bank refresh is that it is more efficient for one bank refresh than all-bank refresh due
to shorter tRFC. Figure 4 illustrates the comparisons of all-bank refresh and per-bank refresh, tRFCpb
is about 2.3x shorter than tRFCab.Micromachines 2019, 10, x  5 of 20 

 

REF
REF

REF

Bank0
Bank1

Bank7

Bank0
Bank1

Bank7

REF
REF

REF

tRFCab

tRFCpb

(a) an all-bank refresh command is issued

(b) 8 per-bank refresh commands are issued  
Figure 4. Comparisons of an all-bank refresh and per-bank refresh. 

As described previously, the total number of rows in a bank is divided into 8K groups for refresh 
operations. In addition to dividing rows into 8K groups, JEDEC DDR4 standard [15] also support 2x 
granularity auto-refresh. The 2x granularity auto-refresh scheme divides the total number of rows in 
a bank into 16K groups. Therefore, only half of the rows are refreshed per auto-refresh command. 
Figure 5a shows a bank composed of 32K rows. The 32K rows are divided into 8K groups by default. 
Therefore, four rows are refreshed in a bank per auto-refresh command. Figure 5b shows an example 
of 2x granularity auto-refresh. It divides the total number of rows in a bank into 16K groups and only 
two rows are refreshed per refresh operation. 

Row 3
Row 2
Row 1
Row 0
Bank

REF0
#4rows

(a) 1x auto refresh

Row 32767

Row 3
Row 2
Row 1
Row 0
Bank

Row 32767

REF0
#2rows

REF1
#2rows

(b) 2x auto refresh

REF8191
#4rows

REF16383
#2rows

 
Figure 5. Illustrations of (a) 1x and (b) 2x auto-refresh. 

3. Motivation and Example 

In a DRAM refresh, a refresh command includes 8192 refresh times in 64 ms of a refresh interval. 
Although RAAR reduces a large number of unnecessary refreshes, some banks that do not contain 
weak rows still have to be refreshed because of all-bank refresh mode. Also, although 2x granularity 
reduces refresh interval to one half of that in 1x granularity, its refresh cycle time exceeds one half of 
that in 1x granularity. For example of the 8 Gb DRAM, for 1x granularity its refresh interval is 7.8 us 
and refresh cycle time is 350 ns, and for 2x granularity its refresh interval is 3.9us and refresh cycle 
time is 260 ns. Two 2x granularity refresh requires 520 ns while one 1x granularity refresh only 
require 350 ns. Therefore, a retention-aware refresh scheme to corporate with 2x granularity refresh 
is necessary. 

For the RAAR technique proposed by research [4], only refresh bundles that contain weak rows 
need a refresh in each refresh interval. However, weak rows distribution between refresh bundles 
may differ dramatically. If the same refresh scheme is used all over the RAAR period, there still will 
be quite number of refresh time wasted due to extra normal cells refreshing or bad weak rows 
refreshing sequentially. 

For the example illustrated in Figure 6, we executed refresh commands with the same refresh 
scheme all over the refresh interval (refresh 8192 times in 64 ms). Figure 6a shows the results when 

Figure 4. Comparisons of an all-bank refresh and per-bank refresh.

As described previously, the total number of rows in a bank is divided into 8K groups for refresh
operations. In addition to dividing rows into 8K groups, JEDEC DDR4 standard [15] also support 2x
granularity auto-refresh. The 2x granularity auto-refresh scheme divides the total number of rows
in a bank into 16K groups. Therefore, only half of the rows are refreshed per auto-refresh command.
Figure 5a shows a bank composed of 32K rows. The 32K rows are divided into 8K groups by default.



Micromachines 2019, 10, 590 5 of 19

Therefore, four rows are refreshed in a bank per auto-refresh command. Figure 5b shows an example
of 2x granularity auto-refresh. It divides the total number of rows in a bank into 16K groups and only
two rows are refreshed per refresh operation.

Micromachines 2019, 10, x  5 of 20 

 

REF
REF

REF

Bank0
Bank1

Bank7

Bank0
Bank1

Bank7

REF
REF

REF

tRFCab

tRFCpb

(a) an all-bank refresh command is issued

(b) 8 per-bank refresh commands are issued  
Figure 4. Comparisons of an all-bank refresh and per-bank refresh. 

As described previously, the total number of rows in a bank is divided into 8K groups for refresh 
operations. In addition to dividing rows into 8K groups, JEDEC DDR4 standard [15] also support 2x 
granularity auto-refresh. The 2x granularity auto-refresh scheme divides the total number of rows in 
a bank into 16K groups. Therefore, only half of the rows are refreshed per auto-refresh command. 
Figure 5a shows a bank composed of 32K rows. The 32K rows are divided into 8K groups by default. 
Therefore, four rows are refreshed in a bank per auto-refresh command. Figure 5b shows an example 
of 2x granularity auto-refresh. It divides the total number of rows in a bank into 16K groups and only 
two rows are refreshed per refresh operation. 

Row 3
Row 2
Row 1
Row 0
Bank

REF0
#4rows

(a) 1x auto refresh

Row 32767

Row 3
Row 2
Row 1
Row 0
Bank

Row 32767

REF0
#2rows

REF1
#2rows

(b) 2x auto refresh

REF8191
#4rows

REF16383
#2rows

 
Figure 5. Illustrations of (a) 1x and (b) 2x auto-refresh. 

3. Motivation and Example 

In a DRAM refresh, a refresh command includes 8192 refresh times in 64 ms of a refresh interval. 
Although RAAR reduces a large number of unnecessary refreshes, some banks that do not contain 
weak rows still have to be refreshed because of all-bank refresh mode. Also, although 2x granularity 
reduces refresh interval to one half of that in 1x granularity, its refresh cycle time exceeds one half of 
that in 1x granularity. For example of the 8 Gb DRAM, for 1x granularity its refresh interval is 7.8 us 
and refresh cycle time is 350 ns, and for 2x granularity its refresh interval is 3.9us and refresh cycle 
time is 260 ns. Two 2x granularity refresh requires 520 ns while one 1x granularity refresh only 
require 350 ns. Therefore, a retention-aware refresh scheme to corporate with 2x granularity refresh 
is necessary. 

For the RAAR technique proposed by research [4], only refresh bundles that contain weak rows 
need a refresh in each refresh interval. However, weak rows distribution between refresh bundles 
may differ dramatically. If the same refresh scheme is used all over the RAAR period, there still will 
be quite number of refresh time wasted due to extra normal cells refreshing or bad weak rows 
refreshing sequentially. 

For the example illustrated in Figure 6, we executed refresh commands with the same refresh 
scheme all over the refresh interval (refresh 8192 times in 64 ms). Figure 6a shows the results when 

Figure 5. Illustrations of (a) 1x and (b) 2x auto-refresh.

3. Motivation and Example

In a DRAM refresh, a refresh command includes 8192 refresh times in 64 ms of a refresh interval.
Although RAAR reduces a large number of unnecessary refreshes, some banks that do not contain
weak rows still have to be refreshed because of all-bank refresh mode. Also, although 2x granularity
reduces refresh interval to one half of that in 1x granularity, its refresh cycle time exceeds one half of
that in 1x granularity. For example of the 8 Gb DRAM, for 1x granularity its refresh interval is 7.8 us
and refresh cycle time is 350 ns, and for 2x granularity its refresh interval is 3.9us and refresh cycle time
is 260 ns. Two 2x granularity refresh requires 520 ns while one 1x granularity refresh only require 350
ns. Therefore, a retention-aware refresh scheme to corporate with 2x granularity refresh is necessary.

For the RAAR technique proposed by research [4], only refresh bundles that contain weak rows
need a refresh in each refresh interval. However, weak rows distribution between refresh bundles
may differ dramatically. If the same refresh scheme is used all over the RAAR period, there still
will be quite number of refresh time wasted due to extra normal cells refreshing or bad weak rows
refreshing sequentially.

For the example illustrated in Figure 6, we executed refresh commands with the same refresh
scheme all over the refresh interval (refresh 8192 times in 64 ms). Figure 6a shows the results when
choosing the all-bank refresh scheme, we see that it performs badly in the first refresh because of three
unnecessary banks to be refreshed simultaneously. However, this scheme performs well for the second
refresh since all banks contain weak rows. On the other hand, when we choose the per-bank refresh
scheme as shown in Figure 6b, although it is appropriate for the first refresh, it needs to refresh all the
banks sequentially and causes a lot of waste of refresh time and refresh energy when it starts on the
second refresh.

In research [5], in addition to all-bank refresh and per-bank refresh, two new fine-granularity
refresh schemes, namely half-bank refresh, and quarter-bank refresh were proposed to further reduce
unnecessary refresh. Although this integration refresh scheme combined both the advantage of all-bank
refresh and per-bank refresh, provided fine-granularity refresh modes selection to resolve the problem
of too much unnecessary refresh in all-bank refresh and high refresh overhead in per-bank refresh, it
did not integrate the 2x granularity auto-refresh and hence the performance improvement was less
than 10%. As described at the beginning of this section, replacing the 1x granularity auto-refresh with
2x granularity auto-refresh directly without co-operating with the retention-aware refresh scheme is
useless. In this paper, we propose a methodology to integrate 2x granularity auto-refresh and the
retention-aware refresh scheme which can have significant performance improvement as shown in
experimental results.



Micromachines 2019, 10, 590 6 of 19

Micromachines 2019, 10, x  6 of 20 

 

choosing the all-bank refresh scheme, we see that it performs badly in the first refresh because of 
three unnecessary banks to be refreshed simultaneously. However, this scheme performs well for the 
second refresh since all banks contain weak rows. On the other hand, when we choose the per-bank 
refresh scheme as shown in Figure 6b, although it is appropriate for the first refresh, it needs to refresh 
all the banks sequentially and causes a lot of waste of refresh time and refresh energy when it starts 
on the second refresh. 

 
(a) 

 
(b) 

Figure 6. (a) All-bank refresh to refresh weak row; (b) per-bank refresh to refresh weak row. 

In research [5], in addition to all-bank refresh and per-bank refresh, two new fine-granularity 
refresh schemes, namely half-bank refresh, and quarter-bank refresh were proposed to further reduce 
unnecessary refresh. Although this integration refresh scheme combined both the advantage of all-
bank refresh and per-bank refresh, provided fine-granularity refresh modes selection to resolve the 
problem of too much unnecessary refresh in all-bank refresh and high refresh overhead in per-bank 
refresh, it did not integrate the 2x granularity auto-refresh and hence the performance improvement 
was less than 10%. As described at the beginning of this section, replacing the 1x granularity auto-
refresh with 2x granularity auto-refresh directly without co-operating with the retention-aware 
refresh scheme is useless. In this paper, we propose a methodology to integrate 2x granularity auto-
refresh and the retention-aware refresh scheme which can have significant performance 
improvement as shown in experimental results. 

4. Methodology 

In this section, we describe our approach for retention-aware refresh optimization, including 
fine granularity RAAR, integration refresh scheme, and the corresponding memory controller to 
support the proposed integration refresh scheme. 

4.1. 2x Granularity Retention-Aware Auto-Refresh (RAAR) 

Since there are large amounts of rows that are unnecessary to be refreshed in every minimal 
retention time refresh interval (tREFT) (64 ms as usual), RAAR profiles the DRAM rows’ retention 
time and tags the weak rows, non-weak rows were not refreshed every tREFI. The key idea of RAAR 

Figure 6. (a) All-bank refresh to refresh weak row; (b) per-bank refresh to refresh weak row.

4. Methodology

In this section, we describe our approach for retention-aware refresh optimization, including fine
granularity RAAR, integration refresh scheme, and the corresponding memory controller to support
the proposed integration refresh scheme.

4.1. 2x Granularity Retention-Aware Auto-Refresh (RAAR)

Since there are large amounts of rows that are unnecessary to be refreshed in every minimal
retention time refresh interval (tREFT) (64 ms as usual), RAAR profiles the DRAM rows’ retention time
and tags the weak rows, non-weak rows were not refreshed every tREFI. The key idea of RAAR is to
only refresh weak rows in a high frequency and skip refreshing non-weak rows. Therefore, refreshing
fewer rows per auto-refresh command is better for RAAR. RAAR adopts the default auto-refresh
and 2x granularity auto-refresh to reduce unnecessary rows being refreshed. Furthermore, to skip
refresh non-weak rows, we accessed and increased the value of the internal refresh counter without
refreshing rows.

Figure 7 illustrates how RAAR works. There are sixteen rows in a bank and only four of them are
weak rows (row0, 10, 13, 14). We assumed a 1x auto-refresh command that refreshes four rows. At
first refresh (1), it refreshes row0–row3. However, only row0 is a weak row. Therefore, we use two 2x
auto-refresh commands to refresh these four rows. Actually, only the first 2x auto-refresh command
refresh row0 and row1 because of weak row0. The second 2x auto-refresh command only modifies the
refresh counter from two to three and does not incur any refresh overhead. As per the second refresh
(2) shown in Figure 7, there is no weak row in row4–row7. We only increased the refresh counter by 1x
auto-refresh without any refresh overhead. The condition of the third refresh (3) was similar to the first
refresh (1), only one weak row exits. Two 2x auto-refresh commands were issued but actually only
refresh row10 and row11. In the fourth refresh (4), both the first half and second half contain a weak
row. So, we refreshed these four rows as normal by one 1x auto-refresh. In this example, RAAR only
refreshed eight rows rather than refreshing all sixteen rows.



Micromachines 2019, 10, 590 7 of 19

Micromachines 2019, 10, x  7 of 20 

 

is to only refresh weak rows in a high frequency and skip refreshing non-weak rows. Therefore, 
refreshing fewer rows per auto-refresh command is better for RAAR. RAAR adopts the default auto-
refresh and 2x granularity auto-refresh to reduce unnecessary rows being refreshed. Furthermore, to 
skip refresh non-weak rows, we accessed and increased the value of the internal refresh counter 
without refreshing rows. 

Figure 7 illustrates how RAAR works. There are sixteen rows in a bank and only four of them 
are weak rows (row0, 10, 13, 14). We assumed a 1x auto-refresh command that refreshes four rows. 
At first refresh (1), it refreshes row0–row3. However, only row0 is a weak row. Therefore, we use two 
2x auto-refresh commands to refresh these four rows. Actually, only the first 2x auto-refresh 
command refresh row0 and row1 because of weak row0. The second 2x auto-refresh command only 
modifies the refresh counter from two to three and does not incur any refresh overhead. As per the 
second refresh (2) shown in Figure 7, there is no weak row in row4–row7. We only increased the 
refresh counter by 1x auto-refresh without any refresh overhead. The condition of the third refresh 
(3) was similar to the first refresh (1), only one weak row exits. Two 2x auto-refresh commands were 
issued but actually only refresh row10 and row11. In the fourth refresh (4), both the first half and 
second half contain a weak row. So, we refreshed these four rows as normal by one 1x auto-refresh. 
In this example, RAAR only refreshed eight rows rather than refreshing all sixteen rows. 

 
Figure 7. Retention-aware auto-refresh. 

4.2. Integration Refresh Scheme 

Figure 8 shows the program flow of our integration refresh scheme. After the testing and 
measurement, we firstly produce the profile of retention time under different thermal environment 
and store the information of weak rows into a weak row buffer. A 64 ms refresh counter was used to 
issue the refresh command for weak rows. For each 64 ms interval, we selected target row sets by a 
specified refresh mode. When the target refresh row sets contained weak rows, we then decided the 
optimal refresh mode and refreshed the row sets. Otherwise, the memory controller would provide 
service for memory requests as normal. 

Figure 7. Retention-aware auto-refresh.

4.2. Integration Refresh Scheme

Figure 8 shows the program flow of our integration refresh scheme. After the testing and
measurement, we firstly produce the profile of retention time under different thermal environment
and store the information of weak rows into a weak row buffer. A 64 ms refresh counter was used to
issue the refresh command for weak rows. For each 64 ms interval, we selected target row sets by a
specified refresh mode. When the target refresh row sets contained weak rows, we then decided the
optimal refresh mode and refreshed the row sets. Otherwise, the memory controller would provide
service for memory requests as normal.Micromachines 2019, 10, x  8 of 20 

 

 
Figure 8. Proposed program flow. 

The decision of refresh mode for a row set is based on its weak rows distribution, the respective 
tRFC of each refresh scheme, and the 2x granularity refresh method in JEDEC DDR4 standard [15]. 
Table 2 shows the tRFC ratio of different refresh modes used in our integration refresh scheme. 
Because per-bank refresh is already a fine granularity refresh scheme, 2x granularity auto-refresh is 
not applied to it. We calculated the refresh overhead of each refresh scheme for the target row set and 
chose the most appropriate refresh mode. Figure 9 shows an example of integration refresh scheme 
to mitigate an unnecessary refresh. In a refresh of the first-row set, we chose one half-bank refresh, 
which was better than a two quarter-bank refresh or three per-bank refresh. In the refresh of the 
second-row set, one per-bank refresh was the best one. In refresh of the third-row set, one quarter-
bank refresh was better than two per-bank refresh. And in refresh of the fourth-row set, one all-bank 
refresh was the best, which was better than two half-bank refresh, four quarter-bank refresh, or five 
per-bank refresh. 

Table 2. Refresh cycle time (tRFC) parameters definition and 2x granularity refresh check. 

Refresh Mode tRFC 2x Granularity 
All-bank refresh K Y 

Half-bank refresh K/1.32 Y 
Quarter-bank refresh K/1.74 Y 

Per-bank refresh K/2.3 N 

Figure 8. Proposed program flow.



Micromachines 2019, 10, 590 8 of 19

The decision of refresh mode for a row set is based on its weak rows distribution, the respective
tRFC of each refresh scheme, and the 2x granularity refresh method in JEDEC DDR4 standard [15].
Table 2 shows the tRFC ratio of different refresh modes used in our integration refresh scheme. Because
per-bank refresh is already a fine granularity refresh scheme, 2x granularity auto-refresh is not applied
to it. We calculated the refresh overhead of each refresh scheme for the target row set and chose the
most appropriate refresh mode. Figure 9 shows an example of integration refresh scheme to mitigate
an unnecessary refresh. In a refresh of the first-row set, we chose one half-bank refresh, which was
better than a two quarter-bank refresh or three per-bank refresh. In the refresh of the second-row set,
one per-bank refresh was the best one. In refresh of the third-row set, one quarter-bank refresh was
better than two per-bank refresh. And in refresh of the fourth-row set, one all-bank refresh was the
best, which was better than two half-bank refresh, four quarter-bank refresh, or five per-bank refresh.

Table 2. Refresh cycle time (tRFC) parameters definition and 2x granularity refresh check.

Refresh Mode tRFC 2x Granularity

All-bank refresh K Y
Half-bank refresh K/1.32 Y

Quarter-bank refresh K/1.74 Y
Per-bank refresh K/2.3 N

Micromachines 2019, 10, x  9 of 20 

 

 
Figure 9. Integration refresh scheme in each refresh. 

4.3. Memory Controller 

To accomplish the integration refresh scheme, a little modification on the memory controller is 
required, which is also the piece of the overhead of our proposal. Figure 10 shows the modification 
of the memory controller to fit our integration refresh scheme. In the original memory controller, 
there is a refresh countdown register to issue a refresh command according to the refresh period. 
When the register counts down to zero, the memory controller issues a refresh command. However, 
the memory controller cannot specify the rows to be refreshed, which is determined by the row 
counter inside the DRAM. Therefore, we added two extra registers for the need of our integration 
refresh scheme—a refresh address register to monitor the refresh rows and a weak row register to 
record weak rows. Since the profile of weak cells distribution in memory banks are obtained after the 
testing and measurement analysis of the memory wafer, we do not need to detect weak rows on the 
fly, and only address the weak rows that are recorded in the weak row register, no bitmap for all 
rows nor a counter for each row is necessary. In addition, since the profiles are produced after the 
wafer measurement, we either do not need to change refresh scheme on the fly, as refresh commands 
for different refresh bundles are prepared based on our integration refresh scheme in advance. 

Memory controller

Refresh 
Address 
Register 

Issue refresh when RC is 0

Weak 
Row

Register

Refresh 
Countdown

Register
DRAM

 
Figure 10. Modified memory controller. 

Figure 11 shows the organization of a weak row register. For the example of MT41K1G8 [1], the 
memory architecture has two channels and two ranks, each rank has eight banks, and each bank has 
64K rows. When the memory architecture is changed, bit organization of weak row register is also 

Figure 9. Integration refresh scheme in each refresh.

4.3. Memory Controller

To accomplish the integration refresh scheme, a little modification on the memory controller is
required, which is also the piece of the overhead of our proposal. Figure 10 shows the modification of
the memory controller to fit our integration refresh scheme. In the original memory controller, there is
a refresh countdown register to issue a refresh command according to the refresh period. When the
register counts down to zero, the memory controller issues a refresh command. However, the memory
controller cannot specify the rows to be refreshed, which is determined by the row counter inside the
DRAM. Therefore, we added two extra registers for the need of our integration refresh scheme—a
refresh address register to monitor the refresh rows and a weak row register to record weak rows. Since
the profile of weak cells distribution in memory banks are obtained after the testing and measurement
analysis of the memory wafer, we do not need to detect weak rows on the fly, and only address the
weak rows that are recorded in the weak row register, no bitmap for all rows nor a counter for each
row is necessary. In addition, since the profiles are produced after the wafer measurement, we either
do not need to change refresh scheme on the fly, as refresh commands for different refresh bundles are
prepared based on our integration refresh scheme in advance.



Micromachines 2019, 10, 590 9 of 19

Micromachines 2019, 10, x  9 of 20 

 

 
Figure 9. Integration refresh scheme in each refresh. 

4.3. Memory Controller 

To accomplish the integration refresh scheme, a little modification on the memory controller is 
required, which is also the piece of the overhead of our proposal. Figure 10 shows the modification 
of the memory controller to fit our integration refresh scheme. In the original memory controller, 
there is a refresh countdown register to issue a refresh command according to the refresh period. 
When the register counts down to zero, the memory controller issues a refresh command. However, 
the memory controller cannot specify the rows to be refreshed, which is determined by the row 
counter inside the DRAM. Therefore, we added two extra registers for the need of our integration 
refresh scheme—a refresh address register to monitor the refresh rows and a weak row register to 
record weak rows. Since the profile of weak cells distribution in memory banks are obtained after the 
testing and measurement analysis of the memory wafer, we do not need to detect weak rows on the 
fly, and only address the weak rows that are recorded in the weak row register, no bitmap for all 
rows nor a counter for each row is necessary. In addition, since the profiles are produced after the 
wafer measurement, we either do not need to change refresh scheme on the fly, as refresh commands 
for different refresh bundles are prepared based on our integration refresh scheme in advance. 

Memory controller

Refresh 
Address 
Register 

Issue refresh when RC is 0

Weak 
Row

Register

Refresh 
Countdown

Register
DRAM

 
Figure 10. Modified memory controller. 

Figure 11 shows the organization of a weak row register. For the example of MT41K1G8 [1], the 
memory architecture has two channels and two ranks, each rank has eight banks, and each bank has 
64K rows. When the memory architecture is changed, bit organization of weak row register is also 

Figure 10. Modified memory controller.

Figure 11 shows the organization of a weak row register. For the example of MT41K1G8 [1],
the memory architecture has two channels and two ranks, each rank has eight banks, and each bank
has 64K rows. When the memory architecture is changed, bit organization of weak row register is
also modified accordingly. Basically, the weak row percentage is less than 0.5% in normal, and even
in a worse environment this percentage is less than 1% for almost all operating conditions [3]. This
means that less than 13440 bit (640 register entries) space is required for 32 Gb DRAM in standard
conditions, and 67200 bit (3200 register entries) space is required for the extreme case of a 5% weak
row percentage which has probability near zero. In addition, since the weak row profile is produced
after wafer measurement and we do not need to change it on the fly, we can use Mask ROM or Nor
Flash instead of logic registers to record these data, which greatly reduce the overhead. Therefore, the
overhead is about 1 KB of Mask ROM or Nor Flash for most operating conditions, and less than 8 KB
of Mask ROM or Nor Flash in the extreme case.

Micromachines 2019, 10, x  10 of 20 

 

modified accordingly. Basically, the weak row percentage is less than 0.5% in normal, and even in a 
worse environment this percentage is less than 1% for almost all operating conditions [3]. This means 
that less than 13440 bit (640 register entries) space is required for 32 Gb DRAM in standard conditions, 
and 67200 bit (3200 register entries) space is required for the extreme case of a 5% weak row 
percentage which has probability near zero. In addition, since the weak row profile is produced after 
wafer measurement and we do not need to change it on the fly, we can use Mask ROM or Nor Flash 
instead of logic registers to record these data, which greatly reduce the overhead. Therefore, the 
overhead is about 1 KB of Mask ROM or Nor Flash for most operating conditions, and less than 8 KB 
of Mask ROM or Nor Flash in the extreme case. 

0 010 0011 1111 1111 0101

0 100 0011 0000 1111 0101

rank
1bit

bank
3bit

row
16bit

1 111 1111 1111 1001 0000

channel
1bit

0

0

1

 
Figure 11. Organization of weak row register. 

Figure 12 shows the refresh modes implementation. In addition to the refresh command, we 
added refresh mode flags on the ADDR field to identify which refresh mode was performed in the 
refresh. Also, the command decoder inside DRAM needs the corresponding modification to identify 
refresh mode, and a register to record the refresh banks. Because we do not need to detect weak rows 
on the fly, refresh commands for different refresh bundles were prepared in advance and sent to the 
memory controller by the CPU based on our integration refresh scheme, so only very little overhead 
on memory controller is required. 

CLK

REFCMD

ADDR FLAGall-b

REF

FLAGper-b

REF

FLAGpar-b

 
Figure 12. Refresh commands with different flags. 

5. Experimental Results 

We integrated Gem5 [16] and DRAMSim2 [17] as our simulation environment, Figure 13 shows 
our evaluation flow. Gem5 provided the execution trace and system performance in terms of 
instructions-per-clock (IPC), and DRAMSim2 provided a detailed active power, refresh power, and 
background power. We applied eight evaluation benchmarks from SPEC 2006, including four 
memory-bound benchmarks (mcf, lib, sjeng, cact) and four CPU-bound benchmarks (cal, xal, sop, 
bzip2). We used the default CPU and memory architecture settings of Gem5 and DRAMSim2, DRAM 
specification was based on the Micron MT41K1G8 datasheet [1], and the system configurations are 
shown in Table 3. Our experiments only classify memory cells into two categories: weak cells and 
normal cells, because more levels of weakness just increase the complexity of the refresh control but 

Figure 11. Organization of weak row register.

Figure 12 shows the refresh modes implementation. In addition to the refresh command, we
added refresh mode flags on the ADDR field to identify which refresh mode was performed in the
refresh. Also, the command decoder inside DRAM needs the corresponding modification to identify
refresh mode, and a register to record the refresh banks. Because we do not need to detect weak rows
on the fly, refresh commands for different refresh bundles were prepared in advance and sent to the
memory controller by the CPU based on our integration refresh scheme, so only very little overhead
on memory controller is required.



Micromachines 2019, 10, 590 10 of 19

Micromachines 2019, 10, x  10 of 20 

 

modified accordingly. Basically, the weak row percentage is less than 0.5% in normal, and even in a 
worse environment this percentage is less than 1% for almost all operating conditions [3]. This means 
that less than 13440 bit (640 register entries) space is required for 32 Gb DRAM in standard conditions, 
and 67200 bit (3200 register entries) space is required for the extreme case of a 5% weak row 
percentage which has probability near zero. In addition, since the weak row profile is produced after 
wafer measurement and we do not need to change it on the fly, we can use Mask ROM or Nor Flash 
instead of logic registers to record these data, which greatly reduce the overhead. Therefore, the 
overhead is about 1 KB of Mask ROM or Nor Flash for most operating conditions, and less than 8 KB 
of Mask ROM or Nor Flash in the extreme case. 

0 010 0011 1111 1111 0101

0 100 0011 0000 1111 0101

rank
1bit

bank
3bit

row
16bit

1 111 1111 1111 1001 0000

channel
1bit

0

0

1

 
Figure 11. Organization of weak row register. 

Figure 12 shows the refresh modes implementation. In addition to the refresh command, we 
added refresh mode flags on the ADDR field to identify which refresh mode was performed in the 
refresh. Also, the command decoder inside DRAM needs the corresponding modification to identify 
refresh mode, and a register to record the refresh banks. Because we do not need to detect weak rows 
on the fly, refresh commands for different refresh bundles were prepared in advance and sent to the 
memory controller by the CPU based on our integration refresh scheme, so only very little overhead 
on memory controller is required. 

CLK

REFCMD

ADDR FLAGall-b

REF

FLAGper-b

REF

FLAGpar-b

 
Figure 12. Refresh commands with different flags. 

5. Experimental Results 

We integrated Gem5 [16] and DRAMSim2 [17] as our simulation environment, Figure 13 shows 
our evaluation flow. Gem5 provided the execution trace and system performance in terms of 
instructions-per-clock (IPC), and DRAMSim2 provided a detailed active power, refresh power, and 
background power. We applied eight evaluation benchmarks from SPEC 2006, including four 
memory-bound benchmarks (mcf, lib, sjeng, cact) and four CPU-bound benchmarks (cal, xal, sop, 
bzip2). We used the default CPU and memory architecture settings of Gem5 and DRAMSim2, DRAM 
specification was based on the Micron MT41K1G8 datasheet [1], and the system configurations are 
shown in Table 3. Our experiments only classify memory cells into two categories: weak cells and 
normal cells, because more levels of weakness just increase the complexity of the refresh control but 

Figure 12. Refresh commands with different flags.

5. Experimental Results

We integrated Gem5 [16] and DRAMSim2 [17] as our simulation environment, Figure 13 shows
our evaluation flow. Gem5 provided the execution trace and system performance in terms of
instructions-per-clock (IPC), and DRAMSim2 provided a detailed active power, refresh power, and
background power. We applied eight evaluation benchmarks from SPEC 2006, including four
memory-bound benchmarks (mcf, lib, sjeng, cact) and four CPU-bound benchmarks (cal, xal, sop,
bzip2). We used the default CPU and memory architecture settings of Gem5 and DRAMSim2, DRAM
specification was based on the Micron MT41K1G8 datasheet [1], and the system configurations are
shown in Table 3. Our experiments only classify memory cells into two categories: weak cells and
normal cells, because more levels of weakness just increase the complexity of the refresh control but
almost has no further improvement in reducing refresh overhead. To compare the effect of different
refresh cycle times on different DRAM capacities, Table 3 lists the tRFC of all-bank auto-refresh for
16 Gb and 32 Gb DRAM capacities, while tRFC of per-bank auto-refresh, half-bank auto-refresh,
and quarter-bank auto-refresh are calculated as the ratio setting in Table 2. We take the default
1x granularity all-bank auto-refresh as the evaluation baseline, and compare four refresh schemes
including 2x granularity all-bank auto-refresh, 1x granularity per-bank auto-refresh, 2x granularity
half-bank auto-refresh (partial bank refresh), and the proposed 2x granularity integration refresh
scheme. In a normal operating environment, the weak row percentage is about 1% or less than 1% [3].
Since 3D-stacked architecture is the future trend, we monitor this operating environment in which
weak rows increased due to thermal effect on cells’ retention time. For this reason, we evaluate our 2x
granularity integration refresh scheme under higher weak row percentage (1–5%) with random weak
rows distribution.

Micromachines 2019, 10, x  11 of 20 

 

almost has no further improvement in reducing refresh overhead. To compare the effect of different 
refresh cycle times on different DRAM capacities, Table 3 lists the tRFC of all-bank auto-refresh for 
16 Gb and 32 Gb DRAM capacities, while tRFC of per-bank auto-refresh, half-bank auto-refresh, and 
quarter-bank auto-refresh are calculated as the ratio setting in Table 2. We take the default 1x 
granularity all-bank auto-refresh as the evaluation baseline, and compare four refresh schemes 
including 2x granularity all-bank auto-refresh, 1x granularity per-bank auto-refresh, 2x granularity 
half-bank auto-refresh (partial bank refresh), and the proposed 2x granularity integration refresh 
scheme. In a normal operating environment, the weak row percentage is about 1% or less than 1% 
[3]. Since 3D-stacked architecture is the future trend, we monitor this operating environment in which 
weak rows increased due to thermal effect on cells’ retention time. For this reason, we evaluate our 
2x granularity integration refresh scheme under higher weak row percentage (1%–5%) with random 
weak rows distribution. 

Benchmark
(SPEC2006)

Memory system
(DRAMSim2)

Processor 
(Gem5 Simulator)

System Simulation 
Result

DRAM Simulation 
Result

 
Figure 13. Evaluation flow. 

Table 3. System configurations. 

Processor 1 Core, 3.2 GHz 
L1 Cache L1-I cache 128KB, L1-D cache 128KB 
L2 Cache L2 cache 4 MB 

DRAM datasheet Micron MT41K1G8, 32 Gb [1] 
Memory frequency 800 MHz 

Number of channels, ranks 1 channel, 4 ranks per channel 
Number of banks, rows 8 banks per rank, 64K rows per bank 

tRFCab, weak row percentage 
530 ns for 16 Gb, 890 ns for 32 Gb 

1%, 2%,3%, 5% (Radom) 

Figures 14–17 show the IPC improvement of the four 2x granularity refresh schemes (except per-
bank refresh) over the default 1x granularity all-bank refresh baseline on the 16 Gb DRAM with 
tRFCab equal to 530 ns, and weak row percentage is 1%, 2%, 3%, and 5%, respectively. For the four 
memory-bound benchmarks, per-bank refresh scheme has worse results on the lib and sjeng 
benchmarks in comparison with the baseline, while our integration refresh scheme all get the best 
results except for the cat benchmark when weak row percentage is 5%. On the mcf benchmark, 
integration refresh scheme achieves near 20% of IPC improvement, and at least achieves over 5% of 
improvement on the sjeng benchmark. For the four CPU-bound benchmarks, our approach still has 
the best results except for the cact and cal benchmarks when the weak row percentage is 5%, but all 
get less than 5% of improvement. 

Figure 13. Evaluation flow.



Micromachines 2019, 10, 590 11 of 19

Table 3. System configurations.

Processor 1 Core, 3.2 GHz

L1 Cache L1-I cache 128 KB, L1-D cache 128 KB
L2 Cache L2 cache 4 MB

DRAM datasheet Micron MT41K1G8, 32 Gb [1]
Memory frequency 800 MHz

Number of channels, ranks 1 channel, 4 ranks per channel
Number of banks, rows 8 banks per rank, 64K rows per bank

tRFCab, weak row percentage 530 ns for 16 Gb, 890 ns for 32 Gb
1%, 2%, 3%, 5% (Radom)

Figures 14–17 show the IPC improvement of the four 2x granularity refresh schemes (except
per-bank refresh) over the default 1x granularity all-bank refresh baseline on the 16 Gb DRAM with
tRFCab equal to 530 ns, and weak row percentage is 1%, 2%, 3%, and 5%, respectively. For the
four memory-bound benchmarks, per-bank refresh scheme has worse results on the lib and sjeng
benchmarks in comparison with the baseline, while our integration refresh scheme all get the best
results except for the cat benchmark when weak row percentage is 5%. On the mcf benchmark,
integration refresh scheme achieves near 20% of IPC improvement, and at least achieves over 5% of
improvement on the sjeng benchmark. For the four CPU-bound benchmarks, our approach still has
the best results except for the cact and cal benchmarks when the weak row percentage is 5%, but all get
less than 5% of improvement.Micromachines 2019, 10, x  12 of 20 

 

 
Figure 14. Instructions-per-clock (IPC) improvement normalized to 1x granularity baseline (tRFC = 

530 ns, weak row = 1%). 

 
Figure 15. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%). 

 
Figure 16. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%). 

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 14. Instructions-per-clock (IPC) improvement normalized to 1x granularity baseline (tRFC =

530 ns, weak row = 1%).

Figures 18–21 show the IPC improvement of the four 2x granularity refresh schemes (except
per-bank refresh) over the default 1x granularity all-bank refresh baseline on the 32 Gb DRAM with
tRFCab equal to 890 ns, and weak row percentage is 1%, 2%, 3%, and 5%, respectively. For the four
memory-bound benchmarks, our integration refresh scheme all get the best results. On the mcf
benchmark, integration refresh scheme achieves over 45% of IPC improvement, and at least achieves
over 20% of improvement on the sjeng benchmark. While for the four CPU-bound benchmarks, our
approach still has the best result especially on the high weak row percentage environment, and near
the per-bank refresh scheme on the low weak row percentage environment. Because of less memory
access, the impact of refresh operations on IPC is degraded, all four refresh schemes achieve much less
of IPC improvement on CPU-bound benchmarks, but our approach still has near 10% of improvement.



Micromachines 2019, 10, 590 12 of 19

Micromachines 2019, 10, x  12 of 20 

 

 
Figure 14. Instructions-per-clock (IPC) improvement normalized to 1x granularity baseline (tRFC = 

530 ns, weak row = 1%). 

 
Figure 15. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%). 

 
Figure 16. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%). 

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 15. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%).

Micromachines 2019, 10, x  12 of 20 

 

 
Figure 14. Instructions-per-clock (IPC) improvement normalized to 1x granularity baseline (tRFC = 

530 ns, weak row = 1%). 

 
Figure 15. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%). 

 
Figure 16. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%). 

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 16. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%).Micromachines 2019, 10, x  13 of 20 

 

 
Figure 17. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 5%). 

Figures 18–21 show the IPC improvement of the four 2x granularity refresh schemes (except per-
bank refresh) over the default 1x granularity all-bank refresh baseline on the 32 Gb DRAM with 
tRFCab equal to 890 ns, and weak row percentage is 1%, 2%, 3%, and 5%, respectively. For the four 
memory-bound benchmarks, our integration refresh scheme all get the best results. On the mcf 
benchmark, integration refresh scheme achieves over 45% of IPC improvement, and at least achieves 
over 20% of improvement on the sjeng benchmark. While for the four CPU-bound benchmarks, our 
approach still has the best result especially on the high weak row percentage environment, and near 
the per-bank refresh scheme on the low weak row percentage environment. Because of less memory 
access, the impact of refresh operations on IPC is degraded, all four refresh schemes achieve much 
less of IPC improvement on CPU-bound benchmarks, but our approach still has near 10% of 
improvement. 

 
Figure 18. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%). 

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 17. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 5%).



Micromachines 2019, 10, 590 13 of 19

Micromachines 2019, 10, x  13 of 20 

 

 
Figure 17. IPC improvement normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 5%). 

Figures 18–21 show the IPC improvement of the four 2x granularity refresh schemes (except per-
bank refresh) over the default 1x granularity all-bank refresh baseline on the 32 Gb DRAM with 
tRFCab equal to 890 ns, and weak row percentage is 1%, 2%, 3%, and 5%, respectively. For the four 
memory-bound benchmarks, our integration refresh scheme all get the best results. On the mcf 
benchmark, integration refresh scheme achieves over 45% of IPC improvement, and at least achieves 
over 20% of improvement on the sjeng benchmark. While for the four CPU-bound benchmarks, our 
approach still has the best result especially on the high weak row percentage environment, and near 
the per-bank refresh scheme on the low weak row percentage environment. Because of less memory 
access, the impact of refresh operations on IPC is degraded, all four refresh schemes achieve much 
less of IPC improvement on CPU-bound benchmarks, but our approach still has near 10% of 
improvement. 

 
Figure 18. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%). 

-10%

-5%

0%

5%

10%

15%

20%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 18. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%).Micromachines 2019, 10, x  14 of 20 

 

 
Figure 19. IPC improvement normalized to 1x granularity baseline (tRFC=890 ns, weak row = 2%). 

 
Figure 20. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%). 

 
Figure 21. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 5%). 

From the experimental results on different refresh cycle times, we see that as DRAM size 
increased, the 2x granularity integration refresh scheme has an even more significant effect on the 
performance improvement, especially for memory-bound applications. Comparing these four 2x 

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 19. IPC improvement normalized to 1x granularity baseline (tRFC=890 ns, weak row = 2%).

Micromachines 2019, 10, x  14 of 20 

 

 
Figure 19. IPC improvement normalized to 1x granularity baseline (tRFC=890 ns, weak row = 2%). 

 
Figure 20. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%). 

 
Figure 21. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 5%). 

From the experimental results on different refresh cycle times, we see that as DRAM size 
increased, the 2x granularity integration refresh scheme has an even more significant effect on the 
performance improvement, especially for memory-bound applications. Comparing these four 2x 

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 20. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%).



Micromachines 2019, 10, 590 14 of 19

Micromachines 2019, 10, x  14 of 20 

 

 
Figure 19. IPC improvement normalized to 1x granularity baseline (tRFC=890 ns, weak row = 2%). 

 
Figure 20. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%). 

 
Figure 21. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 5%). 

From the experimental results on different refresh cycle times, we see that as DRAM size 
increased, the 2x granularity integration refresh scheme has an even more significant effect on the 
performance improvement, especially for memory-bound applications. Comparing these four 2x 

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 21. IPC improvement normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 5%).

From the experimental results on different refresh cycle times, we see that as DRAM size increased,
the 2x granularity integration refresh scheme has an even more significant effect on the performance
improvement, especially for memory-bound applications. Comparing these four 2x granularity refresh
schemes, our integration refresh scheme almost has no performance degradation on all the benchmarks
except cact when the weak row percentage increased from 1% to 5%. However, all three other refresh
schemes have performance degradation as the weak row percentage increased, especially for the 2x
granularity all-bank refresh scheme. Also, the performance of per-bank refresh scheme is not stable in
comparison with other refresh schemes, it has even worse results than the baseline on two benchmarks
in the case of smaller refresh cycle time. The reason that per-bank refresh performed badly on the lib
and sjeng benchmarks is due to various memory access patterns on different benchmarks. Per-bank
refresh scheme performs better on disjoint memory location accessed patterns, while the lib and sjeng
benchmarks have more closed memory location accessed patterns. This shows that our approach has
the strongest ability to against thermal variation and refresh cycle time variation, and has the best
performance improvement.

Figures 22–25 show the refresh energy reduction of the four 2x granularity refresh schemes (except
per-bank refresh) over the default 1x granularity all-bank refresh baseline on the 16 Gb DRAM with
tRFC equal to 530 ns, and the weak row percentage is 1%, 2%, 3%, and 5%, respectively. Different
from the experiments on performance evaluation, both memory-bound benchmarks and CPU-bound
benchmarks gained an obvious improvement in refresh energy reduction, CPU-bound benchmarks
even obtained more reduction than memory-bound benchmarks. Also, our 2x granularity integration
refresh scheme all get the best results except for the cact and cal benchmarks when the weak row
percentage is 5%, and per-bank refresh scheme still performed badly for the lib and sjeng benchmarks.

Micromachines 2019, 10, x  15 of 20 

 

granularity refresh schemes, our integration refresh scheme almost has no performance degradation 
on all the benchmarks except cact when the weak row percentage increased from 1% to 5%. However, 
all three other refresh schemes have performance degradation as the weak row percentage increased, 
especially for the 2x granularity all-bank refresh scheme. Also, the performance of per-bank refresh 
scheme is not stable in comparison with other refresh schemes, it has even worse results than the 
baseline on two benchmarks in the case of smaller refresh cycle time. The reason that per-bank refresh 
performed badly on the lib and sjeng benchmarks is due to various memory access patterns on 
different benchmarks. Per-bank refresh scheme performs better on disjoint memory location accessed 
patterns, while the lib and sjeng benchmarks have more closed memory location accessed patterns. 
This shows that our approach has the strongest ability to against thermal variation and refresh cycle 
time variation, and has the best performance improvement. 

Figures 22–25 show the refresh energy reduction of the four 2x granularity refresh schemes 
(except per-bank refresh) over the default 1x granularity all-bank refresh baseline on the 16 Gb 
DRAM with tRFC equal to 530 ns, and the weak row percentage is 1%, 2%, 3%, and 5%, respectively. 
Different from the experiments on performance evaluation, both memory-bound benchmarks and 
CPU-bound benchmarks gained an obvious improvement in refresh energy reduction, CPU-bound 
benchmarks even obtained more reduction than memory-bound benchmarks. Also, our 2x 
granularity integration refresh scheme all get the best results except for the cact and cal benchmarks 
when the weak row percentage is 5%, and per-bank refresh scheme still performed badly for the lib 
and sjeng benchmarks. 

 
Figure 22. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 1%). 

 
Figure 23. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%). 

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh

Partial-bank refresh Integration refresh

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh

Partial-bank refresh Integration refresh

Figure 22. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 1%).



Micromachines 2019, 10, 590 15 of 19

Micromachines 2019, 10, x  15 of 20 

 

granularity refresh schemes, our integration refresh scheme almost has no performance degradation 
on all the benchmarks except cact when the weak row percentage increased from 1% to 5%. However, 
all three other refresh schemes have performance degradation as the weak row percentage increased, 
especially for the 2x granularity all-bank refresh scheme. Also, the performance of per-bank refresh 
scheme is not stable in comparison with other refresh schemes, it has even worse results than the 
baseline on two benchmarks in the case of smaller refresh cycle time. The reason that per-bank refresh 
performed badly on the lib and sjeng benchmarks is due to various memory access patterns on 
different benchmarks. Per-bank refresh scheme performs better on disjoint memory location accessed 
patterns, while the lib and sjeng benchmarks have more closed memory location accessed patterns. 
This shows that our approach has the strongest ability to against thermal variation and refresh cycle 
time variation, and has the best performance improvement. 

Figures 22–25 show the refresh energy reduction of the four 2x granularity refresh schemes 
(except per-bank refresh) over the default 1x granularity all-bank refresh baseline on the 16 Gb 
DRAM with tRFC equal to 530 ns, and the weak row percentage is 1%, 2%, 3%, and 5%, respectively. 
Different from the experiments on performance evaluation, both memory-bound benchmarks and 
CPU-bound benchmarks gained an obvious improvement in refresh energy reduction, CPU-bound 
benchmarks even obtained more reduction than memory-bound benchmarks. Also, our 2x 
granularity integration refresh scheme all get the best results except for the cact and cal benchmarks 
when the weak row percentage is 5%, and per-bank refresh scheme still performed badly for the lib 
and sjeng benchmarks. 

 
Figure 22. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 1%). 

 
Figure 23. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%). 

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh

Partial-bank refresh Integration refresh

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh

Partial-bank refresh Integration refresh

Figure 23. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 2%).Micromachines 2019, 10, x  16 of 20 

 

 
Figure 24. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%). 

 
Figure 25. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 5%). 

Figures 26–29 show the refresh energy reduction of the four 2x granularity refresh schemes over 
the default 1x granularity all-bank refresh baseline on the 32 Gb DRAM with tRFC equal to 890 ns, 
and weak row percentage is 1%, 2%, 3%, and 5%, respectively. Comparing to the results of smaller 
refresh cycle time above, our integration refresh scheme further improves energy reduction for all 
benchmarks on all weak row percentage. 

Comparing these four refresh schemes, our 2x granularity integration refresh scheme almost has 
no degradation on refresh energy reduction for all the benchmarks except cact when the weak row 
percentage increased from 1% to 5%. However, all three other refresh schemes have obvious 
degradation as the weak row percentage increased, especially for the 2x granularity all-bank refresh 
scheme, and as does the per-bank refresh scheme and 2x granularity half-bank refresh (partial-bank 
refresh) scheme when the weak row percentage increased to 5%. When DRAM size increased from 
16 Gb to 32 Gb, per-bank refresh scheme has the largest improvement especially for the lib and sjeng 
benchmarks because of the finer granularity, and hence performed better than 2x granularity partial-
bank refresh scheme on all benchmarks. Therefore, we further prove that our approach has the 
strongest ability to against thermal variation and refresh cycle time variation, and has the largest 
refresh energy reduction. 

-10%

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 24. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%).

Micromachines 2019, 10, x  16 of 20 

 

 
Figure 24. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 3%). 

 
Figure 25. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 5%). 

Figures 26–29 show the refresh energy reduction of the four 2x granularity refresh schemes over 
the default 1x granularity all-bank refresh baseline on the 32 Gb DRAM with tRFC equal to 890 ns, 
and weak row percentage is 1%, 2%, 3%, and 5%, respectively. Comparing to the results of smaller 
refresh cycle time above, our integration refresh scheme further improves energy reduction for all 
benchmarks on all weak row percentage. 

Comparing these four refresh schemes, our 2x granularity integration refresh scheme almost has 
no degradation on refresh energy reduction for all the benchmarks except cact when the weak row 
percentage increased from 1% to 5%. However, all three other refresh schemes have obvious 
degradation as the weak row percentage increased, especially for the 2x granularity all-bank refresh 
scheme, and as does the per-bank refresh scheme and 2x granularity half-bank refresh (partial-bank 
refresh) scheme when the weak row percentage increased to 5%. When DRAM size increased from 
16 Gb to 32 Gb, per-bank refresh scheme has the largest improvement especially for the lib and sjeng 
benchmarks because of the finer granularity, and hence performed better than 2x granularity partial-
bank refresh scheme on all benchmarks. Therefore, we further prove that our approach has the 
strongest ability to against thermal variation and refresh cycle time variation, and has the largest 
refresh energy reduction. 

-10%

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2

All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%

10%

20%

30%

40%

50%

60%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 25. Energy reduction normalized to 1x granularity baseline (tRFC = 530 ns, weak row = 5%).

Figures 26–29 show the refresh energy reduction of the four 2x granularity refresh schemes over
the default 1x granularity all-bank refresh baseline on the 32 Gb DRAM with tRFC equal to 890 ns, and
weak row percentage is 1%, 2%, 3%, and 5%, respectively. Comparing to the results of smaller refresh
cycle time above, our integration refresh scheme further improves energy reduction for all benchmarks
on all weak row percentage.



Micromachines 2019, 10, 590 16 of 19

Micromachines 2019, 10, x  17 of 20 

 

 
Figure 26. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%). 

 
Figure 27. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 2%). 

 
Figure 28. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%). 

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 26. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%).

Micromachines 2019, 10, x  17 of 20 

 

 
Figure 26. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%). 

 
Figure 27. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 2%). 

 
Figure 28. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%). 

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 27. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 2%).

Micromachines 2019, 10, x  17 of 20 

 

 
Figure 26. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 1%). 

 
Figure 27. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 2%). 

 
Figure 28. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%). 

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 28. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 3%).

Comparing these four refresh schemes, our 2x granularity integration refresh scheme almost
has no degradation on refresh energy reduction for all the benchmarks except cact when the weak
row percentage increased from 1% to 5%. However, all three other refresh schemes have obvious
degradation as the weak row percentage increased, especially for the 2x granularity all-bank refresh
scheme, and as does the per-bank refresh scheme and 2x granularity half-bank refresh (partial-bank
refresh) scheme when the weak row percentage increased to 5%. When DRAM size increased from



Micromachines 2019, 10, 590 17 of 19

16 Gb to 32 Gb, per-bank refresh scheme has the largest improvement especially for the lib and
sjeng benchmarks because of the finer granularity, and hence performed better than 2x granularity
partial-bank refresh scheme on all benchmarks. Therefore, we further prove that our approach has
the strongest ability to against thermal variation and refresh cycle time variation, and has the largest
refresh energy reduction.Micromachines 2019, 10, x  18 of 20 

 

 
Figure 29. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 5%). 

6. Conclusions 

In this paper, we propose an integration scheme for DRAM refresh based on retention-aware 
auto-refresh and 2x granularity auto-refresh techniques simultaneously. Since the profile of weak 
cells distribution in memory banks are obtained after testing and measurement analysis of memory 
wafer, we do not need to detect weak rows on the fly. In addition, since the profile are produced after 
wafer measurement, we either do not need to change refresh scheme on the fly, refresh commands 
for different refresh bundles are prepared based on our integration refresh scheme in advance. 
Therefore, the hardware cost and control complexity on memory controller design to support this 
integration refresh scheme is acceptable and reasonable. Experimental results show that our 
retention-aware integration refresh scheme can properly improve the system performance and have 
a great reduction in DRAM refresh energy. From the results on different refresh cycle time, we see 
that as DRAM size increased, the 2x granularity integration refresh scheme has even more significant 
effect on the performance improvement, especially for memory-bound applications. Especially when 
the number of weak cells percentage increased due to thermal effect of 3D-stacked architecture, our 
approach has the strongest ability to against thermal variation and has the smallest refresh overhead.  

Most important of all, our integration refresh scheme has high extension flexibility. Even though 
for finer grain, for example, 4x granularity, our methodology can extend to suit different granularities 
easily, and the extra hardware cost and control complexity is acceptable and reasonable as described 
above. Also, as described previously, although 2x granularity reduces refresh interval to one half of 
that in 1x granularity, its refresh cycle time exceeds one half of that in 1x granularity. Therefore, not 
only finer grain individually can reduce refresh overhead, the integration with a refresh scheme like 
we propose is necessary. Since an increasing DRAM size and 3D-stacked architecture are the future 
directions, increased refresh cycle time and weak row percentage will be serious issues on the refresh 
problem, our methodology is indeed adequate and efficient to reduce refresh overhead. Moreover, 
there is serious thermal problem on the 3D-stacked architecture, the retention time of cells may vary 
as temperature changes in the CPU execution stage, and causes the number of weak cells and weak 
cells distribution to worsen. This phenomenon complicates the refresh problem, the overhead to 
detect weak rows and change refresh schemes on the fly is not a simple fix. Therefore, more 
measurement and analysis of cells weakness under different thermal environment is necessary. With 
more detailed weak cell profiles under thermal variation, the refresh scheme can take this issue into 
account and only needs to detect thermal variation, avoids to detect weak rows and change refresh 
schemes on the fly, which is important future work. 

Author Contributions: W.-K.C. designed the algorithm, supervised the work, and wrote the paper; P.-Y.S and 
X.-L.L. designed and performed the experiments, and analyzed the data. 

0%
10%
20%
30%
40%
50%
60%
70%
80%

lib sjeng cact mcf cal xal sop bzip2
All-bank refresh Per-bank refresh Partial-bank refresh Integration refresh

Figure 29. Energy reduction normalized to 1x granularity baseline (tRFC = 890 ns, weak row = 5%).

6. Conclusions

In this paper, we propose an integration scheme for DRAM refresh based on retention-aware
auto-refresh and 2x granularity auto-refresh techniques simultaneously. Since the profile of weak
cells distribution in memory banks are obtained after testing and measurement analysis of memory
wafer, we do not need to detect weak rows on the fly. In addition, since the profile are produced after
wafer measurement, we either do not need to change refresh scheme on the fly, refresh commands for
different refresh bundles are prepared based on our integration refresh scheme in advance. Therefore,
the hardware cost and control complexity on memory controller design to support this integration
refresh scheme is acceptable and reasonable. Experimental results show that our retention-aware
integration refresh scheme can properly improve the system performance and have a great reduction
in DRAM refresh energy. From the results on different refresh cycle time, we see that as DRAM
size increased, the 2x granularity integration refresh scheme has even more significant effect on the
performance improvement, especially for memory-bound applications. Especially when the number
of weak cells percentage increased due to thermal effect of 3D-stacked architecture, our approach has
the strongest ability to against thermal variation and has the smallest refresh overhead.

Most important of all, our integration refresh scheme has high extension flexibility. Even though
for finer grain, for example, 4x granularity, our methodology can extend to suit different granularities
easily, and the extra hardware cost and control complexity is acceptable and reasonable as described
above. Also, as described previously, although 2x granularity reduces refresh interval to one half of
that in 1x granularity, its refresh cycle time exceeds one half of that in 1x granularity. Therefore, not
only finer grain individually can reduce refresh overhead, the integration with a refresh scheme like
we propose is necessary. Since an increasing DRAM size and 3D-stacked architecture are the future
directions, increased refresh cycle time and weak row percentage will be serious issues on the refresh
problem, our methodology is indeed adequate and efficient to reduce refresh overhead. Moreover,
there is serious thermal problem on the 3D-stacked architecture, the retention time of cells may vary as
temperature changes in the CPU execution stage, and causes the number of weak cells and weak cells
distribution to worsen. This phenomenon complicates the refresh problem, the overhead to detect
weak rows and change refresh schemes on the fly is not a simple fix. Therefore, more measurement
and analysis of cells weakness under different thermal environment is necessary. With more detailed



Micromachines 2019, 10, 590 18 of 19

weak cell profiles under thermal variation, the refresh scheme can take this issue into account and only
needs to detect thermal variation, avoids to detect weak rows and change refresh schemes on the fly,
which is important future work.

Author Contributions: W.-K.C. designed the algorithm, supervised the work, and wrote the paper; P.-Y.S. and
X.-L.L. designed and performed the experiments, and analyzed the data.

Funding: This work was supported in part by the Ministry of Science and Technology, Taiwan, under grant
number MOST 108-2218-E-033-003.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mircon Corp. 8 Gb: x4, x8 TwinDie DDR3L SDRAM. 2011. Available online: https://www.micron.com/

support#SupportDocumentationandDownloads (accessed on 8 September 2019).
2. JEDEC. DDR3 SDRAM Specification. 2012. Available online: https://www.jedec.org/document_search?

search_api_views_fulltext=79-3F (accessed on 8 September 2019).
3. Liu, J.; Jaiyen, B.; Veras, R.; Mutlu, O. RAIDR: Retention-Aware Intelligent DRAM Refresh. In Proceedings of

the 39th Annual International Symposium on Computer Architecture (ISCA), Portland, OR, USA, 9–13 June
2012; pp. 1–12.

4. Cheng, W.K.; Shen, P.Y. Retention-aware Refresh Techniques for DRAM Refresh Power Reduction. In
Proceedings of the 20th Workshop on Synthesis and System Integration of Mixed Information Technologies
(SASIMI), Kyoto, Japan, 24–25 October 2016; pp. 90–93.

5. Cheng, W.K.; Li, X.L.; Chen, J.K. Integration Scheme for Retention-aware DRAM Refresh. In Proceedings of
the 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan,
18–20 October 2017.

6. Cheng, W.K.; Li, X.L.; Chen, J.K. DRAM Refresh Improvement with Bank Reordering. In Proceedings of the
2018 7th International Symposium on Next-Generation Electronics (ISNE), Taipei, Taiwan, 7–9 May 2018.

7. Thakkar, I.G.; Pasricha, S. Massed Refresh: An Energy-Efficient Technique to Reduce Refresh Overhead in
Hybrid Memory Cube Architectures. In Proceedings of the 2016 29th International Conference on VLSI
Design and 2016 15th International Conference on Embedded Systems (VLSID), Kolkata, India, 4–8 January
2016.

8. Cheng, W.K.; Chen, J.K.; Huang, S.H. Integration of Retention-aware Refresh and BISR Techniques for DRAM
Refresh Power Reduction. In Proceedings of the 2018 International SOC Design Conference (ISOCC), Daegu,
Korea, 12–15 November 2018.

9. Chang, K.K.; Lee, D.; Chishti, Z.; Alameldeen, A.R.; Wilkerson, C.; Kim, Y.; Mutlu, O. Improving DRAM
Performance by Parallelizing Refreshes with Accesses. In Proceedings of the 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), Orlando, FL, USA, 15–19 February 2014.

10. Gong, Y.-H.; Chun, S.W. Exploiting refresh effect of dram read operations: A practical approach to low-power
refresh. IEEE Trans. Comput. 2016, 65, 1507–1517. [CrossRef]

11. Bhati, I.; Chishti, Z.; Lu, S.-L.; Jacob, B. Flexible Auto-Refresh: Enabling Scalable and Energy-Efficient DRAM
Refresh Reductions. In Proceedings of the 2015/ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), Portland, OR, USA, 13–17 June 2015; pp. 235–245.

12. Bhati, I.; Chishti, Z.; Jacob, B. Coordinated Refresh: Energy Efficient Techniques for DRAM Refresh Scheduling.
In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), Beijing,
China, 4–6 September 2013; pp. 205–210.

13. Guo, Y.; Huang, P.; Young, B.; Lu, T.; He, X.; Liu, Q.G. Alleviating DRAM Refresh Overhead via Inter-rank
Piggyback Caching. In Proceedings of the 2015 IEEE 23rd International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), Atlanta, GA, USA, 5–7 October
2015; pp. 23–32.

14. JEDEC. LPDDR3 SDRAM Specification. 2015. Available online: https://www.jedec.org/document_search?
search_api_views_fulltext=209-3C (accessed on 8 September 2019).

15. JEDEC. DDR4 SDRAM Specification; No.79-4B. 2017. Available online: https://www.jedec.org/document_
search?search_api_views_fulltext=79-4B (accessed on 8 September 2019).

https://www.micron.com/support#SupportDocumentationandDownloads
https://www.micron.com/support#SupportDocumentationandDownloads
https://www.jedec.org/document_search?search_api_views_fulltext=79-3F
https://www.jedec.org/document_search?search_api_views_fulltext=79-3F
http://dx.doi.org/10.1109/TC.2015.2448079
https://www.jedec.org/document_search?search_api_views_fulltext=209-3C
https://www.jedec.org/document_search?search_api_views_fulltext=209-3C
https://www.jedec.org/document_search?search_api_views_fulltext=79-4B
https://www.jedec.org/document_search?search_api_views_fulltext=79-4B


Micromachines 2019, 10, 590 19 of 19

16. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.;
Sardashti, S.; et al. The gem5 Simulator. ACM SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

17. Rosenfeld, P.; Cooper-Balis, E.; Jacob, B. DRAMSim2: A Cycle Accurate Memory System Simulator. IEEE
Comput. Archit. Letters 2011, 10, 16–19. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/L-CA.2011.4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Motivation and Example 
	Methodology 
	2x Granularity Retention-Aware Auto-Refresh (RAAR) 
	Integration Refresh Scheme 
	Memory Controller 

	Experimental Results 
	Conclusions 
	References

