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Motor imagination (MI) is the mental process of only imagining an action without an actual movement. Research on MI has made
significant progress in feature information detection andmachine learning decoding algorithms, but there are still problems, such as a
low overall recognition rate and large differences in individual execution effects, which make the development of MI run into a
bottleneck. Aiming at solving this bottleneck problem, the current study optimized the quality of theMI original signal by “enhancing
the difficulty of imagination tasks,” conducted the qualitative and quantitative analyses of EEG rhythm characteristics, and used
quantitative indicators, such as ERDmean value and recognition rate. Research on the comparative analysis of the lower limb MI of
different tasks, namely, high-frequency motor imagination (HFMI) and low-frequency motor imagination (LFMI), was conducted.
+e results validate the following: the average ERD of HFMI (−1.827) is less than that of LFMI (−1.3487) in the alpha band, so did
(−3.4756<−2.2891) in the beta band. In the alpha and beta characteristic frequency bands, the average ERD of HFMI is smaller than
that of LFMI, and the ERD values of the two are significantly different (p � 0.0074< 0.01; r� 0.945).+e ERD intensity STD values of
HFMI are less than those of LFMI. which suggests that the ERD intensity individual difference among the subjects is smaller in the
HFMI mode than in the LFMI mode. +e average recognition rate of HFMI is higher than that of LFMI (87.84%> 76.46%), and the
recognition rate of the two modes is significantly different (p � 0.0034< 0.01; r� 0.429). In summary, this research optimizes the
quality of MI brain signal sources by enhancing the difficulty of imagination tasks, achieving the purpose of improving the overall
recognition rate of the lower limbMI of the participants and reducing the differences of individual execution effects and signal quality
among the subjects.

1. Introduction

Recently, the method of simulating exercise has received
extensive attention from the brain science and neuro-
science fields. At the same time, a mode similar to
simulated exercise is a kind of self-movement in the
brain, that is, motor imagination [1–3]. Motor imagi-
nation (MI) is defined as having no movement of oneself,
simply relying on one’s own brain to perform the
movement of imagining oneself [4]. In the process of MI,
it can enhance the ability to activate a specific motor

function area in the brain and then achieve the purpose of
improving the motor function [5, 6]. In addition, motor
imagination and actual action execution have similar
cognitive processes, which can reveal the inner rela-
tionship between the neural mechanism of motor
imagination and actual action execution [7]. MI has the
characteristics of independence and spontaneity that do
not depend on external stimuli and has been widely used
in the neurorehabilitation of stroke patients, sports
training, brain-computer interface, and other fields and
has become a research hotspot [8].
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By improving the patients’ lower limb MI ability to
facilitate the recovery of their leg motor function and in-
creasing the leg rehabilitation training effect, MI has the
potential to help home-based remote neurorehabilitation
training for stroke patients under the technical support of
5G telecommunications. Since it is very important to
quantify the value of ERD and may provide the basis and
convenient way for evaluating the therapeutic effect of leg
rehabilitation and motor skill training under the technical
support of data intelligence. Home-based remote neuro-
rehabilitation training and the status or recovery effect
evaluating can reduce treatment costs and avoid preventable
diseases especially during the outbreak of COVID-19.

Previous studies on MI have been focused on clas-
sifying the types of imagery associated with different body
parts and converting them to the control of a prosthetic
executor, for example, computer cursor, and have made
significant progress in feature information detection and
machine learning decoding algorithms [9, 10]. None-
theless, a low overall recognition rate, large differences in
individual execution effects, and variances in signal
quality are still problems that must be solved, which
impeded the application in home-based remote neuro-
rehabilitation [8]. Studies by scholars have confirmed
that high-frequency upper limb MI can enhance the
intensity of MI by enhancing the difficulty of imagination
tasks [11–14]; it could be also an effective way for lower
limb MI and has potential value for leg motor rehabili-
tation and motor skill training [11–15]. However, given
that the EEG signals of lower limb MI are difficult to
identify, there are few reports on the study of lower limb
MI with divergent frequencies [16, 17]. +is study aims to
investigate various frequency leg-raising imagination
tasks for MI to compare high- and low-frequency lower
limb MI and to ensure whether HFMI can increase the
difficulty of imagination tasks, strengthen the activation
ability of the brain motor neural network of the partic-
ipants, and improve the MI implementation effect. +e
results suggest that HFMI can optimize the quality of the
brain signal of MI, improve the recognition rate, and
reduce the difference in individuals in some respects that
may be beneficial to leg motor rehabilitation and motor
skill training.

Section 2 deals with the methods and materials for
building the proposed paradigm of the study. +is experi-
mental paradigm is based on noninvasive measurements.
Section 3 presents the results of the comparative analysis of
the lower limb MI of HFMI and LFMI. Section 4 discusses
the differences between distinct tasks. Subsequently, the
conclusion and the arrangement of future works are tackled.

2. Methods and Materials

2.1. Comparison Experiment. +is paper mainly discusses
the distinction in the EEG signals of the right leg motor
imagination with different difficulties instructed by videos
showing high- and low-frequency leg lifting and designs
experimental schemes on the basis of the two forms of task
guiding (Figure 1).

Figure 2 displays the experimental process. Before the
start of the experiment, there is 5 second preparation, which
corresponds to the ready phase of the experiment flowchart.
+e subjects needed to relax and rest for a short time and
adjust their state to prepare for the experiment. +ey were
also requested to watch and imagine the leg movements
when the video of lifting the right leg started. In addition,
they were required to imagine strictly with video actions on
the process of MI in the first-person perspective. Before the
MI, there will be a red circle on the screen to indicate that it
will last for 1 second, and then the subjects will start the MI
task induced by the video.

In the experiment, low-frequency MI and high-fre-
quency MI appear randomly but appeared with the same
probability, each accounting for 50% in order to ensure the
participants took part in the MI test without any training
disturbing influence.

+e video displayed the right leg raising of the partici-
pants in a real scene video. When the video showed the right
leg raising twice in 4 seconds (as shown in Figure 1(b)), the
subjects performed LFMI. When the video displayed the
right leg raising four times in 4 seconds (as shown in
Figure 1(c)), the subject performed HFMI. +e video of the
right leg raising started from 1 second each time; the du-
ration was 4 seconds; the screen exhibited a relax prompt of
4 seconds; and the experiment ended. +e use of induced
video actions was mainly to guarantee that all the subjects
can perform the MI task strictly in the same mode, am-
plitude, and speed by following the same video in the test.
Subjects had an obligation to imagine strictly with video
action on the process of MI in the first-person perspective.

2.2. EEGData Acquisition and ProcessingMethods. +e EEG
signals were collected from 10 healthy subjects (6 males and
4 females, aged 20–26 years old) who had not participated in
EEG experiments before. +roughout the experiment, they
were asked to put on an electrode cap, sit relaxed in chairs
with armrests, and conduct HFMI and LFMI experiments as
required. +e experimental equipment SynAmps2 is an
electrophysiological amplifier developed by Neuroscan
Company. It has 64 channels, and the electrodeposition is set
on the basis of the international 10/20 system. In the present
study, the grounding electrode was placed in the central area
of the head; the reference electrode was set at the tip of the
nose; the sampling frequency was 1,000Hz; and the band-
pass filter was 0.1–200Hz.+e frequency band of the filter in
the software of the acquisition device is between 0.1 and
200Hz. We will pass the data saved offline through
MATLAB and then perform band-pass filtering [18]. +e
filtering range is between 0.1 and 30Hz. Before the exper-
iment, it was ensured that the impedance of each electrode
was under 5 k. +e software scan 4.5 was also employed for
high-quality data acquisition [19, 20].

Event-related desynchronization (ERD) enables the
quantitative analysis of the brain electrical signals of motor
imagination. +e ERD phenomenon is the reduction of EEG
energy in certain characteristic frequency bands of EEG
signals. ERD quantitative analysis on EEG signals helps

2 Journal of Healthcare Engineering



judge the intensity of motor imagination on the basis of the
mean value of ERD [19]. +e smaller mean value of ERD
corresponds to the greater intensity of MI. To study the MI
EEG in the characteristic frequency band, the average ERD
value is calculated using the following formula:

ERSP(f, t) �
1
n

􏽘

n

k�1
Fk (f, t)

2
􏼐 􏼑, (1)

where n is the number of experiments and Fk (f, t) rep-
resents the k-th energy spectrum estimation at frequency f
and time t. +e current study mainly analyzed the ERSP
value of related leads within 0–4 seconds and 1–30Hz.

ERD �
1
N

􏽘

f2

f�f1

􏽘

t2

t�t1

(ERSP(f, t)). (2)

+is study employed the frequency-domain energy
spectrum to analyze the EEG signals to describe the EEG
signals thoroughly from the perspective of the frequency
domain. +is method is suitable for measuring nonlinear
and complex signals and, thus, can accommodate the
analysis of dynamic EEG signals. +e frequency-domain
energy spectrum can clearly show the energy change of the
EEG signal, and its basic principles are as follows.

For nonlinear EEG signals, a random variable X can be
assumed to express its characteristics. +e value of X should
be set to {x1, x2, . . ., xn} (n> 1), and the corresponding
probability P is expressed as follows:

P � p1, p2, . . . , pn􏼈 􏼉, 0≤pi ≤ 1( 􏼁(i � 1, 2, . . . , n). (3)

+e formula satisfies 􏽐
n
i�1 pi � 1, and pi is the probability

of the i-th time. With this probability feature formula, the
average value of the nonlinear system state number can be
expressed as follows:

H � − 􏽘
n

i�1
pi ln pi( 􏼁. (4)

In this study, we replaced the probability in the time
domain by the energy spectrum density in the frequency
domain to obtain the expression of the energy spectrum in
the frequency domain as follows [17, 21]:

Hpse � − 􏽚 􏽢p ln(􏽢p)d􏽢p, (5)

where 􏽢p represents the frequency-domain energy
spectrum density, which is based on the short-time Fourier
transform and evolves through formula reasoning. It can
describe the EEG signal, and the expression is as follows:

􏽢p �
STFTx(ω, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2Π
. (6)

From formula (6), the frequency-domain energy graph
of the motor-imaging EEG signal can be achieved, and the
characteristic frequency and its band can be obtained in the
frequency-domain energy graph.

(a) (b) (c)

Figure 1: Participants’ right leg raising at different frequencies: (a) stationary leg, (b) low frequency of leg lifting, and (c) high frequency of
leg lifting.
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Figure 2: Experimental flowchart.
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3. Data Analysis and Results

+e present study uses the above methods to analyze the
EEG data of the HFMI and LFMI of 10 subjects (S1–S10)
according to time-frequency diagram analysis, frequency-
domain energy analysis, ERD quantification, and CSP fea-
ture extraction. Studies have verified that lower limb HFMI
activates the brain to a greater extent and obtains higher
recognition rates than LFMI. +is suggests that HFMI can
better optimize the quality of the brain telecom source ofMI.

3.1. Time-Frequency Diagram Analysis and Results of ERD.
With the use of the time-frequency diagram method to
analyze the EEG data of all the subjects, the ERD phenomena
of HFMI and LFMI can be obtained, as shown in Figures 3(a)
and 3(b), which, respectively, correspond to the HFMI and
LFMI average time-frequency of the 10 subjects. Each av-
erage time-frequency graph is acquired by averaging the
energy values of the 10 subjects. +e ERD phenomena in the
alpha and beta bands are marked between the red dashed
lines and the black dashed lines, respectively.

Figure 3 confirms that the ERD phenomenon of HFMI
in the alpha frequency bands (8–13Hz) during 0–4 seconds
is more evident than that of LFMI.+e qualitative analysis of
two-dimensional time-frequency atlas reveals that the ERD
phenomenon caused by HFMI is more significant than that
caused by LFMI. To further compare the rhythm charac-
teristics of the ERD phenomenon caused by HFMI and
LFMI, the frequency domain analysis of its EEG is then
conducted.

3.2. Frequency-Domain Energy Analysis and Results. To
further explore the ERD phenomenon caused by HFMI and
LFMI in the alpha and beta bands, MATLAB programming
is utilized to obtain the brain electrical energy and fre-
quency-domain energy change curve according to formulas
(1) and (6). +e frequency corresponding to the minimum
energy value in the figure is the characteristic frequency.
Figure 4 gives the average frequency-domain energy curves
of the HFMI and LFMI of the 10 subjects.

+e abscissa represents the frequency (Hz), and the
ordinate represents the average value (dB) of the brain
electrical energy of the 10 subjects in the corresponding
frequency band within the zero to 4 second time period. +e
blue and green curves represent the change in the EEG
energy of HFMI and LFMI with frequency; the purple and
green curves represent the change in the EEG energy of
HFMI and LFMI with frequency; the black horizontal dotted
line represents the baseline; the purple dense vertical dotted
line represents the characteristic frequency of HFMI; and the
purple sparse vertical dotted line represents the character-
istic frequency of LFMI. Figure 4 shows the average fre-
quency-domain energy curve of the HFMI and LFMI of the
10 subjects. +e alpha frequency band of the HFMI-induced
ERD phenomenon is wider than that of LFMI, and the
HFMI drop rate is greater.+e beta frequency band of HFMI
triggering the ERD phenomenon is also wider than that of
LFMI, and the HFMI has a greater decline rate.

3.3. Quantitative Analysis of EEG Rhythm Features and
Results. With the use of the frequency-domain energy
analysis method to analyze the EEG data of all the subjects,
the alpha characteristic frequency of HFMI and LFMI for
each subject can be obtained by their frequency-domain
energy curves. +e characteristic frequency is the frequency
corresponding to the minimum energy value in frequency-
domain energy curves. So Table 1 was obtained; the char-
acteristic frequency bands and overlapping areas of the
frequency in HFMI and LFMI can be statistically analyzed.

Table 1 shows the alpha and the beta characteristic
frequencies of HFMI and LFMI for the 10 subjects S1–S10.

+e average characteristic frequencies of HFMI and
LFMI in the alpha band are 9Hz and 10Hz, respectively.+e
average characteristic frequencies of HFMI and LFMI in the
beta frequency band are 18Hz and 20Hz, respectively.

In addition, as shown in Figure 5, the correlation analysis
of the characteristic frequencies of HFMI and LFMI indi-
cates that there is a significant correlation between the
characteristic frequencies of HFMI and LFMI
(p � 0.0074< 0.01; r� 0.945).

From Table 1, we can obtain the alpha and the beta
characteristic frequency bands of the 10 subjects (S1–S10).
After the quantitative analysis, the alpha characteristic
frequency band of the HFMI of the 10 subjects is 8–13Hz,
and that of LFMI is 8–12Hz; the beta characteristic fre-
quency band of HFMI is 18–23Hz, and that of LFMI is
17–21Hz. +e characteristic frequency band of HFMI is
larger than that of LFMI. +is shows that the EEG char-
acteristics of HFMI are more significant than those of LFMI
and that HFMI can optimize the quality of EEG sources
better than LFMI.

Formulas (1) and (2) can be used to obtain the average
ERD of the HFMI and LFMI of each subject on the alpha and
beta characteristic frequency bands, and then statistical
analysis gives the average of the data of the 10 subjects, the
standard deviation (STD), and the p-value of paired t-tests
and correlations [22].

Table 2 demonstrates the average ERD values of the
alpha beta characteristic frequency bands. +e first column
in the table represents the sequence number of the subjects,
and the second and third columns are the HFMI and LFMI
of all the subjects in the alpha characteristic frequency band,
respectively. +e fourth and fifth columns are the average
ERD values of the HFMI and LFMI of all the subjects in the
beta characteristic frequency band, respectively. Table 2
exhibits that the ERD mean value of the overall charac-
teristic frequency band of all the subjects in the HFMI is
smaller than that of LFMI (−1.827<−1.3487 and
−3.4756<−2.2891), which shows that the ERD phenomenon
of HFMI is more significant than that of LFMI. Additionally,
the STD value of HFMI is greater than that of LFMI
(0.4960< 0.5279), which displays that the difference in the
ERD phenomenon among the HFMI subjects is smaller than
that among the LFMI subjects.

+e STD value of HFMI in the beta frequency band is
greater than that of LFMI (0.6460< 0.6725). In the beta
characteristic frequency band, the difference in ERD values
among the HFMI task participants is small, and the
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difference in ERD values among the LFMI task participants
is small. Figure 6 shows the statistical analysis produced
p-values and r-values of HFMI and LFMI in the alpha and
beta frequency bands obtained by statistical analysis.
Figure 6(a) illustrates that the ERD mean values of HFMI
and LFMI are significantly correlated with the alpha band
(p � 0.001< 0.01; r� 0.811). Figure 6(b) displays the cor-
relation of the ERD mean between HFMI and LFMI in the
beta frequency band (p � 0.0002< 0.01; r� 0.212). In ad-
dition, Figure 5 depicts that the characteristic frequencies of
HFMI and LFMI are significantly correlated with a fre-
quency range of 0–30Hz (p � 0.0074< 0.01; r� 0.945).

3.4. Feature Extraction and Classification Analysis and
Results. For the analysis of the recognition rate of the EEG
signals induced by HFMI and LFMI more straightforwardly,
the 8–30Hz band EEG signals with the significant ERD
phenomenon are selected in this study.

+e researcher intercepts the attention signal segment
evoked by motor imagination corresponding to the EEG
signal and conducts an offline evaluation of its recognition
rate. +e common spatial pattern (CSP) was used for feature
extraction and support vector machine (SVM) was used for
classification [23–25].

CSP is a technique for extracting characteristic signals
from multilead data under different types of conditions. It
has a good filtering effect on the characteristics of motor
imaging EEG signals [23, 24]. We diagonalize the covariance
matrices of the two types of EEG signals at the same time and
use the principal component analysis method to select
different parts of the two types of covariance matrices and
remove the overlapping parts to highlight the state. After the
two types of original signals are filtered, a new timing
distribution was generated. At the same time, this enhances
the difference between the two types of EEG signals and
suppresses noise.+e formula of the filtered EEG signalXCSP
is expressed as follows:

XCSP � W
T ∗X, (7)

whereX is the original EEG signal,W is thematrix filtered by
CSP, and W satisfies.

+e SVM was used to calculate the recognition rate of
motor imagination [26]. For the SVM-based classification,
the “rbf” kernel function was set with a C value as (0.001,
0.01, 0.1, 1); gamma� “auto”; grid research was performed;
and the best parameter C was selected through training to
determine the optimal classification hyperplane. By con-
sidering the grid search algorithm, the classification was
implemented with a tenfold stratified cross-validation. Fi-
nally, the prediction on the testing set of the classification
model in each fold with optimal hyperparameters was
evaluated [27, 28].

+e SVM is employed to calculate the recognition rate of
the two task modes, namely, HFMI and LFMI as follows
[26–29]:

f(x) � sgn(ω∗x + b) � sgn 􏽘
l

i�1
aiyi xi ∗x( 􏼁 + b⎛⎝ ⎞⎠. (8)

+e derived filter is adopted to obtain the characteristic
value of the training sample and the test samples, which are
all EEG signals selected from 1–4 second HFMI and LFMI.
+en the characteristic value of the test sample is used for
classification and recognition, and finally, the recognition
rate is produced (as shown in Table 3). Table 3 represents 10
subjects and their recognition rate, mean, and STD of HFMI
and LFMI. +e average recognition rates of HFMI have
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reached 87.84%, and that of LFMI has reached 76.46%,
which have exceeded the globally recognized available level
(70%).+e STD of recognition rates in HFMI is 0.00318, less
than that of LFMI (0.00669), which suggests that individual

difference of recognition rates among the subjects is smaller
in the HFMI mode than in the LFMI mode.

In addition, statistics on the recognition rates of HFMI
and LFMI (as shown in Figure 7) show that the recognition

Table 1: Characteristic frequencies of the alpha and beta bands of the HFMI and LFMI of the 10 subjects.

Participant HFMI’s alpha characteristic
frequency (Hz)

LFMI’s alpha characteristic
frequency (Hz)

HFMI’s beta characteristic
frequency (Hz)

LFMI’s beta characteristic
frequency (Hz)

S1 9 10 19 19
S2 10 11 17 20
S3 8 9 19 21
S4 10 11 17 20
S5 10 11 18 21
S6 8 9 19 19
S7 10 10 17 20
S8 8 9 18 21
S9 9 10 19 19
S10 8 10 17 20
Mean 9 10 18 20
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Figure 5: Correlation analysis of characteristic frequency between the HFMI and LFMI of 10 subjects.

Table 2: Average ERD values of alpha and beta characteristic frequency bands.

Subject
Alpha Beta

HFMI LFMI HFMI LFMI
S1 −2.105 −1.1209 −3.2531 −2.3827
S2 −1.1536 −1.0336 −3.9198 −2.5407
S3 −1.8398 −1.015 −3.8286 −1.6239
S4 −2.4525 −1.5579 −3.5187 −2.4161
S5 −1.9261 −1.3741 −3.9149 −3.4839
S6 −2.8428 −2.7137 −3.865 −2.3341
S7 −1.7287 −1.4509 −3.5315 −2.0094
S8 −1.6163 −1.0637 −2.1449 −1.2393
S9 −1.5344 −1.2998 −2.303 −1.7632
S10 −1.4708 −0.8574 −4.2069 −3.0973
Mean −1.827 −1.3487 −3.4756 −2.2891
STD 0.4960 0.5276 0.6460 0.6725
p 0.001 0.0002
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rates of HFMI and LFMI are significantly different
(p � 0.0034< 0.01; r� 0.429).

4. Discussion and Conclusion

In the current study, the experimental paradigms of HFMI
and LFMI are compared, and the research results confirm
that the rhythm characteristics of HFMI EEG are more

significant than those of LFMI. Among them, the ERD
phenomenon of HFMI is more significant than that of LFMI.
+e frequency-domain energy curve of HFMI has a larger
decline than that of LFMI. HFMI and LFMI are separable,
and the recognition rate of HFMI is higher than that of
LFMI.

On the basis of the motion imagination induced by live-
action videos, the difficulty of imagination tasks is
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Figure 6: ERD mean value and correlation of HFMI and LFMI in alpha and beta frequency bands: (a) the ERD mean value and correlation
of HFMI and LFMI and (b) the ERD mean value and correlation of HFMI and LFMI in the alpha band in the beta band.

Table 3: Overall recognition rate, STD, and the mean of the two tasks.

Participant +e recognition rate of HFMI +e recognition rate of LFMI
S1 0.91 0.90
S2 0.82 0.74
S3 0.75 0.73
S4 0.94 0.74
S5 0.85 0.65
S6 0.94 0.88
S7 0.94 0.78
S8 0.88 0.63
S9 0.88 0.78
S10 0.90 0.83
Mean 0.8784 0.7646
STD 0.00318 0.00669
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Figure 7: Statistical analysis of the recognition rate of HFMI and LFMI of the 10 subjects.
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distinguished by imagining various frequencies of leg-lifting
movements. In the preparatory experiment, twice leg lifts in
4 seconds are set as a low-frequency leg lift, which is the
lower limit frequency; four times lifts in 4 seconds are the
high leg lift frequency, which is the upper limit frequency.
+is study is conducted by comparing the two experimental
paradigms of HFMI and LFMI: the time-frequency diagram
shows that from the beginning of the two types of the ex-
perimental tasks of HFMI and LFMI to the end of the task
(t� 0–4 second), the ERD phenomenon induced by HFMI is
more significant than that of LFMI (as shown in Figure 3).
Because the ERD phenomenon can truly reflect the activity
state of cerebral cortex neurons, the motor imagination task
does not require the subjects to perform any exercises, and
the subjects must inhibit their own motor behaviors and
complete the motor imagination tasks at the same time. As
the difficulty of imagination increases, the subjects exert
greater inhibition activities to prevent the occurrence of the
exercise behavior of performing the movement, resulting in
a significant ERD phenomenon. +e ERD phenomenon is
that when a person performs imaginary limb movements,
the EEG signal of the corresponding brain area is inhibited,
which leads to an evident and short-term energy attenuation
in a specific frequency band. +e imagination task of HFMI
is comparatively more difficult; hence, HFMI has a stronger
activation state of cortical neurons in the sensory-motor area
of the brain. +erefore, the motor imagination intensity of
HFMI is greater than that of LFMI.

In addition, Table 2 affirms that the ERD mean value of
all the subjects’ overall characteristic frequency bands is
smaller in HFMI than that in LFMI (−1.827<−1.3487 and
−3.4756<−2.2891). From the frequency-domain energy
curve, the ERD phenomenon can be analyzed very intui-
tively (as shown in Figure 4). +e ERD phenomenon in the
alpha and beta bands corresponds to the energy attenuation
of the energy curve. +e drop amplitude of the frequency-
domain energy curve of HFMI is larger than that of the low-
frequency leg lift energy curve, which shows that the HFMI
energy attenuation is more significant than the LFMI energy
attenuation. +e alpha characteristic frequency band of
HFMI is 8–13Hz, and the alpha characteristic frequency
band of LFMI is 8–12Hz; the beta characteristic frequency
band of HFMI is 18–23Hz, and the beta characteristic
frequency band of LFMI is 17–21Hz. +e characteristic
frequency band of HFMI is larger than that of LFMI. +e
EEG rhythm characteristics of HFMI and LFMI can reflect
the activation state of the brain sensorimotor neural net-
work, which shows that HFMI activates the brain sensori-
motor neural network state more significantly than LFMI
and that HFMI can optimize the quality of brain telecom-
munication sources better than LFMI. In the alpha bands,
the STD value of HFMI is smaller than that of LFMI
(0.4960< 0.5279), so does in beta bands (0.6460< 0.6725),
and the ERD intensity individual difference among the
subjects is smaller in the HFMI mode than in the LFMI
mode.

Our aim is mainly focused on the development of
various frequency leg-raising imagination tasks for the
improvement of MI signals, so we just use the conventional

approach, CSP-SVM [27, 28]. Notably, we acknowledged the
existence of numerous alternative novel algorithms for
decoding neural features of the MI EEG signal, such as filter
bank common spatial pattern (FBCSP), EEG channel op-
timization, EEG channel optimization, internal feature se-
lection method of CSP, and deep learning [23, 24]. In
addition, the average recognition rate of HFMI (87.02%) is
higher than that of LFMI (76.14%), which suggests the better
MI implementation effect was gotten in HFMI. +e STD of
recognition rates in HFMI (0.00318) is less than that of LFMI
(0.00669), which suggests that individual difference of
recognition rates among the subjects is smaller in the HFMI
mode than in the LFMI mode.

In this article, the comparative study of high- and low-
frequency leg-raising video-induced lower limb MI is pre-
sented; HFMI can increase the difficulty of imagination tasks
and improve the MI effect. +erefore, the characteristic
frequency band and rhythm characteristics of HFMI and
LFMI are significantly different, and the ERD phenomenon
of HFMI is more evident than that of LFMI.+e recognition
rate of HFMI is higher than that of LFMI. Our findings
suggest an application to optimize the quality of MI brain
telecommunication sources by enhancing the difficulty of
imagination tasks, thereby achieving the purpose of im-
proving the overall recognition rate of the participants’ lower
limb MI and reducing the individual differences, which have
the potential to help home-based remote neurorehabilitation
training for the functional recovery of stroke patients under
the technical support of big data intelligence and telecom-
munications [6, 30, 31]. Movement kinematics has been
shown in nonhuman primate studies of hand reaching or
drawing tasks, the direction, speed, and other information,
so various kinematic parameters of the leg movement MI
such as strength and amplitude can be performed to enhance
the difficulty of imagination tasks and efficient training for
subjects in future works [14, 31–34].
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