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The roles of ubiquitin-related genes in hepatocellular carcinoma
(HCC) have not been thoroughly investigated. This study aimed
to systematically examine ubiquitin-related genes and identify
subtypes and stratify prognosis of HCC by using ubiquitin-
related signatures. Survival, biological processes, tumor micro-
environment (TME), and genomic alterations of the HCC sub-
types were investigated. Patients with HCC were classified into
two subtypes (clusters 1 and 2) with distinct survival outcomes,
pathways, and genomic alterations. Cluster 2 had better prog-
nosis than did cluster 1. Hepatitis B, hepatitis C, Janus tyrosine
kinase (JAK)-signal transducer and activator of transcription
(STAT) pathway, and natural killer cell-mediated cytotoxicity
were enriched in cluster 1. Moreover, cluster 2 had a higher im-
mune score and immune cell infiltrations, whereas cluster 1
had a lower immune score and immune infiltrations. Addition-
ally, mutations, amplifications, and deletions among the phos-
phatidylinositol 3-kinase (PI3K)-AKT, p53, and receptor tyro-
sine kinase (RTK)-RAS pathways more frequently occurred in
cluster 1, while those among the Hippo, MYC, and Notch
signaling pathways were found in cluster 2. Finally, a prognostic
signature, consisting of eight ubiquitin-related genes, was estab-
lished and validated. In brief, our study established a new classi-
fication and developed a prognostic signature for HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of the most common malig-
nancies and the second leading cause of cancer-related deaths world-
wide.1 In spite of the advances in treatment and diagnostic methods,
the clinical outcome of patients with HCC remains poor.2 Therefore,
screening populations at high risk of developing HCC, discovering
new therapeutics targets, and improving prognosis are urgently needed.

Ubiquitin is a small protein and serves as a post-translational protein
modifier by marking proteins for degradation.3 Ubiquitin transfer cas-
cades (known as ubiquitination), including ubiquitin-activating
enzymes (E1s), ubiquitin-conjugating enzymes (E2s), and ubiquitin-
protein ligases (E3s), constitute a complex network to modify protein
Molecu
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substrates.4 This ubiquitination process can be reversed by deubiquiti-
nating enzymes (DUBs), that is, removing ubiquitin from modified
proteins.5 In addition, many proteins with ubiquitin-binding domains
(UBDs) or ubiquitin-like domains (ULDs) also play important roles in
the ubiquitin systems.5 These ubiquitin system-related genes regulate a
number of biological processes such as protein degradation, DNA
damage repair, signal transduction, and cell cycle.6–8 Ubiquitin chain
dysregulation and ubiquitin-related protein malfunctions are involved
in the development of various diseases such as cancers, metabolic dis-
eases, and neurodegenerative diseases.9,10

Over the past few decades, multiple studies have revealed that ubiq-
uitin-related genes are aberrantly expressed in cancers and regulate
many cancer-related genes such as tumor suppressor genes (TSGs:
VHL, PTEN, p27, p53, and RB) and oncogenes (EGFR and MYC).9–
12 These deregulated ubiquitin-related genes can cause aberrant
activation or inactivation of cancer-associated pathways and play
important roles in carcinogenesis.9,10 In HCC, several ubiquitin-
related proteins interplay with cancer-related proteins and act as
oncogenic proteins. For instance, the E3 ligase TRIM25 promotes
HCC cell survival by targeting Keap1 for ubiquitination and degrada-
tion, activating Nrf2 signaling and reducing reactive oxygen species
levels during endoplasmic reticulum stress.13 TRAF6, another E3
ligase, was reported to interact with histone deacetylase 3 to increase
gene expression levels and the protein stability of MYC.14 Targeting
ubiquitin-related genes has been a promising strategy for anticancer
drug development.15 However, the roles of ubiquitin-related genes in
HCC have not been thoroughly investigated. A better understanding
of the mechanisms and roles of ubiquitin-related genes could provide
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Table 1. The demographic and clinicopathological characteristics of two

clusters in the TCGA HCC cohort

Variables Group
Cluster 1 (n =
250)

Cluster 2 (n =
121)

p
value Method

Age (mean ± SE) 59.6 ± 0.9 59.2 ± 1.1 0.8296 t-test

Sex
female 87 (34.8%) 34 (28.1%)

0.1968 c2 test
male 163 (65.2%) 87 (71.9%)

Clinical stage

I 100 (40.0%) 71 (58.7%)

0.0015
Fisher’s
exact test

II 60 (24.0%) 26 (21.5%)

III 67 (26.8%) 18 (14.9%)

IV 2 (0.8%) 3 (2.5%)

NA 21 (8.4%) 3 (2.5%)

T stage

T1 110 (44.0%) 71 (58.7%)

0.0471
Fisher’s
exact test

T2 68 (27.2%) 26 (21.5%)

T3 61 (24.4%) 19 (15.7%)

T4 10 (4.0%) 3 (2.5%)

TX 1 (0.4%) 2 (1.7%)

N stage

N0 163 (65.2%) 89 (73.6%)

0.1371
Fisher’s
exact test

N1 4 (1.6%) 0 (0.0%)

NX/
NA

83 (33.2%) 32 (26.4%)

M stage

M0 172 (68.8%) 94 (77.7%)

0.0206
Fisher’s
exact test

M1 1 (0.4%) 3 (2.5%)

MX 77 (30.8%) 24 (19.8%)

HBV/HCV/
HBV+HCV

yes 122 (48.8%) 42 (34.7%)
0.0104 c2 test

none 128 (51.2%) 79 (65.3%)

Histological
grade

G1 36 (14.4%) 19 (15.7%)

0.8140
Fisher’s
exact test

G2 117 (46.8%) 60 (49.6%)

G3 86 (34.4%) 36 (29.8%)

G4 7 (2.8%) 5 (4.1%)

NA 4 (1.6%) 1 (0.8%)

NA, not available; TX, unknown T stage; MX, unknownM stage; NX, unknown N stage;
HBV, hepatitis B virus; HCV, hepatitis C virus.
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a basis for understanding HCC and the development of novel thera-
peutics. Therefore, this study aimed to systematically study ubiqui-
tin-related genes in HCC. Given the high heterogeneity in HCC,
our study also intended to identify HCC subtypes from tumor sam-
ples and stratify the risk and prognosis of patients with HCC by using
ubiquitin-related signatures.
RESULTS
Identification of HCC subtypes based on ubiquitin-related genes

The expression profiles of 777 ubiquitin-related genes from The
Cancer Genome Atlas (TCGA) were used for consensus clustering
Figure 1. Identification of two subtypes of HCC in TCGA cohort

(A) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (B) Relative

HCC samples when k = 2 (1, cluster 1; 2, cluster 2). (D) Kaplan-Meier curves of overall su

clusters 1 and 2. (F) Principal component analysis of the gene-expression profiles in th
analysis of HCC. The optimal cluster was obtained when the k value
was 2 according to the cumulative distribution function (CDF)
curves (Figures 1A and 1B). The 371 HCC patients were classified
into two subtypes as follows: cluster 1 (n = 250) and cluster 2
(n = 121; Figure 1C). A survival analysis revealed that the overall
survival (OS) time and progression-free survival (PFS) time in clus-
ter 1 were shorter than those in cluster 2 (p < 0.05; Figures 1D and
1E). The principal component analysis (PCA) revealed that the sam-
ples from cluster 1/2 were well separated from each other (Fig-
ure 1F). The results suggested significant differences between cluster
1 and cluster 2.
Clinicopathological features, biological processes, and

pathways in clusters 1 and 2

The expression levels of the ubiquitin-related genes in clusters 1 and 2
are shown in the heatmap (Figure S1). The clinicopathological fea-
tures of the two subtypes were compared. We found that the propor-
tion of patients with lower tumor stage (stage I/II) was significantly
higher in cluster 2 (p = 0.0015; Table 1). Moreover, the proportions
of T1 and T2 were significantly higher in cluster 2 (p = 0.0471; Table
1), while HCC samples with advanced tumor stages (stage III/IV) and
higher tumor sizes (T3/T4) were included in cluster 1. There were
significantly more patients with hepatitis B and C infections (p =
0.0104) in cluster 1. No significant differences in the distribution of
age, sex, histological grade, and N stage were found between the
two subtypes (p > 0.05; Table 1).

A gene set enrichment analysis (GSEA) was performed to identify
pathways enriched in the two subtypes. Under the threshold of an
adjusted p value of <0.05, there are 18 significantly enriched pathways
in cluster 1 and there were no significant pathways involved in cluster
2. In detail, the results showed that the cytosolic DNA-sensing
pathway, hepatitis B, hepatitis C, the Janus tyrosine kinase (JAK)-
signal transducer and activator of transcription (STAT) pathway, nat-
ural killer cell-mediated cytotoxicity, the neuroactive ligand-receptor
interaction, the non-obese diabetic (NOD)-like receptor pathway,
pentose and glucuronate interconversions, the retinoic acid-inducible
gene (RIG)-I-like receptor pathway, and the Toll-like receptor
pathway were highly enriched in cluster 1 (normalized enrichment
score > 1, adjusted p < 0.05; Figure S2).
Tumor microenvironment (TME) characterization in clusters 1

and 2

GSEA results indicated that some immune-related pathways, such
as natural killer cell-mediated cytotoxicity, the NOD-like/RIG-I-
like/Toll-like receptor pathways, and JAK-STAT pathway were
significantly activated in cluster 1. Subsequently, the TME (tumor
purity and infiltrating stromal/immune cells in tumor samples) in
clusters 1 and 2 were examined. We found that the immune score
change in area under the CDF curve for k = 2–9. (C) The consensus score matrix of

rvival (OS) of clusters 1 and 2. (E) Kaplan-Meier curves of progression-free survival of

e TGGA HCC cohort.
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Figure 2. Tumor microenvironment characterization in clusters 1 and 2

(A–D) Comparison of immune score, stromal score, ESTIMATE score, and tumor purity in the two subtypes. (E) Heatmap describing the abundance of 24 immune cell types in

the two subtypes.
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was significantly higher in cluster 2 (p < 0.05; Figure 2A). However,
we found no significant differences in stromal score, ESTIMATE
score, and tumor purity between the two subtypes (Figures 2B–
2D). Given the significant differences in immune score between
the two subtypes, immune cell infiltration was further investigated
to characterize the immune landscapes of clusters 1 and 2 (Fig-
ure 2E). Cluster 2 had a significantly higher abundance of B cells,
cytotoxic cells, T cells, dendritic cells, and neutrophils (p < 0.05; Fig-
ure 3A). The expression levels of eight immune checkpoint genes
210 Molecular Therapy: Oncolytics Vol. 21 June 2021
(ICGs: PD1, PD-L1, PD-L2, CTLA4, VTCN1, TIM3, LAG3, and TI-
GIT) in the two subtypes were further investigated. The results indi-
cated that cluster 1 exhibited higher expression levels for the eight
ICGs (except for the LAG3 gene) than cluster 2 (p < 0.05;
Figure 3B).

Comparison of mutations and CNVs between clusters 1 and 2

To identify potential drug targets to reverse the poorer survival in cluster
1, we explored the significant mutations and copy number variations



Figure 3. Immune cells abundance and expression levels of immune checkpoint genes in clusters 1 and 2

(A) Comparison of the abundance of 24 immune cell types in clusters 1 and 2. (B) Expression levels of eight immune checkpoint genes in clusters 1 and 2. Level of gene

expression is reported as log2-transformed count.
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(CNVs) between clusters 1 and 2. The top 30 most frequently mutated
genes in clusters 1 and 2 are presented in Figures 4A and 4B. Cluster 1
had a significantly higher mutation frequency of TP53 (TSG in the p53
pathway) than did cluster 2 (35% versus 20%). The mutation frequency
of CTNNB1 (oncogene in the Wnt pathway) was equal in the two sub-
types (both 25%). The mutation frequencies of 10 critical oncogenic
pathways in clusters 1 and 2 were summarized (Figure 4C). Mutations
in the phosphatidylinositol 3-kinase (PI3K)-AKT, p53, and receptor
tyrosine kinase (RTK)-RAS pathways more frequently occurred in clus-
ter 1 (Figure 4C). The Hippo, MYC, and Notch pathways displayed
higher mutation frequencies in cluster 2 (Figure 4C). The mutation fre-
quency of the cell-cycle pathwaywas predominant in both subtypes (Fig-
ure 4C). In addition, differences in somatic CNV in clusters 1 and 2were
evaluated using GISTIC 2.0. The CNV analysis revealed that amplifica-
tions of 11q13.3 (CCND1 [oncogene in the cell-cycle pathway]), 19q12
(CCNE1 [oncogene in the cell-cycle pathway]), and 7q31.2 (MET
Molecular Therapy: Oncolytics Vol. 21 June 2021 211
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Figure 4. Comparison of mutations in clusters 1 and 2

(A and B) The top 30 most frequently mutated genes in two HCC

subtypes. (C) The mutation frequencies of ten critical oncogenic

pathways in two HCC subtypes.
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[oncogene in the RTK-RAS pathway]), and deletions of 13q14.2 (RB1
[TSG in the cell-cycle pathway]), 9p21.3 (CDKN2A [TSG in the cell-cycle
pathway]), 10q23.31 (PTEN [TSG in the PI3K-AKT pathway]), and
9q34.13 (TSC1 [TSG in the PI3K-AKTpathway])were identified in clus-
ter 1 (Figures 5A and 5B). Moreover, amplifications of 11q13.3 (CCND1
[oncogene in the cell-cycle pathway]), 6p21.1 (VEGFA [oncogene]), and
5p15.33 (TERT [oncogene]), and deletions of 9p21.3 (CDKN2A and
CDKN2B [TSGs in the cell-cycle pathway]), 13q14.2 (RB1 [TSG in the
cell-cycle pathway]), and 4q21.3 (FAT4 [TSG in the Hippo pathway])
were identified in cluster 2 (Figures 5C and 5D).

Establishment and evaluation of a ubiquitin-related signature

From 777 ubiquitin-related genes, 336 genes with prognostic value (p <
0.01) were identified by univariate analyses. From the 336 genes, 22
genes were selected by the least absolute shrinkage and selection oper-
ator (LASSO) regression analysis (Figure S3A). Finally, we identified
eight genes to establish the prognostic signature by the stepwise multi-
variate regression analysis (Table S1; Figure S3B). The risk score was
calculated using the following formula: risk score = (0.1553 �
ExpUBE2S) + (�0.3136 � ExpSOCS2) + (0.2454 � ExpRNF2) +
(0.3879� ExpHECTD3) + (0.2298� ExpATG10) + (0.0634� ExpBRSK2) +
(0.1460� ExpRNF133) + (0.3940� ExpTRIM6-TRIM34). According to the
median risk score, the patients in the TCGA HCC cohort (training
cohort) were assigned to a high- or low-risk subgroup. The survival
analysis result indicated that patients in the high-risk subgroup dis-
played worse OS (p < 0.0001; Figure 6A). The area under the
receiver-operating characteristic (ROC) curve (AUC) for OS was
0.826 at 1 year and 0.748 at 3 years (Figure 6B). The robustness and
effectiveness of the ubiquitin-related signature were evaluated on the
validation cohort. Similarly, the patients in the high-risk subgroup
had poorer OS than did those in the low-risk group (p = 0.041; Fig-
ure 6C). The 1- and 3-year AUCs were 0.701 and 0.616, respectively,
in the International Cancer Genomics Consortium (ICGC) cohort
(Figure 6D). We further investigated the correlation between the two
risk subgroups and clinicopathological features in the TCGA cohort.
Significant differences were found between the high- and low-risk sub-
groups, which were marked with * in the heatmap (Figure 6E). The
high-risk subgroup correlated with advanced T stage (p < 0.01), higher
tumor stage (p < 0.001), and higher histological grade (p < 0.01).

Establishment of a nomogram

Univariate analyseswere performed to examine theprognostic values of
several clinicopathological features. Consequently, tumor stage, T stage,
and M stage correlated with OS (p < 0.05; Figure S4A). Tumor and T
stages also correlated with PFS (p < 0.05; Figure S4B). The multivariate
regression analyses suggested that the risk score was an independent
prognostic indicator ofOS andPFS in the TCGAcohort (p < 0.001; Fig-
ures S4C and S4D). In addition, the ROC analysis revealed that the
Figure 5. Comparison of CNVs in clusters 1 and 2

(A–D) GISTIC 2.0 amplifications and deletions in clusters 1 (A and B) and 2 (C and D). Ch

deletions (blue) are displayed. The q values, representing the statistical significance,

considered significantly altered. The locations of the peak regions of maximal copy-num

the right of each panel.
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sensitivity and specificity of the ubiquitin-related signaturewere greater
than those of the other clinicopathological features (Figure 7A).

A nomogram was constructed, which included risk score, tumor
stage, and T/M stage, to predict the probability of OS in HCC patients
from the TCGA cohort (Figure 7B). The calibration curves at 1 and 3
years showed good consistency between the actual OS and predicted
OS (Figures 7C and 7D).

DISCUSSION
HCC is an aggressive and heterogeneous tumor with a high incidence
and a short survival time. Subtype characterization and identification
is critical for risk and treatment stratification of HCC patients. In the
present study, ubiquitin-related genes were investigated to identify
different molecular classifications in HCC samples and to stratify
the risk levels of patients with HCC.

Subtype characterization and identification

On the basis of the expression profiles of the ubiquitin-related genes,
patients with HCC were classified into two clusters with distinct sur-
vival outcomes, pathological features, pathways, TME, and genomic al-
terations. In detail, cluster 2 had a significantly longer survival time,
including OS and PFS, and a higher proportion of patients with
early-stage tumors. Hepatitis B and C virus infections are the most
common risk factors in the progression of HCC. Of all HCC cases,
75% were associated with hepatitis infection.16 In our study, we found
that cluster 1 with worse prognosis had a higher proportion of patients
with hepatitis B and C virus infections, which is consistent with the
GSEA results. The GSEA revealed that hepatitis B and hepatitis C virus
infection-related pathways were highly enriched in cluster 1. More-
over, the other pathways identified in the GSEA, such as the JAK-
STAT pathway and NOD-like/RIG-I-like/Toll-like receptor pathways
were frequently reported to play key roles in hepatitis infection or im-
mune processes in HCC.17–22 For instance, hepatitis B virus infection
upregulates Toll-like receptor 2 to promote the invasion of hepatitis B
virus-related HCC cells.19 Therefore, we supposed that clusters 1 and 2
had distinct immune microenvironments. Furthermore, TME charac-
terization in clusters 1 and 2 were investigated to confirm our hypoth-
esis. As a result, cluster 2 had a significantly higher immune score and
greater abundance of B cells, cytotoxic cells, T cells, dendritic cells, and
neutrophils, while cluster 1 had relatively lower immune cell infiltra-
tion and lower immune score. Briefly, cluster 1 had lower immune
infiltration and a poor prognosis, while cluster 2 had higher immune
infiltration and a favorable prognosis. These findings were consistent
with those of a previous study that showed that abundant immune
infiltration was associated with better survival in HCC.23 In addition,
cluster 1 exhibited higher expression of ICGs, such as PD-L1,
CTLA4, and PD-1 than did cluster 2. In a latest meta-analysis, high
romosomal locations of peaks of significantly recurring focal amplifications (red) and

are displayed along the bottom. Regions with q values < 0.25 (green lines) were

ber change and the known cancer-related genes within those peaks are indicated to
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PD-L1 expression level in tumor tissue was reported to correlate with
shorter OS, poor tumor differentiation, hepatitis, and tumor-infil-
trating lymphocytes in HCC.24 Higher immune checkpoint expression
could decrease immune cell infiltration and inhibit the immune
response in cancer.25 Our results (a negative association between im-
mune checkpoint expression and immune cell infiltration) were
consistent with these previous studies. The combined effects of lower
immune infiltration, high expression levels of ICGs, advanced tumor
stage, large tumor size, and hepatitis B and C virus infections may
be responsible for the worse survival in cluster 1.

We further investigated the genomic alterations and intended to
detect potential drug targets. At the gene level, cluster 1 had a higher
mutation frequency of TP53, which leads to p53 pathway activation,
than did cluster 2. The mutation frequency of CTNNB1, which leads
toWnt pathway activation, was equal in two subtypes. At the pathway
level, the mutation frequency of the cell-cycle pathway is predomi-
nant in both subtypes. Mutations in the PI3K-AKT, p53, and RTK-
RAS pathways more frequently occurred in cluster 1. The Hippo,
MYC, and Notch pathways displayed higher mutation frequencies
in cluster 2. The amplifications of oncogenes such as CCND1,
CCNE1, and MET and the deletions of TSGs such as RB1, CDKN2A,
and PTEN were identified in cluster 1. Therefore, we speculated that
the hyperactivated p53, cell-cycle, RTK-RAS, or PI3K-AKT pathway
might be responsible for the worse survival in cluster 1. In addition,
the amplifications of oncogenes such as CCND1 and VEGFA were
identified in cluster 2. All in all, our study demonstrated that certain
genomic alterations in these critical pathways may be related to prog-
nosis in clusters 1 and 2. These genes with aberrant mutations, ampli-
fications, or deletions could be considered as effective therapeutics
targets for different HCC subtypes. In fact, some corresponding in-
hibitors that target these key pathways or genes showed promising
outcomes in trials, such as MET.26 Targeting molecular agents that
control multiple signaling pathways are also under development.27

Risk stratification

A prognostic signature was developed using eight ubiquitin-related
genes, which could significantly distinguish the high- and low-risk pa-
tients from TCGA and the ICGC cohorts. Among the eight genes,
SOCS2 was a protective factor and the rest (UBE2S, RNF2, HECTD3,
ATG10, BRSK2, RNF133, and TRIM6-TRIM34) were risk factors.
Some of these genes have been reported in HCC. A study demon-
strated that UBE2S, as a member of the E2s, is overexpressed in
HCC and promotes the progression of HCC cells by enhancing the
ubiquitination of p53.28 RNF2, as an E3 ligase, promotes HCC cells
growth and metastasis by targeting SIK1 for degradation.29 Another
study showed that ATG10 rs10514231 might affect the expression
of ATG10 and was significantly associated with HCC susceptibility.30

SOCS2 are reported to inhibit the migration, invasion, and metastasis
Figure 6. Construction and evaluation of a ubiquitin-related signature

(A and C) Kaplan-Meier OS curves for patients assigned to high- and low-risk groups bas

ROC curves were performed in the TCGA (B) and ICGC (D) cohorts. (E) The heatmap o

clinicopathological features was compared between the low- and high-risk groups. *p
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of HCC cells.31 These genes may represent promising therapeutic
strategies for HCC treatment. The other four genes have not been re-
ported in HCC but in other tumors. Future studies are needed to
examine the functional impact of these four genes in the carcinogen-
esis and development of HCC.

Finally, we integrated risk score, tumor stage, and T/M stage to
construct a nomogram, and we found good agreement between the
actual OS and predicted OS at 1 and 3 years. These results indicated
that the ubiquitin-related signature combined with tumor and T/M
stages might be a promising prognostic tool for HCC patients.

Strength and limitations

To the best of my knowledge, our study first identified HCC subtypes
in tumor samples and stratified the risk and survival of HCC patients
according to ubiquitin-related signatures. The differences in signaling
pathways, molecular mechanisms, TME, and genomic alterations be-
tween the two subtypes identified suggest that the therapy sensitivity
of the two subtypes will be distinct and should be targeted under spe-
cific therapeutic strategies. Moreover, a new prognostic signature
consisting of eight ubiquitin-related genes was identified and vali-
dated. This signature can be used as a screening tool for patients at
high risk of developing HCC. The identification of high-risk patients
is crucial for early intervention and survival.

This study has a few limitations. First, this was a retrospective study,
and all HCC patients were collected from public databases. Second,
our HCC samples were smaller than those used in other studies that
have integrated multiple datasets and may generate more comprehen-
sive outcomes. Third, a large sample size of patients with HCC from
our own hospital is needed for further prospective external validation,
and future functional studies are essential to elucidate the precise roles
of ubiquitin-related genes in the development of HCC.

Conclusions

Our study established a new classification for HCC based on the
expression profiles of ubiquitin-related genes. In addition, we devel-
oped a prognostic signature using eight ubiquitin-related genes to
screen patients at high risk of developing HCC.

MATERIALS AND METHODS
Data acquisition and processing

In total, 600 patients with HCC were selected from two datasets,
including 371 American patients (a training cohort) from TCGA and
229 Japanese patients (an external validation cohort) from the ICGC.
The ICGCLiverCancer-RIKEN, Japan (LIRI-JP) dataset, including tran-
scriptomedataandclinical information,wasdownloaded fromthe ICGC
website (https://dcc.icgc.org). Multi-omics data from the TCGA HCC
cohort, including transcriptome data, somatic mutation data, CNV
ed on the risk score in the TCGA (A) and ICGC (C) cohorts. (B and D) Time-dependent

f the eight ubiquitin-related genes in low- and high-risk groups. The distribution of

< 0.05 and ***p < 0.001.

https://dcc.icgc.org


Figure 7. Integration of the ubiquitin-related signature and clinicopathologic features

(A) ROC curves show the sensitivity and specificity of the ubiquitin-related signature and clinicopathologic features in predicting the OS of HCC patients. (B) Nomogram

constructed to predict the 1-, 2-, and 3-year OS in the TCGA cohort. (C and D) Calibration curves of the nomogram for predicting the probability of OS at 1 and 3 years.
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data, and clinical information, was downloaded from the TCGAwebsite
(https://portal.gdc.cancer.gov/). By using the maftools R package, so-
matic mutation data were analyzed, summarized, visualized.32 For
CNV data, GISTIC 2.0 was performed to determine genes with signifi-
cant amplification or deletion, as based on q values <0.25.33
List of ubiquitin-related genes

A list of 807 ubiquitin-related human genes was collected from the
iUUCD 2.0 database (http://iuucd.biocuckoo.org/), including 8 E1s,
38 E2s, 501 E3s, 97 DUBs, 121 UBDs, and 42 ULDs.34 We extracted
777 ubiquitin-related genes with available mRNA expression profiles
from the TCGA HCC dataset.
Screening for HCC subtypes

On the basis of the expression profiles of ubiquitin-related genes, mo-
lecular subtypes were clustered and identified using the Consensu-
sClusterPlus R package.35 The clustering was performed using the
following settings: 50 iterations, 80% resampling rate, and Euclidean
distance. The optimal cluster number was determined by construct-
ing CDF curves.36 A PCA was performed to compare the gene-
expression patterns among different HCC subtypes.37 A GSEA using
the clusterprofiler R package was performed to investigate the path-
ways correlated with the different HCC subtypes.38 The Kyoto Ency-
clopedia of Genes and Genomes (KEGG) gene sets retrieved from the
Molecular Signatures Database were used for the GSEA, and the sig-
nificance threshold was set at an adjusted p value of <0.05.
Molecular Therapy: Oncolytics Vol. 21 June 2021 217
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TME analysis

To evaluate the heterogeneity in the TME among different HCC sub-
types, we inferred the immune and stromal cell components. Immune
and stromal scores that can represent the infiltration of TME cells
were calculated using ESTIMATE algorithm.39 Specially, stromal
score represents the infiltration of stroma cells in neoplastic samples,
immune score represents the presence of immune cells in neoplastic
samples, and ESTIMATE score infers tumor purity, which is the pro-
portion of cancer cells in the admixture. In addition, the immune cell
infiltration was estimated by performing a single-sample GSEA
(ssGSEA) using the GSVA R package. Marker genes for 24 types of
immune cells, including 11 innate and 13 adaptive immune cells,
were acquired from a published study.40 Based on the gene-expres-
sion profiles and marker genes, infiltrating immune cells were quan-
tified by ssGSEA in individual tumor samples.41
Establishment and evaluation of a ubiquitin-related signature

and nomogram

Univariate Cox, LASSO-penalized, and stepwise multivariate Cox
regression analyses were performed sequentially to establish a ubiqui-
tin-related prognostic signature.42 Univariate regression analyses
were used to identify ubiquitin-related genes with prognostic value.
If p < 0.01, the corresponding genes were considered as prognostic
genes. LASSO-penalized regression analysis was then performed to
screen prognostic genes. Finally, stepwise multivariate regression
analysis was conducted to further screen prognostic genes by using
the lowest Akaike information criterions (AIC) value and establish
the ubiquitin-related signature. The risk score was calculated as fol-
lows: risk score = S(Ci � Expi), where “C” is the coefficient of gene
derived from the multivariate Cox analysis and “Exp” is the gene
expression level.43 We drew ROC curves to compare the prediction
efficiency of the signature and several clinicopathological features.44

Univariate and multivariate Cox regression analyses were performed
to investigate prognostic values for the signature and several clinico-
pathological features. A nomogram was constructed to predict the
probability of OS in HCC patients using the rms R package. Calibra-
tion curves were drawn to evaluate the effectiveness of the nomogram
using the rms R package.
Statistical analyses

A chi-square test was performed to compare the distribution of clin-
icopathological features, including age, sex, T/N/M pathological
stage, clinical stage, and histological grade, between the different
groups. Differences between two groups were tested using the Wil-
coxon rank test for non-normally distributed variables, and the
unpaired t test for normally distributed variables. The patients were
categorized into low- and high-risk groups according to median
risk score. Survival analyses were performed to compare the survival
of the patients in the different subtypes or in the high- and low-risk
groups. All statistical analyses were performed using the R software
(version 3.5.2) and GraphPad Prism software programs (version 7).
All statistical results with a p value of <0.05 were considered
significant.
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