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Abstract

Background: The rapid acquisition of biological data and development of computationally 
intensive analyses has led to a need for novel approaches to software deployment. In 
particular, the complexity of common analytic tools for genomics makes them difficult to 
deploy and decreases the reproducibility of computational experiments. Methods: Recent 
technologies that allow for application virtualization, such as Docker, allow developers and 
bioinformaticians to isolate these applications and deploy secure, scalable platforms that have 
the potential to dramatically increase the efficiency of big data processing. Results: While 
limitations exist, this study demonstrates a successful implementation of a pipeline with 
several discrete software applications for the analysis of next‑generation sequencing (NGS) 
data. Conclusions: With this approach, we significantly reduced the amount of time needed 
to perform clonal analysis from NGS data in acute myeloid leukemia.
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INTRODUCTION

The amount of data available for research is growing at an 
exponential rate. The recent push for open data has also 
rapidly increased the availability of biomedical datasets 
for secondary analysis. Examples include the Yale Open 
Data Access project,[1] a repository of clinical trial data, 
and The Cancer Genome Atlas (TCGA),[2] a project that 
makes genomic data accessible to researchers after initial 
findings are released. While these data sets promote 
ongoing research, the ability to efficiently store, move, 
and analyze such large repositories is often a bottleneck 
to analysis.[3]

In addition to the massive growth in volume and 
availability, novel analyses, including advanced statistical 
methods and machine learning, often require significant 
resources for efficient processing. One example of 
this in biomedical research is the analysis of next 
generation sequencing  (NGS) data. NGS is also known 

as massively parallel or high‑throughput sequencing, as 
it simultaneously sequences many fragments of DNA, 
thereby producing enormous amounts of information. 
These datasets often require several preprocessing steps 
followed by detailed analysis. In addition to being 
resource intensive, the reproducibility of computational 
experiments using these data is often limited due to the 
complexity of system and software configuration.[4] Some 
application frameworks have made advances to improve 
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the reproducibility of individual applications and analysis 
pipelines,[5,6] but significant work remains to increase 
this reliability, particularly for experiments performed 
in resource‑limited environments or on computational 
clusters.

The deployment of complex computational systems 
is not unique to bioinformatics. As such, there has 
been significant progress in building virtualization 
layers for operating systems and more recently, software 
applications.[7,8] A current example of this includes the 
Docker platform (Docker, San Francisco, CA, USA), which 
allows for the creation and configuration of software 
containers for deployment on a range of systems.[9,10] 
While the use of these technologies has limitations, 
it also has the potential improve the usability of many 
software applications in computational biology. As such, 
several studies and initiatives have begun to focus on the 
use of Docker in bioinformatics and computer science 
research.[11‑13] In this paper, we demonstrate the potential 
benefits of containerized applications and application 
workflows for computational genomics research.

TECHNICAL BACKGROUND

To augment an ongoing study related to tumor 
heterogeneity, we obtained access to acute myeloid 
leukemia  (AML) NGS data from TCGA.[14] Aligned 
NGS data from TCGA are available through the Cancer 
Genomics Hub  (cgHub). The data set of interest 
consisted of approximately 12 terabytes  (TBs) of whole 
genome sequencing  (WGS) data and another 12 TB 
of whole exome sequencing data. Our analysis required 
the identification of somatic variants followed by a 
prediction of tumor heterogeneity using publicly available 
software tools. Unfortunately, many bioinformatics tools 
have specific software dependencies and natively run 
on only a subset of operating systems.[15] In addition, 
many applications are unable to run their computations 
in parallel, thus limiting analysis throughput. While 
increasing the number of servers or individual server 
resources can improve analysis speed, overall processing 
may still be less efficient due to these limitations.

As previously noted, the Docker platform allows for 
virtualized application deployments within a lightweight, 
Linux‑based wrapper called a container.[9,11,15] This 
approach is similar to operating system virtualization 
but at the application level. Containerization enables 
developers to create virtual environments that have 
only the minimum necessary libraries, which users can 
quickly deploy on their own infrastructure in a secure, 
reproducible fashion. In addition, the isolation offered 
by this approach means that a more robust, parallelized 
workflow can be created for some applications that 
do not natively support multi‑threading or parallel 
processing. While this type of workflow implementation 

is not beneficial for all use cases, scenarios where 
compute capacity on a single node exceeds what a single 
application can utilize are likely to benefit from such an 
approach.

To efficiently predict tumor heterogeneity from TCGA 
data, we implemented two key technologies: a Python 
workflow using the Luigi library  (Spotify, Stockholm, 
Sweden)[16] and Docker containers for each key 
application in our analysis pipeline. While neither of 
these technologies is unique to genomic analysis or 
bioinformatics, Luigi is a general workflow orchestration 
library, and Docker allows for application visualization, 
as previously noted. For this use case, we were restricted 
to a single computational node with eight cores and 
128 gigabyte  (GB) of memory for analysis. As shown in 
Figure  1, aligned WGS data were obtained for paired 
germline and tumor specimens from cgHub  (now the 
genomic data commons) using the cgDownload utility.[17] 
We identified somatic variants with the SomaticSniper 
application[18] and generated clonal predictions with 
the SciClone library.[19] Sequential data acquisition 
and analysis took approximately 4 h to complete per 
paired sequence but had significant variability between 
specimens, since file size and the number of genetic 
mutations varied significantly.

APPROACH

Because of the large number of specimens and the time 
needed for sequential analysis, our first approach to 
improving pipeline efficiency was the implementation of 
a Python workflow using the Luigi library. This library is 
commonly used for workflow automation and has gained 
significant traction within bioinformatics through the 
development of the Sci:  Luigi library.[20] Implementation 
of our pipeline with this workflow library allowed us to 

Figure  1: Serial workflow and architecture to download Cancer 
Genomics Hub data. To obtain next generation sequencing data 
from Cancer Genomics Hub, the cgDownload utility was used to 
transfer aligned whole genome and whole exome sequencing data. 
The SomaticSniper utility was then used to identify somatic variants 
and tumor clonality was predicted with SciClone. These utilities 
were all manually configured on a server running CentOS 6.7



J Pathol Inform 2016, 1:53	 http://www.jpathinformatics.org/content/7/1/53

include automated fault tolerance, primarily for issues 
that resulted in sequence download failures due to brief 
losses in network connectivity. In addition, the workflow 
could run continuously and unsupervised, which 
markedly reduced the amount of hands‑on time needed 
for analysis.

Workflow automation led to a significant improvement 
in efficiency; however, the inability to parallelize the 
software packages limited analysis throughput. While 
the cgDownload utility does support multi‑threading, 
local bandwidth and disk size limitations made bulk 
downloading of the entire TCGA data set difficult. In 
addition, a bulk download followed by a full analysis of 
the data set would mean that network capacity would be 
saturated while the computational resources remained 
idle, followed by the opposite scenario. To maintain high, 
simultaneous utilization of all local hardware resources, 
including bandwidth, memory, and processor capacity, 
we deployed the cgDownload utility, SomaticSniper, and 
SciClone within isolated Docker containers and executed 
each container with our Luigi workflow  [Figure  2]. 
This approach allowed us to horizontally and vertically 
scale each application to take full advantage of our 
local hardware. In addition, each application could 
be deployed on a single node running CentOS7 
(Red Hat, Raleigh, NC, USA) within a container running 
its natively‑supported operating system: CentOS6 for 
cgDownload and Ubuntu  (Canonical, London, UK) for 
SomaticSniper and SciClone.

This approach to application deployment can offer 
significant performance benefits. However, any 
virtualization technology has the potential to offset these 
gains due to resource overhead in the virtualization layer. 
To assess the impact of Docker virtualization on two key 
metrics, disk throughput, and processing efficiency, we 
used two benchmarking tools to evaluate performance 
on the virtual server as well as in a Docker container. 
To benchmark disk input/output performance, we used 
the dd command line tool, a standard Linux utility 
that can be used to read and write files and to gather 

performance statistics. The dd utility was used to write 
a 1 GB file and showed similar performance in both 
a virtual machine and a Docker container within this 
same environment  [Figure  3a]. Similarly, results from 
sysbench, an open‑source benchmarking utility originally 
created by MySQL AB, found that the time needed 
to calculate 10,000 primes in either environment was 
equivalent  [Figure  3b]. When combined with evidence 
from other studies,[21] these results demonstrate that 
Docker has a minimal overhead for these components.

Since we found similar benchmarking results for both the 
virtual machine and Docker containers, we next executed 
our workflow to analyze the AML WGS results from 
TCGA. Using this approach, we were able to stagger data 
download and processing to take advantage of all system 
resources  [Figure  4]. One limitation to this approach is 
that none of the tools described here provide built‑in 
resource monitoring. This pipeline was well‑suited to 
parallel analysis since each application had specific, 
isolated resource needs such as network, storage, or 
compute capacity, which could be monitored with custom 
code within the Python workflow. Use of this automated 
staggered workflow with Docker containers allowed use to 
analyze fifty specimens from the TCGA data set within 
approximately 3  days. It is difficult to provide statistical 
performance metrics since many factors such as data 
volume, and network bandwidth can significantly alter 
the overall pipeline performance. However, the general 
approach of staggered, parallel computation should 
provide increased processing efficiency for workloads such 
as this.

CONCLUSION

The complex nature of genomic data and the tools 
used to analyze these data sets makes efficient 
processing difficult with standard environments. As 
noted above, the use of emerging technologies such as 
Docker in combination with automated workflows may 
significantly improve the efficiency of data processing in 

Figure 2: Comparison of standard application architecture and containerized architecture for clonal analysis. (a) When deployed in a 
virtual server, the analysis workflow was installed on CentOS 6.7 and had to be run serially due to limitations in software parallelization 
and local resources. Applications are launched manually in sequence to download NGS data, identify variants, and predict tumor 
clonality. (b) When configured in Docker containers and driven by a workflow manager, applications were automatically launched and 
able to scale based on available system resources. Each application was configured on its native operating system architecture within 
the container, as indicated in the figure
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bioinformatics. With the growing number of open data 
projects, use of these techniques will be necessary to take 
advantage of available computational resources.

While performance and pipeline efficiency were key 
components of this implementation, Docker containers 
also allow for application isolation from the host operating 
system. Since many bioinformatics tools have complex sets 
of dependencies and are difficult to build from source, the 
ability to deploy containers with different operating systems 
and dependency versions to the same host decreases the 
amount of effort needed to being analysis. For example, the 
cgDownload utility is distributed as a compiled binary for 
use on CentOS 6.7, but can only be deployed on CentOS 
7 when built from source, which requires a significant 
amount of manual configuration. As shown in Figure 2, the 
use of containers allowed the deployment of each utility 
on its natively supported operating system, which improves 
stability and decreases the potential for dependency 
conflicts among software applications.

Several other tools exist for the orchestration of 
containerized applications, such as Kubernetes and 
Docker Swarm. For complex platforms, these tools can 
be used to deploy containers across hardware clusters and 
to integrate networking and storage resources between 
containers. However, these applications work strictly 
at the container level and do not inherently provide 
application‑level workflows as presented here. Additional 
implementation experience about the use of these tools 
within high‑performance clusters may provide valuable 
insights about the scalability of these tools within 
bioinformatics workflows.

The above findings demonstrate the promise of emerging 
technologies to improve the efficiency of genomic analysis. 
Because of the subsequent increase in analysis throughput, 
use of these tools means that big data analyses can be 

Figure 4: Illustration of parallelization improvements with a workflow‑driven container architecture. (a) When performed serially, the 
download (white bars) and analysis (shaded bars) of a single pair of tumor and germline sequence on local hardware took approximately 
4 h (bars drawn to scale). (b) When parallelized with a workflow manager and Docker containers, multiple specimens could be processed 
simultaneously to take advantage of all system resources, including network, memory, and processor capacity
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Figure  3: Disk throughput and processor efficiency of Docker 
containers. (a) The time needed to write a one‑gigabyte file with 
the dd utility was similar in both a virtual machine and within a 
Docker container on the same host. (b) The calculation of 10,000 
primes with the sysbench utility showed similar performance in a 
virtual machine and a Docker container on the same host
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done even with limited local computational capacity. 
Finally, use of container technology can improve pipeline 
and experimental reproducibility since preconfigured 
applications can be readily deployed to nearly any host 
system. While many factors can impact reproducibility, 
the use of containers limits variability due to differences 
in software environment or application configuration 
when appropriately deployed. The continued use of 
emerging technology and novel approaches to software 
architecture has the potential to increase the efficiency of 
computational analysis in bioinformatics.
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