
J Pathol Inform Editor‑in‑Chief:
Anil V. Parwani , Liron Pantanowitz,
Columbus, OH, USA Pittsburgh, PA, USA

OPEN ACCESS
HTML format

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

© 2016 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow

Technical Note

Use of application containers and workflows for genomic data
analysis

Wade L. Schulz1, Thomas J. S. Durant1, Alexa J. Siddon1,2, Richard Torres1

1Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 2Pathology and Laboratory Medicine Service, VA Connecticut Healthcare System,
West Haven, CT, USA

E‑mail: *Dr. Wade L. Schulz ‑ wade.schulz@yale.edu
*Corresponding author

Received: 12 September 2016 Accepted: 27 November 2016 Published: 30 December 2016

Abstract

Background: The rapid acquisition of biological data and development of computationally
intensive analyses has led to a need for novel approaches to software deployment. In
particular, the complexity of common analytic tools for genomics makes them difficult to
deploy and decreases the reproducibility of computational experiments. Methods: Recent
technologies that allow for application virtualization, such as Docker, allow developers and
bioinformaticians to isolate these applications and deploy secure, scalable platforms that have
the potential to dramatically increase the efficiency of big data processing. Results: While
limitations exist, this study demonstrates a successful implementation of a pipeline with
several discrete software applications for the analysis of next‑generation sequencing (NGS)
data. Conclusions: With this approach, we significantly reduced the amount of time needed
to perform clonal analysis from NGS data in acute myeloid leukemia.

Key words: Big data, bioinformatics workflow, containerization, genomics

INTRODUCTION

The amount of data available for research is growing at an
exponential rate. The recent push for open data has also
rapidly increased the availability of biomedical datasets
for secondary analysis. Examples include the Yale Open
Data Access project,[1] a repository of clinical trial data,
and The Cancer Genome Atlas (TCGA),[2] a project that
makes genomic data accessible to researchers after initial
findings are released. While these data sets promote
ongoing research, the ability to efficiently store, move,
and analyze such large repositories is often a bottleneck
to analysis.[3]

In addition to the massive growth in volume and
availability, novel analyses, including advanced statistical
methods and machine learning, often require significant
resources for efficient processing. One example of
this in biomedical research is the analysis of next
generation sequencing (NGS) data. NGS is also known

as massively parallel or high‑throughput sequencing, as
it simultaneously sequences many fragments of DNA,
thereby producing enormous amounts of information.
These datasets often require several preprocessing steps
followed by detailed analysis. In addition to being
resource intensive, the reproducibility of computational
experiments using these data is often limited due to the
complexity of system and software configuration.[4] Some
application frameworks have made advances to improve

This article may be cited as:
Schulz WL, Durant T, Siddon AJ, Torres R. Use of application containers and workflows
for genomic data analysis. J Pathol Inform 2016;7:53.

Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2016/7/1/53/197197

This is an open access article distributed under the terms of the Creative Commons
Attribution‑NonCommercial‑ShareAlike 3.0 License, which allows others to remix,
tweak, and build upon the work non‑commercially, as long as the author is credited
and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153-3539.197197

Quick Response Code:

J Pathol Inform 2016, 1:53 http://www.jpathinformatics.org/content/7/1/53

the reproducibility of individual applications and analysis
pipelines,[5,6] but significant work remains to increase
this reliability, particularly for experiments performed
in resource‑limited environments or on computational
clusters.

The deployment of complex computational systems
is not unique to bioinformatics. As such, there has
been significant progress in building virtualization
layers for operating systems and more recently, software
applications.[7,8] A current example of this includes the
Docker platform (Docker, San Francisco, CA, USA), which
allows for the creation and configuration of software
containers for deployment on a range of systems.[9,10]
While the use of these technologies has limitations,
it also has the potential improve the usability of many
software applications in computational biology. As such,
several studies and initiatives have begun to focus on the
use of Docker in bioinformatics and computer science
research.[11‑13] In this paper, we demonstrate the potential
benefits of containerized applications and application
workflows for computational genomics research.

TECHNICAL BACKGROUND

To augment an ongoing study related to tumor
heterogeneity, we obtained access to acute myeloid
leukemia (AML) NGS data from TCGA.[14] Aligned
NGS data from TCGA are available through the Cancer
Genomics Hub (cgHub). The data set of interest
consisted of approximately 12 terabytes (TBs) of whole
genome sequencing (WGS) data and another 12 TB
of whole exome sequencing data. Our analysis required
the identification of somatic variants followed by a
prediction of tumor heterogeneity using publicly available
software tools. Unfortunately, many bioinformatics tools
have specific software dependencies and natively run
on only a subset of operating systems.[15] In addition,
many applications are unable to run their computations
in parallel, thus limiting analysis throughput. While
increasing the number of servers or individual server
resources can improve analysis speed, overall processing
may still be less efficient due to these limitations.

As previously noted, the Docker platform allows for
virtualized application deployments within a lightweight,
Linux‑based wrapper called a container.[9,11,15] This
approach is similar to operating system virtualization
but at the application level. Containerization enables
developers to create virtual environments that have
only the minimum necessary libraries, which users can
quickly deploy on their own infrastructure in a secure,
reproducible fashion. In addition, the isolation offered
by this approach means that a more robust, parallelized
workflow can be created for some applications that
do not natively support multi‑threading or parallel
processing. While this type of workflow implementation

is not beneficial for all use cases, scenarios where
compute capacity on a single node exceeds what a single
application can utilize are likely to benefit from such an
approach.

To efficiently predict tumor heterogeneity from TCGA
data, we implemented two key technologies: a Python
workflow using the Luigi library (Spotify, Stockholm,
Sweden)[16] and Docker containers for each key
application in our analysis pipeline. While neither of
these technologies is unique to genomic analysis or
bioinformatics, Luigi is a general workflow orchestration
library, and Docker allows for application visualization,
as previously noted. For this use case, we were restricted
to a single computational node with eight cores and
128 gigabyte (GB) of memory for analysis. As shown in
Figure 1, aligned WGS data were obtained for paired
germline and tumor specimens from cgHub (now the
genomic data commons) using the cgDownload utility.[17]
We identified somatic variants with the SomaticSniper
application[18] and generated clonal predictions with
the SciClone library.[19] Sequential data acquisition
and analysis took approximately 4 h to complete per
paired sequence but had significant variability between
specimens, since file size and the number of genetic
mutations varied significantly.

APPROACH

Because of the large number of specimens and the time
needed for sequential analysis, our first approach to
improving pipeline efficiency was the implementation of
a Python workflow using the Luigi library. This library is
commonly used for workflow automation and has gained
significant traction within bioinformatics through the
development of the Sci: Luigi library.[20] Implementation
of our pipeline with this workflow library allowed us to

Figure 1: Serial workflow and architecture to download Cancer
Genomics Hub data. To obtain next generation sequencing data
from Cancer Genomics Hub, the cgDownload utility was used to
transfer aligned whole genome and whole exome sequencing data.
The SomaticSniper utility was then used to identify somatic variants
and tumor clonality was predicted with SciClone. These utilities
were all manually configured on a server running CentOS 6.7

J Pathol Inform 2016, 1:53 http://www.jpathinformatics.org/content/7/1/53

include automated fault tolerance, primarily for issues
that resulted in sequence download failures due to brief
losses in network connectivity. In addition, the workflow
could run continuously and unsupervised, which
markedly reduced the amount of hands‑on time needed
for analysis.

Workflow automation led to a significant improvement
in efficiency; however, the inability to parallelize the
software packages limited analysis throughput. While
the cgDownload utility does support multi‑threading,
local bandwidth and disk size limitations made bulk
downloading of the entire TCGA data set difficult. In
addition, a bulk download followed by a full analysis of
the data set would mean that network capacity would be
saturated while the computational resources remained
idle, followed by the opposite scenario. To maintain high,
simultaneous utilization of all local hardware resources,
including bandwidth, memory, and processor capacity,
we deployed the cgDownload utility, SomaticSniper, and
SciClone within isolated Docker containers and executed
each container with our Luigi workflow [Figure 2].
This approach allowed us to horizontally and vertically
scale each application to take full advantage of our
local hardware. In addition, each application could
be deployed on a single node running CentOS7
(Red Hat, Raleigh, NC, USA) within a container running
its natively‑supported operating system: CentOS6 for
cgDownload and Ubuntu (Canonical, London, UK) for
SomaticSniper and SciClone.

This approach to application deployment can offer
significant performance benefits. However, any
virtualization technology has the potential to offset these
gains due to resource overhead in the virtualization layer.
To assess the impact of Docker virtualization on two key
metrics, disk throughput, and processing efficiency, we
used two benchmarking tools to evaluate performance
on the virtual server as well as in a Docker container.
To benchmark disk input/output performance, we used
the dd command line tool, a standard Linux utility
that can be used to read and write files and to gather

performance statistics. The dd utility was used to write
a 1 GB file and showed similar performance in both
a virtual machine and a Docker container within this
same environment [Figure 3a]. Similarly, results from
sysbench, an open‑source benchmarking utility originally
created by MySQL AB, found that the time needed
to calculate 10,000 primes in either environment was
equivalent [Figure 3b]. When combined with evidence
from other studies,[21] these results demonstrate that
Docker has a minimal overhead for these components.

Since we found similar benchmarking results for both the
virtual machine and Docker containers, we next executed
our workflow to analyze the AML WGS results from
TCGA. Using this approach, we were able to stagger data
download and processing to take advantage of all system
resources [Figure 4]. One limitation to this approach is
that none of the tools described here provide built‑in
resource monitoring. This pipeline was well‑suited to
parallel analysis since each application had specific,
isolated resource needs such as network, storage, or
compute capacity, which could be monitored with custom
code within the Python workflow. Use of this automated
staggered workflow with Docker containers allowed use to
analyze fifty specimens from the TCGA data set within
approximately 3 days. It is difficult to provide statistical
performance metrics since many factors such as data
volume, and network bandwidth can significantly alter
the overall pipeline performance. However, the general
approach of staggered, parallel computation should
provide increased processing efficiency for workloads such
as this.

CONCLUSION

The complex nature of genomic data and the tools
used to analyze these data sets makes efficient
processing difficult with standard environments. As
noted above, the use of emerging technologies such as
Docker in combination with automated workflows may
significantly improve the efficiency of data processing in

Figure 2: Comparison of standard application architecture and containerized architecture for clonal analysis. (a) When deployed in a
virtual server, the analysis workflow was installed on CentOS 6.7 and had to be run serially due to limitations in software parallelization
and local resources. Applications are launched manually in sequence to download NGS data, identify variants, and predict tumor
clonality. (b) When configured in Docker containers and driven by a workflow manager, applications were automatically launched and
able to scale based on available system resources. Each application was configured on its native operating system architecture within
the container, as indicated in the figure

ba

J Pathol Inform 2016, 1:53 http://www.jpathinformatics.org/content/7/1/53

bioinformatics. With the growing number of open data
projects, use of these techniques will be necessary to take
advantage of available computational resources.

While performance and pipeline efficiency were key
components of this implementation, Docker containers
also allow for application isolation from the host operating
system. Since many bioinformatics tools have complex sets
of dependencies and are difficult to build from source, the
ability to deploy containers with different operating systems
and dependency versions to the same host decreases the
amount of effort needed to being analysis. For example, the
cgDownload utility is distributed as a compiled binary for
use on CentOS 6.7, but can only be deployed on CentOS
7 when built from source, which requires a significant
amount of manual configuration. As shown in Figure 2, the
use of containers allowed the deployment of each utility
on its natively supported operating system, which improves
stability and decreases the potential for dependency
conflicts among software applications.

Several other tools exist for the orchestration of
containerized applications, such as Kubernetes and
Docker Swarm. For complex platforms, these tools can
be used to deploy containers across hardware clusters and
to integrate networking and storage resources between
containers. However, these applications work strictly
at the container level and do not inherently provide
application‑level workflows as presented here. Additional
implementation experience about the use of these tools
within high‑performance clusters may provide valuable
insights about the scalability of these tools within
bioinformatics workflows.

The above findings demonstrate the promise of emerging
technologies to improve the efficiency of genomic analysis.
Because of the subsequent increase in analysis throughput,
use of these tools means that big data analyses can be

Figure 4: Illustration of parallelization improvements with a workflow‑driven container architecture. (a) When performed serially, the
download (white bars) and analysis (shaded bars) of a single pair of tumor and germline sequence on local hardware took approximately
4 h (bars drawn to scale). (b) When parallelized with a workflow manager and Docker containers, multiple specimens could be processed
simultaneously to take advantage of all system resources, including network, memory, and processor capacity

b

a

Figure 3: Disk throughput and processor efficiency of Docker
containers. (a) The time needed to write a one‑gigabyte file with
the dd utility was similar in both a virtual machine and within a
Docker container on the same host. (b) The calculation of 10,000
primes with the sysbench utility showed similar performance in a
virtual machine and a Docker container on the same host

b

a

J Pathol Inform 2016, 1:53 http://www.jpathinformatics.org/content/7/1/53

done even with limited local computational capacity.
Finally, use of container technology can improve pipeline
and experimental reproducibility since preconfigured
applications can be readily deployed to nearly any host
system. While many factors can impact reproducibility,
the use of containers limits variability due to differences
in software environment or application configuration
when appropriately deployed. The continued use of
emerging technology and novel approaches to software
architecture has the potential to increase the efficiency of
computational analysis in bioinformatics.

Financial Support and Sponsorship
ACLPS Paul E. Strandjord Young Investigator Grant.

Conflicts of Interest
There are no conflicts of interest.

REFERENCES

1. Krumholz HM, Waldstreicher J. The Yale Open Data Access (YODA)
Project – A mechanism for data sharing. N Engl J Med 2016;375:403‑5.

2. Collins FS, Barker AD. Mapping the cancer genome. Pinpointing the genes
involved in cancer will help chart a new course across the complex
landscape of human malignancies. Sci Am 2007;296:50‑7.

3. Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev 2014;1:293‑314.
4. Nekrutenko A, Taylor J. Next‑generation sequencing data interpretation:

Enhancing reproducibility and accessibility. Nat Rev Genet 2012;13:667‑72.
5. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M,

et al. Galaxy: A web‑based genome analysis tool for experimentalists. Curr
Protoc Mol Biol 2010;Chapter 19:Unit 19.10.1‑21.

6. Hatakeyama M, Opitz L, Russo G, Qi W, Schlapbach R, Rehrauer H, et al.
SUSHI: An exquisite recipe for fully documented, reproducible and reusable

NGS data analysis. BMC Bioinformatics 2016;17:228.
7. Dudley JT, Butte AJ. In silico research in the era of cloud computing. Nat

Biotechnol 2010;28:1181‑5.
8. Howe B. Virtual appliances, cloud computing, and reproducible research.

Comput Sci Eng 2012;14:36‑41.
9. Docker. 2016. Available from: https://www.docker.com. [Last accessed on

2016 Nov 21].
10. Docker AC. Software engineering. IEEE Softw 2015;32:102‑3.
11. Boettiger C. An introduction to Docker for reproducible research. SIGOPS

Oper Syst Rev 2015;49:71‑9.
12. Hung LH, Kristiyanto D, Lee SB, Yeung KY. GUIdock: Using Docker containers

with a common graphics user interface to address the reproducibility of
research. PLoS One 2016;11:e0152686.

13. Moreews F, Sallou O, Ménager H, Le Bras Y, Monjeaud C, Blanchet C, et al.
BioShaDock: A community driven bioinformatics shared Docker‑based
tools registry. F1000Res 2015;4:1443.

14. Cancer Genome Atlas Research Network. Genomic and epigenomic
landscapes of adult de novo acute myeloid leukemia. N Engl J Med
2013;368:2059‑74.

15. Piccolo SR, Frampton MB. Tools and techniques for computational
reproducibility. Gigascience 2016;5:30.

16. Spotify. Luigi; 2016. Available from: https://www.github.com/spotify/luigi.
[Last accessed on 2016 Nov 21].

17. National Cancer Institute. Genomic Data Commons; 2016. Available from:
https://www.gdc.cancer.gov. [Last accessed on 2016 Nov 21].

18. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al.
SomaticSniper: Identification of somatic point mutations in whole genome
sequencing data. Bioinformatics 2012;28:311‑7.

19. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al.
SciClone: Inferring clonal architecture and tracking the spatial and temporal
patterns of tumor evolution. PLoS Comput Biol 2014;10:e1003665.

20. Lampa S. Sci: Luigi; 2016. Available from: https://www.github.com/pharmbio/
sciluigi. [Last accessed on 2016 Nov 21].

21. Preeth EN, Mulerickal FJ, Paul B, Sastri Y. Evaluation of Docker
Containers Based on Hardware Utilization. In: 2015 International
Conference on Control Communication and Computing India (ICCC);
2015. p. 697‑700.

