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Simple Summary: Meningeal/intracranial solitary fibrous tumor/hemangiopericytoma (icSFT /HPC)
have a poor clinical outcome with metastatic behavior compared to soft tissue/extracranial SFT /HPCs
(exSFT/HPC), but the underlying genetic factors are unclear. This study showed that WNT signaling,
including WNT5A, was elevated in exSFT/HPC and MMP9 expression was higher in icSFT/HPC at
both the mRNA and protein levels. Expression of CLDN5, a marker of endothelial tight junctions,
was decreased in icSFT/HPC. The metastatic behavior of icSFT/HPC may be due to dysregulated
angiogenesis and increased permeability of the vasculature caused by an altered WNT signaling
pathway. Along with the increased expression of MMP9 in individual tumor cells, the combination of
these effects will increase the probability of distant metastasis. Although exSFT/HPC and icSFT/HPC
share a key molecular event, i.e., NAB2-STAT6 fusion, SFT/HPC may exhibit different biological
properties and clinical courses depending on tumor location.

Abstract: Solitary fibrous tumor/hemangiopericytoma (SFT/HPC) is a mesenchymal tumor originat-
ing from various soft tissues and meninges, which carries the NAB2-STAT6 fusion gene.
Meningeal/intracranial SFT/HPCs (icSFT/HPC) have a poor clinical outcome with metastatic behav-
ior compared to soft tissue/extracranial SFT/HPCs (exSFT /HPC), but the underlying genetic factors
are unclear. Differentially expressed genes (DEGs) were analyzed by NanoString nCounter assay
using RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue samples. Additionally,
immunohistochemistry (IHC) was performed on 32 cases of exSFT/HPC, 18 cases of icSFT/HPC, and
additional recurrent or metastatic cases to verify the findings. Pathway analysis revealed that the
WNT signaling pathway was enriched in exSFT/HPC. Analysis of DEGs showed that expression of
WNT5A was lower and that of MMP9 was higher in icSFT /HPC than in exSFT/HPC (p = 0.008 and
p = 0.035, respectively). IHC showed that WNT5A and CD34 expression was high in exSFT/HPC
(p < 0.001, both), while that of MMP9 was high in icSFT/HPC (p = 0.001). Expression of CLDN5 in
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tumoral vessels was locally decreased in icSFT/HPC (p < 0.001). The results suggested that decreased
WNT5A expression, together with increased MMP9 expression, in icSFT/HPC, may affect vascular
tightness and prompt tumor cells to metastasize extracranially.

Keywords: hemangiopericytoma; gene expression profiling; immunohistochemistry; neoplasm
metastasis; solitary fibrous tumors

1. Introduction

Solitary fibrous tumor/hemangiopericytoma (SFT/HPC) is a rare mesenchymal tumor
that occurs in the pleura and various extrapleural soft tissues [1]. Histologically, SFT/HPC
is composed of haphazardly arranged spindle cells in a patternless architecture and is
associated with variably collagenous stroma and often a staghorn-like vascular pattern [1].
Other features may include myxoid change [2], mature adipose tissue [3], floret-like giant
cells (formerly referred to as giant cell angiofibroma) [4], and even dedifferentiation [5-7].
SFT/HPC was once considered a pericyte-originated tumor and is believed to exhibit
more or less vascular-related characteristics, although it is currently subclassified as a
fibroblastic tumor [1,8]. Genetic and molecular analyses of dysregulated angiogenesis
have been conducted for SFT/HPC [9,10]. Vascular endothelial growth factor (VEGF) and
its receptor VEGFR were upregulated [10,11] in association with activation of the AKT
pathway [9,10]. These results suggested that activation of angiogenic signaling pathways
is involved in tumorigenesis of SFT/HPC.

Previously, meningeal SFT and HPC were considered distinct [12-14]. Following the
discovery of the NAB2-STAT6 fusion gene in 2013 [15,16], they became a united entity
based on the classification of the World Health Organization (WHO) of tumors of soft
tissues [17], as was meningeal SFT/HPC in the 2016 WHO classification of the central
nervous system (CNS) [18].

Although SFT and HPC were genetically integrated earlier in the extracranial soft
tissues, meningeal HPCs have long been considered distinct from SFT in the intracranial
location. SFT, whether it occurs in the meninges or in the extracranial soft tissues, recur
very rarely and is not aggressive, but meningeal HPC frequently recurs and metasta-
sizes extracranially [8,19]. Also, CD34 immunoreactivity is dissimilar between SFT and
HPC. Almost all extra- and intra-cranial SFTs show CD34 immunopositivity (90-95%),
but meningeal HPCs exhibit variable CD34 positivity rates (33-100%), typically with a
patchy rather than a diffuse strong distribution pattern [8]. The WHO classification of CNS
tumors uses a three-tier system that considers the SFT phenotype [19], while a two-tier
system based on mitotic activity is used, irrespective of phenotype, to classify soft-tissue
tumors [1].

Although integration of the tumor entities of SFT/HPC in the CNS has been accepted,
previous studies to explain the causes of the difference in pathological phenotypes or tumor
progression have been unsuccessful. Herein, we performed an oncogenetic analysis of
SFT/HPC samples to assess differences in gene expression levels according to the location
and confirmed the difference at the protein levels.

2. Materials and Methods
2.1. Sample Collection

From 2000 to 2017, cases diagnosed as SFT or HPC were retrieved from the archives
of the Department of Pathology of Chonnam National University Hospital and Chonnam
National University Hwasun Hospital. The initially retrieved cases were screened by STAT6
immunohistochemistry (IHC), considered a surrogate of the NAB2-STAT6 gene fusion
test [1], and selected by tissue availability. Fifty tissue samples of primary tumors were
grouped as 18 intracranial /meningeal SFT/HPCs (icSFT/HPC) and 32 extracranial /soft
tissue SFT/HPCs (exSFT/HPC) according to the tumor locations. The 18 icSFT/HPCs
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included one spinal SFT/HPC. A further 13 tissue samples corresponding to extracranial
metastasis and local recurrence were included. The six tissue samples corresponding to
extracranial metastasis of icSFT/HPC consisted of one unmatched in-house sample, three
matched in-house samples, and two unmatched extra-institutional samples provided by
Severance Hospital. The seven in-house tissue samples corresponding to local recurrence
consisted of three matched icSFT/HPC samples and four matched exSFT/HPC samples,
three of which were obtained from one patient.

Hematoxylin and Eosin-stained tissue slides were reviewed and re-graded by pathol-
ogists (5.5.K., J.-H.L., and K.-H.L.) according to the WHO classification of tumors of the
CNS 2016 [19] and of soft tissue and bone 2020 [1]. Although one of the 18 cases of
icSFT/HPC showed an SFT phenotype, the grade was not indicated separately. Repre-
sentative formalin-fixed paraffin-embedded (FFPE) tissue blocks were selected for further
investigation. Clinical data were collected from the medical records. This study was
approved by the Institutional Review Board of the Chonnam National University Hwasun
Hospital (CNUHH-2017-029).

2.2. Gene Expression Assay Using the NanoString nCounter Analysis System

The level of gene expression was measured using the NanoString nCounter analysis
system (NanoString Technologies, Seattle, WA, USA), as described previously [20]. Seven
cases of icSFT/HPC and six cases of exSFT/HPC were subjected to the gene expression
assay. For better RNA quality, the most recently acquired cases were selected from each
group based on the test time point. Total RNA was extracted from 10-pum-thick FFPE
sections using the High Pure FFPE RNA Isolation Kit (Roche Diagnostic, Mannheim,
Germany) according to the manufacturer’s instructions. Total RNA was hybridized with
preset probes and evaluated using the NanoString nCounter digital analyzer (PhileKorea
Technologies, Seoul, Korea). The nCounter pan-cancer pathways panel included 770 genes
from 13 canonical pathways (NanoString Technologies). Data analysis was performed
using nSolver analysis software (NanoString Technologies) and the mRNA profiling data
were normalized using housekeeping genes. Normalized data were log2-transformed for
further analysis.

2.3. Pathway Dysregulation and Differentially Expressed Gene Analysis

Pathway dysregulation was scored using nSolver software (NanoString Technologies).
Differential expression analysis was performed using the same regression model as the
gene-level differential expression analysis. These regressions were used to calculate a
p-value for the association of each pathway of icSFT/HPC vs. exSFT/HPC. Global sig-
nificance statistics were also calculated for each pathway by measuring the cumulative
evidence for the differential expression of genes in a pathway.

Gene set enrichment analysis (GSEA) was performed using the Molecular Signatures
Database (MSigDB) v.7.0 using v. 4.0.1 of GSEA software (Broad Institute, Cambridge, MA,
USA) [21,22]. The collections of MSigDB gene sets included Kyoto Encyclopedia of Genes
and Genomes (KEGG) gene sets. The number of permutations was set to 1000 and the
permutation type was gene set. Results were considered significant with a p-value < 0.05
and an FDR g-value < 0.1. DEG analysis was performed in nSolver Analysis Software to
obtain fold differences and p-values. R-project v. 4.0.2 software (https://cran.r-project.org/
mirrors.html; accessed date, 30 June 2020) for Mac OS was used for visualizations of DEGs.

2.4. Immunohistochemistry

Hematoxylin and Eosin (H&E)-stained sections were examined, and representative
tissue blocks were selected for further staining. Tissue sections (3-pum-thick) were subjected
to IHC using a Bond-Max Autostainer (Leica Microsystems, Buffalo Grove, IL, USA), as
described previously [23]. The following antibodies were used: STAT6 (1:500 dilution;
catalogue no. ab32520; Abcam, Cambridge, UK), BCL2 (1:50 dilution; M0887; DAKO,
Glostrup, Denmark), CD99 (1:1000 dilution; 18-0235; Zymed, San Francisco, CA, USA),
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CD34 (1:400 dilution; M7165; DAKO), WNT5A (1:400 dilution; AF645; R&D, Minneapolis,
MN, USA), MMP9 (1:300 dilution; #13667; Cell signaling Technology, Danvers, MA, USA),
and Claudin-5 (CLDNS, 1:400 dilution; ab131259; Abcam). STAT6 staining was assessed as
positive or negative to select SFT/HPC cases. The IHC scoring criteria for BCL2, CD99,
and CD34 were: zero, if not expressed in any tumor cells; one, if expressed in 1-30% of
the tumor area; two, if expressed in 31-60%; and three, if expressed in 61% or more. IHC
results of WNT5A were scored according to staining intensity, from zero through three
as none, low, moderate, and strong expression, respectively. Altered scoring criteria were
applied to MMP9 ITHC because only a small proportion of tumor cells was positive for
MMP9. Positive staining in inflammatory cells was excluded. A score of three was assigned
if there were three or more 400 high power fields with 10 or more positive tumor cells; as
one, if there were fewer than five positive cells in any high-power field; as two, if a sample
fell between the one-point and three-point criteria; and as zero, if not expressed in any
tumor cells. CLDNS is a marker of vascular tight junctions that shows strong expression
in endothelium. Expression of CLDN5 was scored as follows: three, if expression was
decreased in less than 10% of tumor vessels; two, if expression was decreased in 11-20% of
tumor vessels; and one, if expression decreased in more than 21% of tumor vessels. IHC
slides were assessed by experienced pathologists (5.5.K., J.-H.L., and K.-H.L.), who were
blinded to the clinical details. Immunohistochemical staining was re-evaluated if there
was disagreement between observers. Three pathologists reviewed the cases together and
reached an agreement for inconclusive samples.

2.5. Immunofluorescence Staining

Immunofluorescence staining was performed as described previously [24]. Briefly,
FFPE tissues of SFT/HPC cases were cut into sections 3 mm thick and deparaffinized
using xylene. Heat-induced antigen retrieval was performed in citrate buffer (pH = 6.0)
for 15 min, and 3% hydrogen peroxide was applied to inactivate endogenous peroxidase
activity. The sections were next incubated for 16 h at 4 °C with primary antibodies targeting
CD34 (anti-mouse antibody, 1:50, M7165, DAKO) and CLDN5 (anti-rabbit antibody, 1:200,
ab131259, Abcam). Subsequently, sections were co-incubated with goat anti-mouse IgG
(1:200, A-11001, Life Technologies, Carlsbad, CA, USA) and goat anti-rabbit IgG (1:200,
A1011, Life Technologies) secondary antibodies for 1 h at room temperature. Nuclei were
counterstained with 300 nM 4/,6-diamidino-2-phenylindole (DAPI) for 20 min, followed by
washing with PBS. The chamber slides were mounted with antifade mounting medium and
imaged using the EVOS fluorescence imaging system (Thermo Fisher Scientific, Waltham,
MA, USA).

2.6. Statistical Analysis

The Chi-squared and Fisher’s exact tests were used to assess differences in IHC ex-
pression between icSPF/HPC and exSPF/HPC. To assess the association between WNT5A
and MMP9, we generated a scatter plot and used the Pearson association method. The
Mann-Whitney test was used to compare differences between two groups. A Kendall
rank correlation analysis was performed to calculate the correlation coefficient between
each variable. Statistical analysis was performed using R-project v. 4.0.2 software (https:
//cran.r-project.org/mirrors.html; accessed date 30 June 2020) for Mac OS. p-values < 0.05
were considered indicative of significance.

3. Results
3.1. Characteristics of Selected SFT/HPC Cases

The mean ages of the patients with exSFT/HPC and icSFT/HPC were similar (53 and
49 years, respectively). Among the patients with extracranial tumors, the proportion of
women was higher than among those with intracranial tumors (59% and 50.0%, respec-
tively). Median tumor size was larger in exSFT/HPC than in icSFT/HPC (8.5 cm vs. 4.7 cm).
The proportion of high histological grade was higher in icSFT/HPC (9/18, 50%) than in
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exSFT/HPC (9/32, 28%). Local recurrence was more frequently observed in icSFT/HPC
(6/18, 33%) than in exSFT/HPC (3/32, 9%) and the events of distant metastasis as well
(3/18,17% vs. 2/32, 6%). The clinicopathological profiles of icSFT/HPC and exSFT /HPC
are listed in Table S1.

3.2. DEGs between icSFT/HPC and exSFT/HPC by Pan-Cancer Pathway Panel Assay

Seven cases of icSFT/HPC and six of exSFT/HPC were analyzed by NanoString gene
expression assay. To assess the significance of 13 canonical cancer pathways in icSFT/HPC
compared to exSFT/HPC, two statistical approaches—pathway dysregulation score and
global significance statistic—were used.

Although no pathways were significantly different between icSFT/HPC and exSFT/HPC
at p < 0.05, the greatest difference was in the WNT signaling pathway followed by the
transcriptional mis-regulation pathway (TXmisReg) (Figure 1A). The biological significance
of DEGs was explored by gene set enrichment analysis (GSEA). The WNT signaling pathway
(enrichment score (ES) = 0.40, normalized enrichment score (NES) = 1.59, nominal p (NOM
p)-value = 0.011 and FDR g-value = 0.344) and focal adhesion (ES = 0.39, NES = 1.49, NOM
p-value = 0.06 and FDR g-value = 0.406) KEGG gene sets were upregulated in exSFT/HPC
compared to icSFT/HPC (Figure 1B and Figure S1).

Of the 770 genes in the nCounter pan-cancer pathway panel, WNT5A was enriched in
exSFT/HPC with a 6.59-fold change (p = 0.008) and MMP9 was enhanced in icSFT/HPC
with an 8659.1-fold change (p = 0.016) (Figure 1C). The heatmap shows the differential
expression profile between icSFT/HPC and exSFT/HPC. Three of the ten WNT-related
genes that met the significance level were overexpressed in icSFT/HPC and seven were
overexpressed in exSFT/HPC (Figure 1D). Expression of MMP9 was inversely correlated
with that of WNT5A WNT5A—the higher the MMP9 expression, the lower the WNT5A
expression—by linear correlation analysis, but was not significant so (p = 0.155, r* = 0.175;
Figure 1E). The expression of WNT5A was significantly higher in exSFT/HPC (p = 0.008),
whereas that of MMP9 was significantly higher in icSFT/HPC (p = 0.035; Figure 1F). In the
individual-patient precision analysis, the distance between the expression level of WNT5A
and that of MMP9 in icSFT/HPC was greater than that in exSFT/HPC (Figure S2A). In the
correlogram, the expression of WNT5A (Kendal’s T = —0.63, p = 0.01) and MMP9 (Kendal’s
T =10.52, p = 0.03) showed a strong correlation with the location of SFT/HPC (Figure S2B).
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Figure 1. Differentially expressed genes in icSFT/HPC and exSFT/HPC. (A) Based on global significance statistics and
pathway dysregulation p-values, the greatest difference between the two groups was observed in the WNT signaling
pathway. (B) Gene set enrichment analysis (GSEA) showed that WNT signaling and focal adhesion pathways of KEGG gene
sets were enriched in exSFT/HPC compared to icSFT/HPC. (C) Volcano plot of differentially expressed genes according to
location, a fold change in expression > 2, and p < 0.05. (D) Heatmap of representative genes showing differential expression
profiles in icSFT/HPC and exSFT/HPC. (E) Linear correlation analysis of WNT5A with MMP9 expression. Circles represent
groupings based on the location of SFT/HPC. (F) Box plots showing that the expression level of WNT5A was high in
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exSFT/HPC and that of MMP9 was high in icSFT/HPC.
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3.3. Differential WNT5A and MMP9 Protein Levels in icSFT/HPC and exSFT/HPC

To examine DEGs at the protein level, we performed IHC staining on FFPE tissues of

SFT/HPC (Figure 2).
Extracranial SPF/HPC Intracranial SPF/HPC
Benign Malignant Grade 2 Grade 3

CD34 BCL2 CD99 STAT6 H&E

WNT5A

MMP9

v s -

Figure 2. Representative images and histofigures of icSFT/HPC and exSFT/HPC. From top to bottom, chest computed
tomography (CT), brain magnetic resonance imaging, Hematoxylin and Eosin (H&E) staining, and immunohistochemical
staining for STAT6, CD99, BCL2, CD34, WNT5A, and MMP9 (original magnification: 200x for H&E, STAT6, CD99, BCL2,
CD34, and WNT5A; and 400x for MMP9). From left to right, benign and malignant exSFT/HPCs were followed by grade 2
and 3 icSFT/HPCs. After a review of H&E slides, SFT/HPC cases were confirmatively selected by nuclear immunoreactivity
of STAT6. Compared to the similar expression of CD99 and BCL2 across grades and locations, the CD34 immunostaining
intensity was weaker in icSFT/HPC than in exSFT/HPC. Expression of WNT5A was also lower in icSFT/HPC than
exSFT /HPC, but expression of MMP9 in occasional tumor cells was enhanced in exSFT/HPC compared to icSFT/HPC.
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Expression of CD99 and BCL2, which were used as auxiliary diagnostic markers of
SFT/HPCs prior to the use of STAT6, was not significantly different between the groups
(p = 0.777 and 0.277, respectively). IHC of CD34 revealed diffusely strong expression in
exSFT /HPC but weak and patchy positivity in icSFT/HPC. Expression of WNT5A was
significantly higher in exSFT/HPC than in icSFT/HPC and expression of MMP9 was
significantly enhanced in icSFT/HPC (p < 0.001 and p = 0.001, respectively; Figure 3A).
IHC of MMP9 revealed individual tumor cells with distinct cytoplasmic positivity. In
cases with high MMP9 THC scores, the volume of cytoplasmic positivity in tumor cells
tended to become larger and the contours were more irregular. By linear correlation
analysis, expression of MMP9 was inversely correlated with that of WNT5A (p = 0.008,
2 = 0.137; Figure 3B), similar to those at the gene level. In the correlogram, WNT5A
(Kendal’s = —0.57, p < 0.001) and CD34 (Kendal’s T = —0.72, p < 0.001) showed significant
correlations with exSFT/HPC, whereas MMP9 (Kendal’s T = 0.50, p < 0.001) showed a
significant correlation with icSFT/HPC (Figure 3C). This finding was consistent with the
DEG analysis.

0 [ N e Grade  Expression Location

N 0 U  Location [ g exprossion Il exteacranial SFTIHPC (0= 32)

IHC expression of MMP9

AR ENEENNENNNENNNEN ANDNNDD NDDNEANE DEODEEEN = voweomion
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2 3 MMP9 1

IHC expression of WNT5A

Figure 3. Analysis of IHC staining of SFT/HPC. (A) Heatmap of IHC expression of BCL2, CD99, MMP9, CD34, WNT5A,
and CLDNS, displayed with grades and locations of SFT/HPCs. p-values are for the correlation between location and IHC
expression. (B) Linear correlation analysis of IHC expression of MMP9 and WNT5A. Circles represent groupings according
to SFT/HPC location. (C) Correlogram of IHC expression of CLDN5, CD34, WNT5A, and MMP9 according to location
and grade of SFT/HPC. Red circles indicate a positive correlation between the paired variables and blue circles a negative

correlation. The intracranial location was coded as a positive value, and the extracranial location as a negative value.

3.4. Different Expression of CLDN5 and CD34 in icSFT/HPC and exSFT/HPC

To investigate the role of altered WNT5A expression in maintaining vascular tightness,
IHC of CLDNS5, a representative marker for vascular tight junctions, was performed.
By IHC of CLDNS5, exSFT/HPC revealed well-preserved vascular tight junctions that
overlapped with CD34 expression on a background of diffuse immunoreactivity in tumor
cells (Figure 4A—C). Double immunofluorescence also highlighted intratumoral vessels
of exSFT/HPC that colocalized with CLDN5 and CD34 (Figure 4D-F). In comparison,
icSFT/HPCs displayed occasional foci with tumor vasculature that were negative for
CLDNS5 but strongly positive for CD34 (Figure 4G-I). By double immunofluorescence,
some intratumoral vessels of icSFT/HPCs were positive solely for CD34 and negative
for CLDNS5, but other vessels were positive for both CD34 and CLDNS5 (Figure 4]-L). A
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semi-quantitative assessment showed that CLDNS expression was significantly lower in
icSFT /HPCs than in exSFT/HPC (p < 0.001, Figure 3A).
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Figure 4. CLDN5 and CD34 expression in icSFT/HPC and exSFT/HPC. (A-F) Representative
exSFT /HPC case. H&E staining showed typical microscopic features of exSFT/HPC (A). IHC stain-
ing showed moderate to strong expression of CLDNS5, indicating well-preserved tight junctions of
the tumor vasculature (B), and diffuse positivity for CD34 in exSFT/HPC (C). Double immunoflu-
orescence showed strong expression of CLDN5 (D), and diffuse expression of CD34 (E). Merged
image showing tumor vessels with well-preserved coexpression of CLDN5 and CD34 in exSFT/HPC
(F) (D-F, scale bar, 100 um). (G-L) Representative icSFT/HPC case. H&E staining showed typical
microscopic features of icSFT/HPC (G). IHC showed some vessels with significantly decreased
expression of CLDNS5 (black arrowheads) (H), compared to densely labeled CD34 in tumor vessels of
icSFT/HPC (I). Double immunofluorescence revealed some tumor vessels where the expression of
CLDNSb5 was markedly decreased (J) but the expression of CD34 was maintained (gray arrows) (K).
Merged image showing good contrast between vessels stained for only CD34 (gray arrows) and other
vessels with coexpression of CLDN5 and CD34 (yellow arrowheads) (L) (J-L, scale bar, 100 um).

3.5. Reduced and Enhanced Expression of WNT5A and MMP9 in Extracranial Metastatic Lesions
of icSFT/HPC

To investigate the biological role of WNT5A and MMP9 in icSFT/HPC, we performed
IHC on six cases of icSFT /HPC with extracranial metastasis, of which four were in-house
cases and two were extra-institutional cases (Table S2). IHC of WNT5A in extracranial
metastatic lesions revealed none-to-weak positivity but MMP9 IHC showed occasional
tumor cells with strong cytoplasmic immunoreactivity (Figure 5A). In comparison, two
cases of locally recurrent exSFT/HPC maintained high expression of WNT5A and low
expression of MMP9 (Figure S3A). By contrast, three cases of locally recurrent icSFT/HPC
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displayed low expression of WNT5A and high expression of MMP9, similar to metastatic
lesions at extracranial locations (Figure S3B).
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Figure 5. Cases of icSFT/HPC exhibiting extracranial metastasis. (A) In all six cases, WNT5A expression was markedly

decreased but that of MMP9 was significantly increased by IHC. (B) The clinical progression of case four was as follows:

after surgical resection and radiotherapy, the patient showed no recurrence for four-and-a-half years. On follow-up imaging

at five-and-a-half years postoperatively, the patient showed distant lung metastasis and local recurrence at the intracranial

location. Surgical resection of the intracranial lesion and systemic chemotherapy were performed. At eight -and-a-half years

after the initial operation, the metastatic lesions became widespread despite continued chemotherapy, and the patient died

six months later.

A representative case from our archives had a disastrous clinical course caused by
extracranial metastasis of icSFT/HPC. Initially, the 36-year-old woman was diagnosed
with grade-2 icSFT/HPC and her condition was maintained without recurrence by ra-
diotherapy (Figure 5B). The locally recurrent tumor progressed to grade-3 SFT/HPC and
there was distant lung metastasis five-and-a-half years later. Despite repeated surgery
and chemotherapy, the patient died from multiple lung metastases nine years after the
initial diagnosis.

4. Discussion

We found that WNT signaling differed between icSFT/HPC and exSFT/HPC. Differ-
ences in WNT signaling according to SFT/HPC location influenced the angiogenesis-related
pathways, which may have caused differences in the biological properties of the tumors.
Among the WNT signaling genes, WNT5A expression was higher in exXSFT/HPC than in
icSFT/HPC.

The WNT signaling pathways produce intracellular downstream cascades in cell
proliferation, differentiation, polarity, adhesion, and motility [25,26]. WNT ligands and
receptors are categorized as (1) canonical WNT signaling, in which the transcriptional
activity of 3-catenin is a key player, and (2) non-canonical WNT signaling, which does
not involve (-catenin [25]. Non-canonical WNT signaling, which regulates cell migra-
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tion and polarity in major morphogenetic events including gastrulation and neural tube
closure, is implicated in the regulation of angiogenesis and vascular remodeling [27-29].
WNT5A is a non-canonical WNT ligand that plays an important role in developmen-
tal morphogenesis —including planar cell polarity, convergent extension movements,
and epithelial-mesenchymal interaction—by binding to Frizzled- and Ror-family recep-
tors [25,30]. WNT5A is an angiogenic factor that contributes to endothelial cell proliferation
and migration and vascular network formation [31,32]. Korn et al. showed that the reduced
vascularization in a mouse model with deficient WNT factors could be rescued by applica-
tion of WNT5A in the context of preferential expression of non-canonical WNT ligands in
endothelial cells [29]. Carvalho et al. showed that WNT5A regulates angiogenic sprout-
ing by stabilizing vinculin at cell junctions and directing cells to move collectively [33].
WNT5A was investigated in this study because we hypothesized that WNT5A is related to
vascular stability in association with angiogenic property represented by CD34 immunore-
activity. We presume, however, that the non-canonical WNT11 and canonical WNT2 in
the heatmap of DEGs (Figure 1D) were also related to vascular stability. WNT5A exerts
both tumor-suppressing and oncogenic effects depending on the type and location of
cancer [25]. WNT5A overexpression was associated with an invasive phenotype of human
glioblastoma, and particularly with stem-like features in the mesenchymal subtype [34].

Tight junction integrity in endothelial cells is maintained by transmembrane proteins
of the CLDN family, junction adhesion molecules and occludin, and cytosolic proteins
such as the ZO family [35-37]. Interlinking of two extracellular loops of CLDN seals of
the tight junctions between endothelial cells [38]. The expression of the CLDN family in
SFT/HPC has rarely been investigated. We showed that the expression of WNT5A was
low in icSFT/HPC and the level of CLDNS5 protein, which constitutes a tight junction, was
reduced in tumor vessels in icSFT/HPC. As the oncogenesis of SFT/HPC is associated
with angiogenesis, maintaining the mechanical stability of tumor vessels is more difficult
in icSFT/HPCs than exSFT/HPCs due to the decreased expression of CLDN5 and WNT5A.

MMP?9 is involved in a number of biological processes, including extracellular ma-
trix (ECM) degradation, changes of cell-to-cell or cell-to-ECM relationships, and release
of ECM-sequestered molecules or cell-surface proteins [39]. In various human cancers,
MMP?9 is an important target and biomarker for tumor invasion, metastasis, and angio-
genesis [40]. MMP9 also affects tight junctions, leading to vascular permeability in the
brain [41], possibly via degradation of occludin and CLDNS5 [42]. Yang et al. revealed
that MMP9 degraded the tight junction proteins and induced irreversible disruption of
the brain vasculature. In acute liver failure, MMP9 also degrades occludin and CLDN5
to increase vascular permeability [43]. In this study, icSFT/HPCs showed higher MMP9
expression than exSFT/HPCs. In icSFT/HPCs, the low expression of WNT5A and high
expression of MMP9 leads to low expression of CLND5. Therefore, alteration of vascular
wall stability and function through WNT signaling and MMP?9 in icSFT/HPCs increases
vascular permeability, infiltration of tissue around tumor cells, and distant metastasis. The
combined effects of differential gene expression and functional alteration may explain the
unusual episodes of extracranial metastasis and poor prognosis of icSFT/HPCs (Figure 6).

The mean period from the initial diagnosis to extracranial metastasis in the six cases of
icSFT /HPC with extracranial metastasis in this study was 93 months (range, 3.8-18 years).
Although only a small proportion of tumor cells showed increased MMP9 expression and
tumor vessels showing decreased CLDN5 expression and low vascular tightness were
distributed occasionally, extracranial metastasis likely occurs at a low frequency after a
latent period of several years.
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Figure 6. Hypothetical mechanism of extracranial metastasis of icSFT/HPC. Compared to exSFT/HPC, icSFT/HPC shows a
decreased expression of WNT5A, which maintains vascular tightness in the central nervous system and increased expression
of MMP9, which promotes tumor-cell intravasation. Decreased expression of CLDN5, a marker of vascular tight junctions,
in icSFT/HPC is supportive of the hypothesis.

As SFT/HPC has a low prevalence, the number of tissue samples available is limited,
generally in the form of FFPE. Further research involving a sufficient number of samples is
needed. In addition, we performed only 770 oncogene-related gene tests in the Nanostring
RNA sequencing. Whole RNA-sequencing enables more accurate DEG and gene set
enrichment analyses. This study involved only genetic testing and histopathologic studies
of patient tissues. The understanding of tumorigenesis would be enhanced by in vitro
experiments for vascular permeation, stability, and leakage, using primary cell cultures
from patient tumors.

5. Conclusions

Although icSFT/HPC is morphologically similar to exSFT/HPC and shares the NAB2-
STAT6 fusion gene, icSFT/HPC and exSFT/HPC showed differences in MMP9 expression
and WNT signaling. This affects vascular stability, by impacting CLDNS5 in tight junctions,
causing differences in the biological behavior of icSFT/HPC and resulting in more frequent
metastasis and a poorer prognosis.
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