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Over the last few decades, electroencephalogram (EEG) has become one of the most
vital tools used by physicians to diagnose several neurological disorders of the human
brain and, in particular, to detect seizures. Because of its peculiar nature, the consequent
impact of epileptic seizures on the quality of life of patients made the precise diagnosis
of epilepsy extremely essential. Therefore, this article proposes a novel deep-learning
approach for detecting seizures in pediatric patients based on the classification of
raw multichannel EEG signal recordings that are minimally pre-processed. The new
approach takes advantage of the automatic feature learning capabilities of a two-
dimensional deep convolution autoencoder (2D-DCAE) linked to a neural network-based
classifier to form a unified system that is trained in a supervised way to achieve the best
classification accuracy between the ictal and interictal brain state signals. For testing
and evaluating our approach, two models were designed and assessed using three
different EEG data segment lengths and a 10-fold cross-validation scheme. Based on
five evaluation metrics, the best performing model was a supervised deep convolutional
autoencoder (SDCAE) model that uses a bidirectional long short-term memory (Bi-
LSTM) – based classifier, and EEG segment length of 4 s. Using the public dataset
collected from the Children’s Hospital Boston (CHB) and the Massachusetts Institute of
Technology (MIT), this model has obtained 98.79 ± 0.53% accuracy, 98.72 ± 0.77%
sensitivity, 98.86 ± 0.53% specificity, 98.86 ± 0.53% precision, and an F1-score of
98.79 ± 0.53%, respectively. Based on these results, our new approach was able to
present one of the most effective seizure detection methods compared to other existing
state-of-the-art methods applied to the same dataset.

Keywords: deep learning, epileptic seizure detection, EEG, autoencoders, classification, convolutional neural
network (CNN), bidirectional long short term memory (Bi LSTM)

INTRODUCTION

Epilepsy is inevitably recognized to be one of the most critical and persistent neurological disorders
affecting the human brain. It has spread to more than 50 million patients of various ages worldwide
(World Health Organization, 2020) with approximately 450,000 patients under the age of 17 in the
United States out of nearly 3 million American patients diagnosed with this disease (Epilepsy in
Children, 2020). Epilepsy can be characterized apparently by its recurrent unprovoked seizures.
A seizure is a period of anomalous, synchronous innervation of a population of neurons that
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may last from seconds to a few minutes. Epileptic seizures
are ephemeral instances of partial or complete abnormal
unintentional movements of the body that may also be combined
with a loss of consciousness. While epileptic seizures rarely occur
in each patient, their ensuing effects on the patients’ emotions,
social interactions, and physical communications make diagnosis
and treatment of epileptic seizures of ultimate significance.

Electroencephalograms (EEGs; Schomer and Lopez da Silva,
2018) which have been around for a long time, are commonly
used among neurologists to diagnose several brain disorders
and in particular, epilepsy attributable to workable reasons, such
as its availability, effortlessness, and low cost. EEG operates by
positioning several electrodes along the surface of the human
scalp and then recording and measuring the voltage oscillations
emanating from the ion current flowing through the brain. These
voltage oscillations, which correspond to the neuronal activity of
the brain, are then transformed into multiple time series called
signals. EEG is a very powerful non-invasive diagnostic tool since
we can use it precisely to capture and denote epileptic signals
that are characterized by spikes, sharp waves, or spike-and-wave
complexities. As a result, EEG signals have been the most widely
used in the clinical examination of various epileptic brain states,
for both the detection and prediction of epileptic seizures.

By interpreting the recorded EEG signals visually, neurologists
can substantially distinguish between epileptic brain activities
during a seizure (ictal) state and normal brain activities between
seizures (interictal) state. Over the last two decades, however, an
abundance of automated EEG-based epilepsy diagnostic studies
has been established. This was motivated by the exhausting and
time-consuming nature of the human visual evaluation process
that depends mainly on the doctors’ expertise. Besides that, the
need for objective, rapid, and effective systems for the processing
of vast amounts of EEG recordings has become unavoidable to
be able to diminish the possibility of misinterpretations. The
availability of such systems would greatly enhance the quality of
life of epileptic patients.

Following the acquisition and pre-processing of EEG raw
signals, most of the automated seizure detection techniques
consist of two key successive stages. The first stage concerns the
extraction and selection of certain features of the EEG signals.
In the second step, a classification system is then built and
trained to utilize these extracted features for the detection of
epileptic activities. The feature extraction step has a direct effect
on the precision and sophistication of the developed automatic
seizure detection technique. Due to the non-stationary property
of the EEG signals, the feature extraction stage typically involves
considerable work and significant domain-knowledge to study
and analyze the signals either in the time domain, the frequency
domain, or in the time-frequency domain (Acharya et al., 2013).
Predicated on this research, it has become the mission of the
system designer to devise the extraction of the best-representing
features that can precisely discriminate between the epileptic
brain states from the EEG signals of different subjects.

In the literature, several EEG signal features extracted by
various methods have been proposed for seizure detection. For
example (Song et al., 2012), used approximate entropy and
sample entropy as EEG features, and integrated them with an

extreme learning machine (ELM) for the automated detection
of epileptic seizures. Chen et al. (2017) used non-subsampled
wavelet–Fourier features for seizure detection. Wang et al. (2018)
proposed an algorithm that combines wavelet decomposition
and the directed transfer function (DTF) for feature extraction.
Raghu et al. (2019) proposed using matrix determinant as a
feature for the analysis of epileptic EEG signals. Certainly,
even with the achievement of great results, it is not inherently
guaranteed that the features derived through the intricate, and
error-prone manual feature extraction methodology would yield
the maximum possible classification accuracy. As such, it would
be very fitting to work out how to build substantial systems
that can automatically learn the best representative features from
minimally preprocessed EEG signals while at the same time
realize optimum classification performance.

The recent advances in machine learning science and
particularly the deep learning techniques breakthroughs have
shown its superiority for automatically learning very robust
features that outperformed the human-engineered features in
many fields such as speech recognition, natural language
processing, and computer vision as well as medical diagnosis
(Wang et al., 2020). Multiple seizure detection systems that used
artificial neural networks (ANNs) as classifiers, after traditional
feature extraction, were reported in previous work. For instance
(Orhan et al., 2011), used multilayer perceptron (MLP) for
classification after using discrete wavelet transform (DWT) and
K-means algorithm for feature extraction. Samiee et al. (2015)
also used MLP as a classifier after using discrete short-time
Fourier transform (DSTFT) for feature extraction. In Jaiswal
and Banka (2017), ANNs were evaluated for classification after
using the local neighbor descriptive pattern (LNDP) and one-
dimensional local gradient pattern (1D-LGP) techniques for
feature extraction. Yavuz et al. (2018) performed cepstral analysis
utilizing generalized regression neural network for EEG signals
classification. On the other hand, convolutional neural networks
(CNNs) were adopted for both automatic feature learning and
classification. For example (Acharya et al., 2018), proposed a deep
CNN consisting of 13 layers for automatic seizure detection. For
the same purpose (Abdelhameed et al., 2018a), designed a system
that combined a one-dimensional CNN with a bidirectional long
short-term memory (Bi-LSTM) recurrent neural network. Ke
et al. (2018); Zhou et al. (2018), and Hossain et al. (2019) also used
CNN for feature extraction and classification. In Hu et al. (2019),
CNN and support vector machine (SVM) were incorporated
together for feature extraction and classification of EEG signals.

As reported, most of the deep learning algorithms that
involved automatic feature learning have targeted single-channel
epileptic EEG signals. It is therefore still important to research
more data-driven algorithms that can handle more complex
multichannel epileptic EEG signals.

In general, supervised learning is the most widely used
technique for classifying EEG signals among all other
machine learning techniques. Several researchers have recently
experimented with semi-supervised deep learning strategies in
which an autoencoder (AE) neural network can benefit from
training using both unlabeled and labeled data to improve
the efficacy of the classification process (Gogna et al., 2017;
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Yuan et al., 2017; Abdelhameed and Bayoumi, 2018, 2019; She
et al., 2018). Two approaches of using AEs have been used in
the literature. The first one is the stacked AEs approach, where
each layer of a neural network consisting of multiple hidden
layers is trained individually using an AE in an unsupervised
way. After that, all trained layers are stacked together and a
softmax layer is attached to form a stacked network that is finally
trained in a supervised fashion. The second approach uses deep
AEs to pre-train all layers of the neural network simultaneously
instead of that greedy layer-wise training. This latter approach
still suffers from one particular drawback which is the necessity
to train the semi-supervised deep learning model twice. One
training episode is conducted in an unsupervised way using
unlabeled training data that enables the AE to learn good initial
parameters (weights). In the second episode, the first half of the
pre-trained AE (the encoder network) attached to a selected
classifier is trained as a new system in a supervised manner using
labeled data to perform the final classification task.

Therefore, in this work, to address the limitation of the
classification schemes alluded to above, a novel deep learning-
based system that uses a two-dimensional supervised deep
convolutional autoencoder (2D-SDCAE) is proposed for the
detection of epileptic seizures in multichannel EEG signals
recordings. The innovative approach in the proposed system is
that the AE is trained only once in a supervised way to perform
two tasks at the same time. The first task is to automatically
learn the best features from the EEG signals and to summarize
them in a succinct, low-dimensional, latent space representation
while performing the classification task efficiently. The method
of consolidating the simultaneous learning to perform both tasks
in a single model, which is trained only once in a supervised
way, has proven to have a good impact on improving the
learning capabilities of the model and thus achieving better
classification accuracy.

In addition to operating directly on raw EEG signal data,
there are several advantages to our approach. First of all, the
SDCAE is faster compared to conventional semi-supervised
classification systems since it is trained only once. Second, to
minimize the total number of network parameters, the proposed
SDCAE uses convolutional layers for learning features instead of
fully connected layers that are commonly used in regular MLP-
based AEs. Third, the proposed system can be used in signal
compression schemes as the original high-dimensional signals
can be perfectly reconstructed from the low-dimensional latent
representation using the second half of the AE (the decoder
network). Finally, the training of AEs in a supervised way is
more effective in learning more structured latent representation,
making it very feasible to deploy very simple classifiers and
still have very high-precision seizure detection systems. It is
also worth noting that performance and hardware resource-
saving have been taken into account to make the proposed
system more suitable for real-time use and potential hardware
implementation and deployment.

Two SDCAE models are designed to test our novel approach,
and their performance for seizure detection in children is
evaluated. Both models are used to classify EEG data segments
to distinguish between ictal and interictal brain states. The

first model is a two-dimensional deep convolution autoencoder
(2D-DCAE) in which the convolutional layers of the encoder
network are attached to a simple MLP network consisting of
two fully connected hidden layers and one output layer for
classification. The second system is also a 2D-DCAE but in
this system, the convolutional layers of the encoder network are
attached to one Bi-LSTM recurrent neural network layer to do
the classification task. Besides, the performance of both proposed
models is further compared to two regular deep learning models
having the same layers’ structure, except that the decoder network
layers are completely removed. These two models are trained
in a supervised manner to only do the classification task.
By quantitatively evaluating the performance of the proposed
models using different EEG segment lengths, our new approach
of using SDCAE will prove to be a very good candidate for
producing one of the most accurate seizure detection systems.

MATERIALS AND METHODS

Dataset
Patients’ data obtained from the online Children’s Hospital
Boston–Massachusetts Institute of Technology (CHB–MIT)
Database were used to assess and measure the efficacy of the
proposed models. The dataset is recorded at Boston Children’s
Hospital and consists of long-term EEG scalp recordings of
23 pediatric patients with intractable seizures (Shoeb, 2009).
23 channels EEG signals recordings are collected using 21
electrodes whose names are specified by the International 10–
20 electrode positioning system using the modified combinatorial
nomenclature as shown in Figure 1. The signals are then sampled
at 256 Hz and the band-pass filtered between 0 and 128 Hz.

FIGURE 1 | 21 EEG electrode positions based on the 10–20 system using
modified combinatorial nomenclature.
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In this study, 16 out of the 23 pediatric patients are selected for
the assessment of the classification models. More details about
the selected patients are listed in Table 1. Seizures less than
10 s are too short so, all Chb16’s seizures were not considered
for testing (Gao et al., 2020). The seizures of the two patients
(Chb12 and Chb13) were omitted due to the excess variations
in channel naming and electrode positioning swapping. Four
patients (Chb04, Chb15, Chb18, and Chb19) have been excluded
since they are 16 years of age and older because the aim is to
research seizure detection in young children.

Typically, epileptic patients have limited numbers of seizures
that span much shorter times relative to seizure-free periods.
A discrepancy between the number of ictal and interictal EEG
data segments is often present. To surmount the bias in the
training process of the classification models in which classifiers
tend to favor the class with the largest number of segments,
and as a design choice, the number of interictal segments is
chosen to be equal to the number of ictal segments while forming
the final dataset. Downsampling the original interictal dataset
can be found in previous work as in Wei et al. (2019), Gao
et al. (2020). Non-overlapped EEG segments of 1, 2, and 4 s
duration were tested for evaluating the proposed models. A single
EEG segment is represented as a matrix whose dimension is
(L × N) where L is the sequence length = 256 × segment
duration and N is the number of channels. As an example, one
2-s segment is represented as a 512 × 23 matrix. The EEG
dataset is then formed by putting all the ictal and interictal
segments in one matrix whose dimension is (2KL × 23) where
K is the number of the ictal or interictal segments and L is
as defined before.

Dataset Preparation
To prepare the EEG dataset before the training phase, all
segments combined are pre-processed by applying z-score
normalization for all channels at one to ensure that all values

TABLE 1 | Seizure information of the selected patients.

Patient# Gender-age Number of seizures Total seizures duration (s)

Chb01 F-11 7 442

Chb02 M-11 2 172

Chb03 F-14 7 402

Chb05 F-7 5 558

Chb06 F-1.5 10 153

Chb07 F-14.5 3 325

Chb08 M-3.5 5 919

Chb09 F-10 4 276

Chb10 M-3 7 447

Chb11 F-12 3 806

Chb14 F-9 8 169

Chb17 F-12 3 293

Chb20 F-6 8 294

Chb21 F-13 4 199

Chb22 F-9 3 204

Chb23 F-6 7 424

Total 86 6083

are standardized by having a zero mean (µ) and unit standard
deviation (σ) using the Eq. (1)

x =
x− µ

σ
(1)

Next, as a batch, the whole dataset values are scaled to the [0, 1]
range using Min–Max normalization to ensure that the original
and the reconstructed segments have the same range of values.
Finally, the channel’s dimension of the segments is extended by
one column to be more suitable for the AE to be used.

Proposed Systems Architecture
The objective of the article is to build accurate and reliable
deep learning models for epileptic seizure detection based on
differentiating between two classes of epileptic brain states,
interictal and ictal. The proposed models automatically learn
powerful features that help to achieve a high classification
accuracy of minimally pre-processed EEG signals. Our target is
to eliminate the overhead induced by the exhausting manual
feature extraction process and also replacing complex systems
that require long training times with a much simpler, faster,
and more efficient system that benefits from the structure and
functionality of AEs. An AE neural network consists of two
subnetworks: an encoder and a decoder. The encoder network
is used for compressing (encoding) the input information (EEG
signals in our case) into a lower-dimensional representation and
the decoder is used in a reverse way to decompress or reconstruct
the original signal. AE-based compression is accomplished by
continually training a network to reconstruct its input while
trying to minimize a loss function between the original input and
the reconstructed one. 2D-DCAE-based models are proposed
for automatically learning inherent signal features from labeled
EEG segments while being trained in a supervised way. Figure 2
shows the block diagram of the first proposed model which
consists of a 2D-DCAE where the encoder output, the latent space
representation, is also fed into an MLP network to perform the
classification task.

Figure 3 shows the block diagram of the second proposed
model which consists of a 2D-DCAE but in this case, the encoder
output which is the latent space representation is feed into a Bi-
LSTM recurrent neural network to perform the classification task.

The performance of the two proposed models will be
compared with two other models. One of the new models
comprises a two-dimensional deep convolutional neural network
(2D-DCNN) connected to an MLP, Figure 4A, while a 2D-
DCNN is connected to a Bi-LSTM to form the second model,
Figure 4B.

Two-Dimensional Deep Convolutional
Autoencoder
Convolutional neural networks are a special class of feedforward
neural networks that are very well-suited for processing
multidimensional data like images or multi-channel EEG signals.
Applications of CNNs in a variety of disciplines, such as computer
vision and pattern recognition, have recorded very impressive
outcomes (Krizhevsky et al., 2017). This is due to its great

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 650050

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-650050 March 31, 2021 Time: 13:59 # 5

Abdelhameed and Bayoumi DL Approach for Seizure Detection

FIGURE 2 | Block diagram of 2D-DCAE + MLP model for seizure detection.

ability to hierarchically learn excellent spatial features for the
representation of data of different types. The parameter sharing
and sparse connections properties of CNNs make them much
more memory-savers compared to MLPs networks that consist
of fully connected layers. As a result of these advantages, a two-
dimensional convolution autoencoder stacked with convolution
and pooling layers is proposed in this work rather than a standard
AE that uses only fully connected layers.

The encoder subnetwork of the AE is a CNN consists
of four convolutional layers and four max-pooling layers
stacked interchangeably. The convolutional layers are responsible
for learning the spatial and temporal features in the input
EEG signals segments while the max-pooling layers are used
for dimensionality reduction by downsampling. A single
convolutional layer is made up of filters (kernels) consisting of
trainable parameters (weights) that slide over and convolve with
the input to generate feature maps where the number of feature
maps equals the number of the applied filters. A configurable
parameter (stride) controls how much the filter window is
sliding over the input. The pooling layer performs down-
sampling by lowering the dimension of the feature maps to
reduce computational complexity. The low dimensional output
of the encoding network is called latent space representation or
bottleneck. On the other side, the decoder subnetwork consists

of four convolutional layers and four upsampling layers which
are also deployed interchangeably and are used to reconstruct
the original input.

In all models, in the encoder network, the convolutional layers
are configured with 32, 32, 64, and 64 filters, respectively. In
the decoder network, the first three convolutional layers are
configured with 64, 32, and 32 filters while the last layer has only
one filter. All convolutional layers have a kernel size of 3× 2, and
a default stride value equals one. To keep the height and width
of the feature maps at the same values, all convolutional layers
are configured using the same padding technique. The activation
function used in all convolutional layers, except the last layer, is
the rectified linear unit (ReLU) defined in Eq. (2) because of its
sparsity, computational simplicity, and sturdiness against noise
in the input signals (Goodfellow et al., 2017).

f (x) = max {0, x} (2)

where x is the weighted sum of the inputs and f (x) is the ReLU
activation function.

The final convolutional layer of the 2D-DCAE uses the
sigmoid activation function defined in Eq. (3) to generate an
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FIGURE 3 | Block diagram of 2D-DCAE + Bi-LSTM model for seizure detection.

output in the range [0, 1].

y =
1

1+ e−x (3)

where x is the weighted sum of the inputs and y is the output of
the activation function.

All max-pooling layers are configured to perform input
downsampling by taking the maximum value over windows of
sizes (2, 2) except the last layer that uses a window of size (2, 3).
The first upsampling layer does its job by interpolating the rows
and columns of the input data using a size (2, 3) while the last
three upsampling layers use (2, 2) sizes.

Our models apply the Batch Normalization (batch norm)
technique for speeding up and stabilizing the training process and
to ensure high performance. The batch norm transform (Ioffe
and Szegedy, 2015) is defined as:

BNγ,β (xi) = γ
xi−µB√
σ2

B+ ∈
+ β (4)

where an input vector xi is normalized within a mini-batch
B = {x1, x2...xm} having a mean µBand variance σ2

B. β and γ

are two parameters that are learned jointly and used to scale
and shift the normalized value while ∈ is a constant added for
numerical stability. Four batch normalization layers are deployed

between the four convolutional and max-pooling layers of the
encoder subnetwork.

Proposed Classification Models
Two-Dimensional Deep Convolution
Autoencoder + MLP
In the first proposed model depicted in Figure 5, the output
of the decoder subnetwork (the latent space representation) is
also converted from its multi-dimensional form to a vector
using a flatten layer and then fed into an MLP network-
based classifier. The MLP network consists of two hidden fully
connected layers having 50 and 32 neurons (units), respectively.
Both layers use the Relu activation function. The output layer
of the MLP has a sigmoid activation function whose output
represents the probability that an input EEG segment belongs to
one of the classes.

Two-Dimensional Deep Convolution
Autoencoder + Bi-LSTM
Long short-term memory (LSTM) is a particular architecture
of recurrent neural networks. It was developed to solve
numerous problems that vanilla RNNs suffer during training
using backpropagation over Time (BPTT) (Mozer, 1989) such
as information morphing and exploding and vanishing gradients
(Bengio et al., 1994). By proposing the concept of memory
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FIGURE 4 | Block diagram of the two-dimensional deep convolutional neural network-based models for seizure detection, (A) 2D-DCNN + MLP model and (B)
2D-DCNN + Bi-LSTM model.
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FIGURE 5 | Proposed 2D-DCAE + MLP architecture (assuming that an EEG segment length is 2 s).

cells (units) with three controlling gates, LSTMs are capable
of maintaining gradients values calculated by backpropagation
during network training while preserving long-term temporal
dependencies between inputs (Hochreiter and Schmidhuber,
1997). Figure 6 shows the structure of a single LSTM cell.

The following equations show how information is processed
inside the LSTM cell.

ft = σ(Wf .
[
ht−1, xt

]
+ bf ) (5)

it = σ(Wi.
[
ht−1, xt

]
+ bi) (6)

ot = σ
(
Wo.

[
ht−1, xt

]
+bo

)
(7)

c̃t = tanh(Wc · [ht−1, xt] + bc) (8)

ct = ft
⊙

c
t−1
+ it

⊙
c̃t (9)

ht = ot
⊙

tanh(ct) (10)

where xt is the input at time t in a sequence X =
(x1, x2, x3, ., xn) of n time steps. ht−1 and ct−1 are the
hidden state output and cell state at the previous time step,
respectively. ht and ct are the current hidden state and cell state.
ft ,it , and ot are the forget, input, and output gates. W and b

represent the weights and biases matrices and vectors while σ is
the sigmoid (logistic) function and

⊙
is the Hadamard product

operator. The memory cell starts operation by selecting which
information to keep or forget from the previous states using the
forget gate ft . Then, the cell calculates the candidate state c̃t . After
that, using the prior cell state ct−1 and the input gate it , the cell
decides what further information to write to the current state ct.
Finally, the output gate ot calculates how much state information

FIGURE 6 | Long short-term memory cell structure.
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ht will be transported to the next time step. Note that, in Figure 6,
the biases and the multiplication operations between the matrix
of the concatenated input and the hidden state, and the weight
matrices are not shown to make the figure simpler.

In the second proposed model, the output of the decoder
subnetwork is fed into a Bi-LSTM recurrent neural network-
based classifier as shown in Figure 7.

For classification, a single-layer Bi-LSTM network consisting
of two LSTM blocks (cells) is used in this model. The Bi-LSTM
network architecture is similar to the standard unidirectional
LSTM architecture, except that both LSTM blocks process the
output of the encoder, reshaped as a sequence, simultaneously
in two opposite directions instead of one direction. After
passing through the entire input sequence, the average of the
two outputs of both blocks concatenated together is computed
and used for the classification task. Bi-LSTMs are useful in
that they take into account the temporal dependence between
the current input at a certain time and its previous and
subsequent counterparts, which offers a strong advantage for
enhancing the classification results (Abdelhameed et al., 2018b).
Figure 8 shows a single-layer Bi-LSTM network unrolled
over n time steps.

The Bi-LSTM layer is configured to have 50 units and to
overcome overfitting, the dropout regularization technique is
used with a value of 0.1. As in the first model, the sigmoid
activation function is used to predict the EEG segment class label.

Loss Functions and Optimizer
As the SDCAE is performing the two tasks of input
reconstruction and classification simultaneously, both proposed
models are designed to minimize two losses during network
training. The first loss is the supervised classification loss
(CL) between the predicted and actual class labels. The binary
cross-entropy, defined in Eq. (11), is chosen as the loss function.

CL = −
1
N

N−1∑
i=0

yi · log(ŷi) + (1− yi) · log(1− ŷi) (11)

where ŷi is the predicted model output for a single EEG segment,
and yi is the corresponding actual class label in a training batch
equals N.

The second loss is the loss of reconstruction (RL) between the
input EEG segments and their reconstructed equivalents decoded
by the DCAE and the mean square error defined in Eq. (12) is
utilized for calculating this loss.

RL =
1
N

N−1∑
i=0

1
mn

m−1∑
j=0

n−1∑
k=0

(
yjk − ŷjk

)2 (12)

Where an yjk is the original value at the position indexed by
j, k in an input EEG segment matrix of size (m × n), ŷjk is
the reconstructed value and N is the number of segments
defined as before.

There is no much difference between training a deep learning
model with a single output or a deep learning model with multiple
outputs. In the latter case as in our proposed SDCAE models, the
total loss (TL) of a model is calculated as the weighted summation

of the CL and the reconstruction loss (RL) as in Eq. (13)

TL = wc × CL + wr × RL (13)

where wc and wr are the weights and can have any values in
the interval (0,1]. In our design, wc is chosen to be 0.5 while
wr equals to 1.

The backpropagation of the loss in both subnetworks starts by
calculating two partial derivatives (gradients): ∂TL

∂CL and ∂TL
∂RL . All

other gradients are then calculated using the chaining rule and
the weights and biases are then updated in the same way as typical
deep learning models.

Different optimizers such as Stochastic Gradient Descent
(SGD; Bottou, 2004), root mean square propagation (RMSProp;
Tieleman and Hinton, 2012), ADADELTA (Zeiler, 2012), and
Adam (Kingma and Ba, 2014) have been tested while training
the SDCAE. Eventually, based on different models’ performances,
Adam optimizer was the chosen optimizer with a learning
rate set at 0.0001.

Data Selection and Training
The performance of the two proposed SDCAE seizure detection
models (DCAE + MLP), and (DCAE + Bi-LSTM) is evaluated
against that of two regular deep learning models (DCNN +
MLP), and (DCNN + Bi-LSTM) using EEG segments of three
different lengths. That means a total number of twelve models
will be tested and assessed using various performance measures.

A stratified 10-fold cross-validation methodology (He and
Ma, 2013). is used to prepare the dataset for training and to
evaluate the performance of all models to test their strength and
reliability while classifying unseen data. In this methodology, the
investigated EEG dataset (containing both interictal and ictal
data segments) is randomly divided into ten equal subsamples
or folds where the balanced distribution of both classes (ictal
and interictal) is preserved within each fold. One ten percent of
the dataset (a subsample) is marked as the testing set (testing
fold) while the remaining nine folds of the dataset collectively
are used as the training set. The cross-validation process is
repeated for ten iterations, with each of the 10-folds used exactly
once as the testing set. Within each iteration, all models are
trained for 200 epochs using a batch size of 32. The average and
standard deviation of the classification results of the 10 iterations
are calculated to produce the final estimations for different
evaluation measures.

Models Performance Evaluation
Various statistical metrics commonly used in the literature such
as accuracy, sensitivity (recall), specificity, precision, and F1-
score (Sokolova and Lapalme, 2009) have been calculated to
assess the classification efficiency of the models against the testing
set, in each of the ten iterations of the 10-fold cross-validation.
These evaluation metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (14)

Sensitivity
(
Recall

)
=

TP
TP + FN

× 100% (15)
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Specificity =
TN

TN + FP
× 100% (16)

Precision =
TP

TP + FP
× 100% (17)

F1− score = 2×
Precision× Recall
Precision+ Recall

× 100% (18)

where P denotes the number of positive (ictal) EEG segments
while N denotes the number of negative (interictal) EEG

segments). TP and TN are the numbers of true positives
and true negatives while FP and FN are the numbers of
false positives and false negatives, respectively. In this study,
accuracy is defined as the percentage of the correctly classified
EEG segments belonging to any state (ictal or interictal),
sensitivity is the percentage of correctly classified ictal state
EEG segments, specificity is the percentage of correctly classified
interictal state EEG segments, while precision determines how
many of the EEG segments classified as belonging to the
ictal state are originally ictal state EEG segments. Finally,

FIGURE 7 | Proposed 2D-DCAE + Bi-LSTM architecture (assuming that an EEG segment length is 2 s).

FIGURE 8 | Unrolled single-layer Bi-LSTM network.
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the F1-score combines the values of precision and recall in
a single metric.

Models Implementation
The Python programming language along with many supporting
libraries and in particular, the Tensorflow machine learning
library’s Keras deep learning API, has been used to develop
our models. Due to the variations in the hardware resources
and different GPU specifications, we have chosen not to
include the computational times of training and testing the
proposed models as a metric in our comparisons especially
since we are developing our models using external resources
provided by Google Colaboratory online environment that runs
on Google’s cloud servers.

RESULTS

For each of the four models, Figure 9 shows the ranges of values
of the five performance metrics calculated based on the 10-Fold
cross-validation classification results of the EEG segments of

lengths 1, 2, and 4 s. The mean and standard deviation of all
metrics over the 10-folds are then calculated and summarized in
Table 2.

The same results are interpreted visually in Figure 10.

DISCUSSION

As can be seen from the results, for all EEG segment lengths
and evaluation metrics, the two proposed SDCAE models
(DCAE + MLP and DCAE + Bi-LSTM) have outperformed
the other two models (DCNN + MLP and DCNN + Bi-
LSTM) that do not use AEs. Furthermore, as highlighted in
Table 2, using a segment length of 4 s, the DCAE + Bi-LSTM
model has achieved the highest performance in terms of all
evaluation metrics among all other combinations of models. It
is also interesting to see that in all SDCAE models, a 4-s EEG
segment length is the best choice to get the best classification
performance. Generally, it can be noticed that all models that
utilized a Bi-LSTM for classification have accomplished better
results compared to their counterpart models that use MLP-based

FIGURE 9 | Boxplots showing ranges of performance metrics percentages calculated based on the 10-fold cross-validation results.
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TABLE 2 | Classification results using different EEG segment lengths.

EEG segment length Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%)

1 s DCAE + MLP 97.84 ± 0.44 97.67 ± 0.88 98.01 ± 0.30 98.00 ± 0.30 97.84 ± 0.46

DCAE + Bi-LSTM 98.07 ± 0.31 97.83 ± 0.52 98.32 ± 0.43 98.31 ± 0.42 98.07 ± 0.32

DCNN + MLP 96.75 ± 0.88 96.61 ± 1.79 96.90 ± 1.18 96.91 ± 1.11 96.75 ± 0.90

DCNN + Bi-LSTM 97.27 ± 0.65 97.27 ± 0.95 97.27 ± 1.09 97.28 ± 1.06 97.27 ± 0.64

2 s DCAE + MLP 98.18 ± 0.48 97.95 ± 0.71 98.41 ± 0.90 98.41 ± 0.88 98.18 ± 0.48

DCAE + Bi-LSTM 98.33 ± 0.71 97.98 ± 1.34 98.68 ± 0.50 98.67 ± 0.50 98.32 ± 0.72

DCNN + MLP 96.51 ± 0.95 96.06 ± 2.12 96.95 ± 1.21 96.95 ± 1.14 96.48 ± 0.98

DCNN + Bi-LSTM 96.76 ± 1.02 96.16 ± 1.98 97.35 ± 1.54 97.32 ± 1.46 96.73 ± 1.05

4 s DCAE + MLP 98.42 ± 0.48 98.19 ± 1.02 98.66 ± 0.61 98.65 ± 0.59 98.42 ± 0.50

DCAE + Bi-LSTM 98.79 ± 0.53 98.72 ± 0.77 98.86 ± 0.53 98.86 ± 0.53 98.79 ± 0.53

DCNN + MLP 96.81 ± 0.50 96.10 ± 1.43 97.52 ± 1.20 97.50 ± 1.16 96.79 ± 0.51

DCNN + Bi-LSTM 97.24 ± 1.20 96.84 ± 1.79 97.65 ± 1.28 97.63 ± 1.28 97.22 ± 1.21

FIGURE 10 | Visualization of the classification results of the models using different EEG segment lengths.
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classifiers using the same EEG segment lengths. That can be
explained as Bi-LSTM networks are more capable to learn better
temporal patterns from the generated latent space sequence
better than MLP networks. Finally, by comparing the standard
deviations in the evaluation metrics values for all models, it is
clear that the results of the SDCAE models mostly have less
dispersion compared to the other models, which means that
the SDCAE models’ performance is more consistent across all
cross-validation iterations.

Figure 11 shows the classification accuracy, CL,
and RL curves for the training and testing datasets

obtained while training the winning model (DCAE
+ Bi-LSTM) in one of the iterations of the 10-fold
cross-validation.

Statistical Analysis
The non-parametric Kruskal–Wallis H test (Kruskal and Wallis,
1952) is used to test the statistical significance of the classification
results of the two proposed models (DCAE + MLP and DCAE
+ Bi-LSTM). For simplicity, the test results for comparing the
evaluation metrics of the models obtained using an EEG segment

FIGURE 11 | Accuracy and loss curves against the number of epochs obtained while training the DCAE + Bi-LSTM model.

TABLE 3 | Comparison between our best performing model and previous methods using the same dataset.

Methods Features extraction Data selection Accuracy (%) Sensitivity (%) Specificity (%)

Yuan et al., 2017 STFT + SSDAE Random 93.82 N/A N/A

Ke et al., 2018 MIC+VGGNet Fivefold CV 98.1 98.85 97.47

Zhou et al., 2018 FFT+CNN Sixfold CV 97.5 96.86 98.15

Hossain et al., 2019 2D-CNN Random 98.05 90 91.65

Proposed Work (DCAE + Bi-LSTM) 10-Fold CV 98.79 98.72 98.86

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 650050

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-650050 March 31, 2021 Time: 13:59 # 14

Abdelhameed and Bayoumi DL Approach for Seizure Detection

length of 4 s will be demonstrated. When comparing DCAE +
Bi-LSTM with the two models (DCNN + MLP and DCNN +
Bi-LSTM), the Kruskal–Wallis H test produced p-value = 0.0005
for accuracy, p-value = 0.02 for sensitivity, p-value = 0.025 for
specificity, p-value = 0.005 for precision, and p-value = 0.001
for F1-score. Also, when comparing DCAE + MLP with the
same two models, the statistical test showed p-value = 0.003
for accuracy, p-value = 0.011 for sensitivity, p-value = 0.083 for
specificity, p-value = 0.019 for precision, and p-value = 0.002
for F1-score. For all performance assessment metrics, nearly
all comparisons yielded a p-value lower than 0.05, apart from
only one p-value for specificity. This shows the disparity in
the statistical significance between the outcomes of all the
proposed models.

Comparison With Other Methods
In the literature, not all previous work uses the same set of metrics
for evaluating the performance of the seizure classification
algorithms. So, comparisons based on the most commonly
used metrics which are accuracy, sensitivity, and specificity,
will only be provided in this section. Table 3 summarizes the
comparison between our best performing model and some state-
of-the-art methods that use deep neural networks for feature
extraction and classification of seizures. In Yuan et al. (2017),
various stacked sparse denoising autoencoders (SSDAE) have
been tested and compared for feature extraction and classification
after preprocessing using short-time Fourier transform (STFT).
The best accuracy they obtained was 93.82% using a random
selection of training and testing datasets. Ke et al. (2018)
combined global maximal information coefficient (MIC) with
visual geometry group network (VGGNet) for feature extraction
and classification. Using fivefold cross-validation, they achieved
98.1% accuracy, 98.85% sensitivity, and 97.47% specificity.
Using fast Fourier transform (FFT) for frequency domain
analysis and CNN, the authors (Zhou et al., 2018) performed
patient-specific classifications between the ictal and interictal
signals. Relying on sixfold cross-validation, the average of the
evaluation metrics for all patients was 97.5% accuracy, 96.86%
sensitivity, and 98.15% specificity. Finally, in Hossain et al.
(2019), the authors used a 2D-CNN model to extract spectral
and temporal characteristics of EEG signals and used them
for patient-specific classification using a random selection of
training and testing datasets. They got 98.05% accuracy, 90%
sensitivity, and 91.65% specificity for the cross-patient results.
Following the previous comparison, the results obtained by our
model have shown to be superior to some of the state-of-the-
art systems which all lack the proper statistical analysis for
significance testing.

CONCLUSION

A novel deep-learning approach for the detection of seizures
in pediatric patients is proposed. The novel approach uses a
2D-SDCAE for the detection of epileptic seizures based on
classifying minimally pre-processed raw multichannel EEG signal
recordings. In this approach, an AE is trained in a supervised way
to classify between the ictal and interictal brain state EEG signals
to exploit its capabilities of performing both automatic feature
learning and classification simultaneously with high efficiency.
Two SDCAE models that use Bi-LSTM and MLP networks-based
classifiers were designed and tested using three EEG data segment
lengths. The performance of both proposed models is compared
to two regular deep learning models having the same layers’
structure, except that the decoder network layers are completely
removed. The twelve models are trained and assessed using a
10-fold cross-validation scheme and based on five evaluation
metrics, the best performing model was the SDCAE model
that uses a Bi-LSTM and 4 s EEG segments. This model has
achieved an average of 98.79% accuracy, 98.72% sensitivity,
98.86% specificity, 98.86% precision, and finally an F1-score of
98.79%. The comparison between this SDCAE model and other
state-of-the-art systems using the same dataset has shown that the
performance of our proposed model is superior to that of most
existing systems.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://physionet.org/content/chbmit/1.0.0/.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent from
the participants’ legal guardian/next of kin was not required
to participate in this study in accordance with the national
legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

AA conceived the presented idea, conducted the analysis, and
produced the figures. MB supervised the findings of this work.
Both authors discussed the results and contributed to the
final manuscript.

REFERENCES
Abdelhameed, A. M., and Bayoumi, M. (2018). “Semi-supervised deep learning

system for epileptic seizures onset prediction,” in Proceedings of the 2018 17th
IEEE International Conference on Machine Learning and Applications (ICMLA),
Orlando, FL. doi: 10.1109/icmla.2018.00191

Abdelhameed, A. M., and Bayoumi, M. (2019). Semi-supervised
EEG signals classification system for epileptic seizure detection.
IEEE Signal Process. Lett. 26, 1922–1926. doi: 10.1109/lsp.2019.29
53870

Abdelhameed, A. M., Daoud, H. G., and Bayoumi, M. (2018a). “Deep convolutional
bidirectional LSTM recurrent neural network for epileptic seizure detection,”

Frontiers in Computational Neuroscience | www.frontiersin.org 14 April 2021 | Volume 15 | Article 650050

https://physionet.org/content/chbmit/1.0.0/
https://doi.org/10.1109/icmla.2018.00191
https://doi.org/10.1109/lsp.2019.2953870
https://doi.org/10.1109/lsp.2019.2953870
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-650050 March 31, 2021 Time: 13:59 # 15

Abdelhameed and Bayoumi DL Approach for Seizure Detection

in Proceedings of the 2018 16th IEEE International New Circuits and Systems
Conference (NEWCAS), Montreal, QC. doi: 10.1109/newcas.2018.8585542

Abdelhameed, A. M., Daoud, H. G., and Bayoumi, M. (2018b). “Epileptic seizure
detection using deep convolutional autoencoder,” in Proceedings of the 2018
IEEE International Workshop on Signal Processing Systems (SiPS), Cape Town.
doi: 10.1109/sips.2018.8598447

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., and Adeli, H. (2018). Deep
convolutional neural network for the automated detection and diagnosis of
seizure using EEG signals. Comput. Biol. Med. 100, 270–278. doi: 10.1016/j.
compbiomed.2017.09.017

Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., and Suri, J. S. (2013).
Automated EEG analysis of epilepsy: a review. Knowled. Based Syst. 45, 147–
165. doi: 10.1016/j.knosys.2013.02.014

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transact. Neur. Netw. 5, 157–166. doi:
10.1109/72.279181

Bottou, L. (2004). Stochastic Learning. Advanced Lectures on Machine Learning,
LNAI, Vol. 3176. Berlin: Springer, 146–168.
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