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Background: The aim of this study was to develop a generalized in vitro-in vivo relationship 

(IVIVR) model based on in vitro dissolution profiles together with quantitative and qualitative 

composition of dosage formulations as covariates. Such a model would be of substantial aid 

in the early stages of development of a pharmaceutical formulation, when no in vivo results 

are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC)/

IVIVR.

Methods: Chemoinformatics software was used to compute the molecular descriptors of drug 

substances (ie, active pharmaceutical ingredients) and excipients. The data were collected from 

the literature. Artificial neural networks were used as the modeling tool. The training process 

was carried out using the 10-fold cross-validation technique.

Results: The database contained 93 formulations with 307 inputs initially, and was later limited 

to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial 

neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of 

the formulations.

Conclusion: It has been shown that artificial neural networks can be an effective predictive 

tool for constructing IVIVR in an integrated generalized model for various formulations. 

Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active 

pharmaceutical ingredient, the approach described here is unique in that it incorporates various 

active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary 

IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/

IVIVR procedures.

Keywords: artificial neural networks, in vitro-in vivo, correlation, relationship, bioavailability, 

soft computing

Introduction
An efficient in vitro-in vivo correlation (IVIVC) model is a tool for predicting the 

in vivo bioavailability of a particular drug based on its in vitro data, and is simple to 

obtain using reproducible and inexpensive dissolution tests. This correlation enables 

the bioperformance of various dosage formulations to be evaluated without conducting 

animal or human studies. Applications of IVIVC include justification of biowaivers, 

post-approval scale-up changes,1 and establishing dissolution specifications. IVIVC is 

also used during the early stages of development of a dosage formulation, bringing in 

some degree of biorelevance to in vitro dissolution tests.2 The classical term, IVIVC, 

is often broadened to include the in vitro-in vivo relationship (IVIVR), indicating 

introduction of nonlinear modeling when classical linear IVIVC relationships are not 

sufficient or are not applicable.3
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Modeling based on artificial neural networks (ANNs) 

is a well established method.4 Although it requires vast 

computational power, it is very useful because of its self-

organizational properties and ability to incorporate many 

variables and relationships without a predefined model 

structure, unlike conventional statistical methods. In the 

case of IVIVR, these features allow inclusion of more 

variables than just the dissolution profile, such as formulation 

composition and manufacturing parameters when building 

a model, and enable direct evaluation of their influence on 

the in vivo response.

ANNs encompass a vast number of computational 

techniques which can imitate the human brain morphologically 

and functionally, and are capable of identifying hidden 

relationships between many variables. In practice, a neural 

network is a set of highly interconnected processing elements 

known as nodes (analogs of biological neurons), which store 

experimental knowledge by adjusting connection weights 

and make that knowledge available for use. An ANN is 

characterized by so-called architecture (arrangement of nodes 

and their connections), activation function, and training 

conditions. ANN architecture consists of an input and output 

layer, and one or more hidden layers. Relevant in this case 

is so-called supervised training, which is performed by 

presenting pre-existing task examples (the training data set) 

with known system responses to the input patterns. This is 

a crucial step for obtaining a well performing model able to 

predict output values for unknown patterns.4

Neural modeling is already well established in 

pharmaceutical science. In pharmaceutical technology, 

ANNs have been successfully applied for optimization 

of formulations5–8 and optimization of preparation 

technology.9–11 There are also numerous applications of 

ANNs in pharmacokinetics.12–17 Finally, neural modeling 

for IVIVC has been studied.18–21 All these applications of 

ANNs for IVIVC use these networks as a nonlinear mapping 

tool for in vitro and in vivo profiles, and have been limited 

to single drugs and/or formulations. So far, to the authors’ 

knowledge, there has been no attempt to create a universal 

model encompassing different formulations and different 

active pharmaceutical ingredients.

The aim of this study was to investigate the concept of a 

generalized IVIVR model, introducing, in addition to in vitro 

and in vivo profiles, chemoinformatics software providing 

physicochemical properties and structural data about drug 

substances and excipients. Use of chemoinformatics ensures 

the ability of the model to predict the bioavailability of 

various drugs in different dosage formulations. Such a model 

might be used earlier than classical IVIVC, given that the 

latter requires biological data as the dependent variable for 

the correlation.

Materials and methods
Knowledge database
A knowledge database was acquired from the published 

literature. Articles concerning bioavailability and dissolution 

studies of various formulations were scanned, and the 

relevant data was extracted upon following conditions:

•	 Complete details on qualitative and quantitative 

composition of immediate-release or modified-release 

formulations, as well as dissolution tests and bioavailability 

studies results

•	 Bioavailability studies were carried out in humans, with 

tablets or capsules administered orally

•	 Release modification was based on the matrix system

•	 The active pharmaceutical ingredient was a small chemical 

molecule (with peptides and antibodies discarded)

•	 Dissolution tests carried out using USP apparatus 

I or II.

The data records were characterized by the following 

variables:

•	 Formulation characteristics, ie, type, and qualitative and 

quantitative composition

•	 In vitro dissolution profile

•	 In vivo pharmacokinetic profile

•	 In vitro and in vivo assay conditions.

Formulation
The formulation type was encoded as two binary parameters. 

The first denoted immediate-release versus modified-release 

formulation, encoded as 0 and 1, respectively, and the second 

denoted tablet versus capsule, respectively.

Numerical description of the qualitative composition 

of the formulation was based on chemoinformatics tools. 

Each ingredient of the formulation was incorporated into 

the database as a set of molecular descriptors computed with 

Marvin22 calculator plugins (ChemAxon, Budapest, Hungary) 

and classified into three groups, ie, active pharmaceutical 

ingredient, polymeric release-modifying excipients, and 

nonpolymeric release-modifying excipients.

Computation of molecular descriptors for the active 

pharmaceutical ingredient and nonpolymeric excipients was 

straightforward with use of standard software settings. Prior 

to computation of molecular descriptors, three-dimensional 

optimization of the molecules was performed using the 

gradient method with Marvin software.22
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For polymeric release-modifying excipients, direct use 

of chemoinformatics software is difficult or sometimes 

impossible. This is mainly due to input limitations on com-

pound size in the chemoinformatics software. To overcome 

this obstacle, polymers were presented as dimers with hydro-

gen instead of the chain fragment on one side and hydroxyl on 

the other. For cellulose derivatives, various substitution com-

binations were taken into account and several sets of descrip-

tors were computed for different substitution variations, which 

were averaged according to the molar substitution ratio for 

each group. Calculations for hydroxypropylmethylcellulose 

were presented schematically in Figure 1.

Agents other than polymers still influencing the drug 

release rate, such as triglycerides, and citric or stearic acid, 

were classified into a third group of nonpolymeric excipients. 

In total, 250 descriptors were introduced into the native input 

vector. An applied schema for merging and weight averaging 

is shown in Figure 2. Quantitative composition was simply 

expressed as the weight percentages for each compound 

along with the dose of the active pharmaceutical ingredient 

expressed both as a percentage and in milligrams.

In vitro and in vivo profiles
In order to ensure compatibility of the data, the pharmacoki-

netic and dissolution profiles were preprocessed. For pharma-

cokinetic profiles, the concentration units were recalculated 

if necessary and expressed in ng/mL. There was no such 

problem for the in vitro profiles because their values were 

always available in percentages of the total drug amount in 

the formulation. For both the in vitro and in vivo profiles, the 

average values reported in the published literature were used. 

Most of the data was extracted from the graphs by g3data 

software using a simple point-and-click procedure. Because 

of the manual nature of the above procedure, another member 

of the team rescanned approximately 5% of the randomly 

chosen profiles for validation purposes. All time points for 

the in vitro and in vivo profiles were expressed in hours. The 

time scale for the pharmacokinetic profiles was 0–120 hours 

and for dissolution profiles was 0–24 hours. There were up 

to 18 time points available for the dissolution profiles; for 

those with a smaller number of points, the remaining points 

were created artificially with time up to 24 hours and pla-

teau values. The latter was the result of linear extrapolation 

between the last value present and the maximum possible 

amount of active pharmaceutical ingredient released (100%) 

at the time endpoint of 24 hours.

Assay conditions
For the in vitro dissolution profiles, there was information 

provided about the volume and pH of the medium, together 

with the paddle or basket rotation speed (rpm). Sodium lauryl 

sulfate concentration was also introduced as a variable. For 

pharmacokinetic profiles, in order to ensure eligibility of 

the maximum number of papers, in vivo characteristics was 

limited to information about whether the assay was performed 

in a fasted or fed state.

Neural modeling
The neural models of IVIVR were designed to predict whole 

plasma concentration-time profiles based on dissolution 
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Figure 1 Schematic calculation of descriptors set encoding hypromellose.
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curves and the composition of the formulation, as well as data 

on the conditions of the in vivo and in vitro studies.

All models were multiple-input-single-output type with 

the natural logarithm of plasma concentration as the output 

vector. The input vector consisted of the quantitative and 

qualitative description of the formulation as described 

above together with the in vitro dissolution profile, in vivo 

sampling time, and conditions of the in vitro and in vivo 

assays (Figure 3).

Multilayer perceptrons with a back-propagation learning 

algorithm were applied. The following activation functions 

were implemented: linear, logistic, hyperbolic tangent, and a 

combination of logarithmic functions known as “fsr”.23 The 

ANN architectures varied from one to seven hidden layers. 

In addition to multilayer perceptrons, neurofuzzy systems of 

the simplest Mamdani type were employed, with 5–100 nodes 

in the hidden layer. In order to match nonlinear activation 

function domains, the data were scaled linearly using output 

ranges of  ,0.2, 0.8., and  ,−0.8, 0.8., respectively. 

A noise addition was performed with amplitude ±5% of 

the original values and a four times larger number than 

the original records. The latter procedure is a well known 

technique which is used to improve the generalizability of 

neural models.4 Numerous modifications of the classical 

back-propagation algorithm were used, as follows:

•	 Momentum technique with a momentum factor of 0.3

•	 Delta-bar-delta algorithm with an initial learning factor 

of 0.65

•	 Jog-of-weights technique designed to avoid becoming 

stuck in the local minima of the cost function; a simple 

noise addition to the weights where the ANN was not 

improving its efficiency during 100,000 epochs (the 

patience criterion).

In total, considering two types of scaling and whether or not 

noise data were used, 336 types of neural networks were trained 

and tested. Training was conducted up to numerous predefined 

steps (50,000, 100,000, and up to 10,000,000 iterations), after 

which training and generalization errors were observed. The 

error measures were root mean squared error (equation 1) and 

normalized root mean squared error (equation 2)

	 RMSE

pred obs

n

i i
i

n

= =

−( )∑ 2

1 � (1)

where obs
i
 is the observed value, pred

i
 is the predicted value, 

and n is the total number of records.
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=
−
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where RMSE is the root mean squared error, MAX
obs

 is the 

maximum value of the observed results, and MIN
obs

 is the 

minimum value of the observed results.
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Figure 2 Chemoinformatic description of the excipients included into the native input vector.
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Figure 3 General structure of artificial neural network models.
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Two major modes of ANN training were used, ie, 

sensitivity analysis on the whole dataset and a 10-fold cross-

validation technique for assessment of generalizability. 

These modes were used in their interplay in order to provide 

the minimum input vector, ie, the set of crucial variables. 

Optimization of ANN architecture was derived at the same 

time. A detailed description of this approach has been 

presented elsewhere.24

An extended 10-fold cross-validation scheme was 

used, whereby whole formulations were treated as units for 

construction of pairs of train/test datasets. This was to ensure 

that the all information about a particular formulation was 

either in the test or the train dataset, in order to simulate the 

practical application of the system, ie, to predict the actual 

bioperformance of the formulation.

Sensitivity analysis was done using the method described 

by Z
.
urada et  al,25 with some modifications24 to enable 

knowledge-based selection of crucial variables and obtain 

collective results from the set of best trained ANNs.

ANN ensembles (“expert committees”) were prepared in 

order to enhance the predictive ability of the models obtained. 

These higher order models were constructed from the best 

ANNs identified. Their total output was computed as the 

average of the outputs for the ANNs chosen as members of 

the ensemble.

Three rankings were prepared for a clear description of 

the predictability of the model, ie, ability to predict the whole 

in vivo profile, ability to predict the elimination phase, and 

ability to predict the absorption phase. The absorption phase and 

elimination phase were simply chosen as the ranges from t = 0 to 

t
max

 and from t
max

 to the last time point, respectively, thus being 

the ascending and descending parts of the pharmacokinetic 

curve. Successful prediction was confirmed if the normalized 

root mean squared error did not exceed 20%.

Hardware and software environment
The neural analysis was performed using own-written simulator 

Nets2010 and numerous applications for data preprocessing,24 

all working in the Linux environment. Literature in graphic 

form was digitalized using g3data version 1.5.2.26 Formulation 

ingredients were encoded by Marvin version 5.3.8 plugins.22 

All computations were performed on 29 PC workstations (116 

cores). The total number of neural networks trained and tested 

was approximately 8000.

Results
Our search identified 93 formulations in the literature database. 

It contained a description of 13 active pharmaceutical 

ingredients, ie, levosimendan,27,28 ritonavir,29 danazol,30 

metoprolol,31–34 griseofulvin,35 diltiazem,36 propranolol,32 

alprazolam,37 ketoprofen,38 diclofenac,39 carbamazepine,40 

ibuprofen,41,42 and theophylline.43 In total, the database 

yielded 1067 data records. Initially, there were 307 inputs of 

the neural model (Table 1) describing active pharmaceutical 

ingredients, excipients, and assay conditions.

Sensitivity analysis showed the significance of variables 

describing the type of drug formulation (tablet or capsule, 

immediate-release/modified-release), bioavailability and 

dissolution study conditions, and quantitative composition 

(Figure 4). The model was less sensitive to inputs covering 

the dissolution profile. The most important molecular 

descriptors were active pharmaceutical ingredient, with 

polymeric excipients lower in the ranking and descriptors 

for nonpolymeric excipients being discarded.

As a result of the input vector reduction procedure, 

28 governing variables were chosen (Table 2), among which 

were 13 molecular descriptors of active pharmaceutical ingredi-

ents and three descriptors of polymers. Only two sampling times 

remained for the in vitro profile, resulting in four inputs.

Table 1 General description of the native input vector

Input number Information encoded

1 Modified release: yes (1), no (0)
2 Dosage form: tablets (0), capsules (1)
3 Amount of polymers (%); for IR formulations (0)
4 Amount of nonpolymeric excipients (%); for IR 

formulations (0)
5 Amount of API (%); for IR formulations (100%)
6 Dose of API in formulation (mg)
7 pH value of medium in dissolution test
8 Volume of dissolution medium (mL)
9 Presence of SLS in dissolution medium: yes (1), 

no (0)
10 Rotation speed (rpm) in paddle or basket 

method of dissolution test
11 Fasting conditions in bioavailability study: yes (0), 

no (1)
12–107 Set of molecular descriptors of API calculated by 

chemoinformatic software
108–189 Set of averaged molecular descriptors of 

polymers; for IR formulations (0)
190–271 Set of averaged molecular descriptors of 

nonpolymeric excipients; for IR formulations (0)
272–289 Dissolution profile – percent of API released into 

medium in each sampling time
290–306 Sampling times of dissolution test (h) 

corresponding with % of API released
307 A sampling time of in vivo study tin vivo (h)
OUT Natural logarithm of API plasma concentration 

[ng/mL] at tin vivo

Abbreviations: API, active pharmaceutical ingredient; IR, immediate-release; SLS, 
sodium lauryl sulfate.
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Using the trial and error method, various combinations 

of both multilayer perceptron nets and fuzzy neural networks 

were formed into the ANN ensembles and tested for the 

lowest generalization root mean squared error. Finally, four 

ANNs were combined (Table 3), with a collective root mean 

squared error of 1.05. The preferred activation functions were 

fsr and hyperbolic tangent. Fuzzy networks, although capable 

of predicting profiles for certain formulations, proved to be 

insufficient for generalization of the different formulations. 

The number of hidden layers varied from two to seven, within 

the total number of nodes from 12 to 142. Such diversity 

shows that different problems (different dosage formulations, 

model drugs, orders of magnitude of plasma concentrations) 

were better solved with different ANN architecture, so it is 

understandable that the collective root mean squared error 

was lower than for each ANN apart.

Charts with plasma profiles predicted by an expert 

committee and profiles observed in the clinical trials were 

plotted (Figure 5). According to the aforementioned criterion 

of normalized root mean squared error , 20%, a ranking 

was created which showed successful prediction of the whole 

profile in 37.6% of the formulations. The elimination part 

of the curve was appropriately predicted for 49.5% of the 

formulations, whereas absorption was predicted for only 

19.4%. Such a tendency for better predictability of the part 

of the in vivo curve covering the elimination phase over the 

one describing the absorption process could be explained 

by the observed higher sensitivity of the model to molecular 

descriptors of the active pharmaceutical ingredient and 

lower sensitivity to the inputs responsible for the excipients 

and the dissolution profile. The process of elimination of 

a drug involves elimination kinetics, metabolism, and/or 

redistribution, all of which depend on the physicochemical 

properties of the active pharmaceutical ingredient rather than 

the drug formulation. On the other hand, the formulation 

and its influence on the dissolution rate of the active 

pharmaceutical ingredient has a great impact on the rate of 

drug absorption, especially in the case of modified-release 

formulations.

Discussion
The foundations of the IVIVR are that the in vitro release 

profile for an active pharmaceutical ingredient should reflect 

basic release/dissolution processes, which are at least in part 

responsible for the bioavailability of the active ingredient. 

The low affinity of ANN models for the dissolution profile 

suggests that the in vitro data available in the database we 

collected did not correlate well with the in vivo profiles. 

A further numerical experiment was performed in order 

to investigate this problem. The original model based on 

28 inputs was enhanced with the whole dissolution profile, 

despite the previously described sensitivity analysis results. 

As a result, 58 input-based models were created, trained, and 

tested according to the methodology described earlier. ANN 

ensembles for a model based on these 58 inputs were built on 

the same architecture as that used for the model of 28 inputs. 

Relative importance

Formulation type

Amount of release-modifying excipients (%)

Amount of API (%)

Dose (mg)

In vitro study conditions

In vivo study conditions

Molecular descriptors of API

Molecular descriptors of polymeric excipients

Molecular descriptors of nonpolymeric excipients

Dissolution profile

In vivo sampling time

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Figure 4 Results of sensitivity analysis for the most important 28 inputs, with relative importance computed in the context of the native dataset.
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The resulting generalization root mean squared error was 

found to be 1.51, confirming the relatively low correlation 

of the in vitro and in vivo profiles in the database analyzed. 

An increase in error might be associated with the well known 

“curse of dimensionality”, resulting from the enlarged input 

vector, but it is noteworthy that all the in vitro assays were 

carried out using USP apparatus I or II. These methods are 

still the standard for dissolution testing, so the data sources 

were available at a level only allowing work such as that 

presented here. Despite standardization of the methods used, 

USP apparatus I and II mimic in vivo conditions poorly, 

sometimes not even achieving sink conditions. Our modeling 

results presented here are indirect proof of this.

Another issue is the formulation description used, ie, 

chemical structure only, which was included together with 

abstract classification as immediate-release or modified-

release. This is surely inadequate for thorough description of 

a pharmaceutical formulation, and some physical parameters 

should also be included, such as dimensions, hardness, 

and particle size of the excipients. Unfortunately, no such 

information was available in the papers selected, and if any 

such variables were included, they were so scarce that they 

were not useful for systematic quantitative analysis. A similar 

dilemma of how to provide a database representative 

enough to build the model was encountered for the in vivo 

profiles. Their description was limited only to the fast/fed 

state because this information was available by default. 

As a consequence, the model was built on average data, 

without taking into account any intrasubject and intersubject 

variability nor mentioning any demographic data. An attempt 

to introduce the above-mentioned data would be the next 

stage of research.

The above considerations of model performance are 

based on the potential for extrapolation, which is not perfect. 

It is important to remember here that the above-mentioned 

generalization errors are the result of the 10-fold cross-

validation procedure, which is a statistical technique and 

a derivative of bootstrapping methods. The 10-fold cross-

validation procedure tests the predictive ability of the model 

according to the whole available database, yet with use of 

the external data, excluded from the training process of the 

model. Here, external data are a result of the resampling 

technique applied to the database, ie, 10-fold cross-validation. 

Therefore, the results presented in the Figure 5 reflect the real 

situation, where the model is faced with the task of predicting 

bioperformance of a completely unknown formulation based 

solely on its in vitro and chemoinformatic characteristics.

Table 2 Input vector reduced to 28 governing variables

Original input 
numbera

Information encoded

Type of dosage form
2 Dosage form: tablets (0), capsules (1)

Quantitative composition
3 Amount of polymers (%); for IR formulations (0)
4 Amount of nonpolymeric excipients (%); for IR 

formulations (0)
5 Amount of API (%); for IR formulations (100%)
6 Dose of API in formulation (mg)

In vitro test conditions
8 Volume of dissolution medium (mL)

In vivo assay conditions
11 Fasting conditions in bioavailability study (0/1)

Molecular descriptors of API
14 Aromatic atom count
22 Hetero ring count
23 Heteroaliphatic ring count
30 Largest ring size
40 Balaban index
44 Dreiding energy
48 Maximal projection radius
57 Atom count
58 logD at pH 1
75 Acceptor count
104 Hydrogen bond donor count at pH 12
105 Hydrogen bond donor count at pH 13
106 Hydrogen bond donor count at pH 14

Molecular descriptors of polymer
130 Maximal projection area
131 Maximal projection radius
151 logD at pH 10

Dissolution profile
272 Dissolution profile: percent of API released in 

sampling time t1

288 Dissolution profile: percent of API released in 
sampling time t17

290 Sampling time of dissolution test [h] in t1

306 Sampling time of dissolution test [h] in t17

In vivo assay
307 One sampling time of in vivo study tin vivo [h]
OUT Natural logarithm of API plasma concentration 

[ng/mL] at tin vivo

Note: aNumbers refer to the original input vector presented in Table 1.
Abbreviation: API, active pharmaceutical ingredient.

Table 3 Architecture of ANNs selected for expert committee 
and their generalization errors

ANN 
number

Nodes in hidden 
layers 1–7 (n)

Activation 
function

Scaling 
range

RMSE

h1 h2 h3 h4 h6 h7

1 60 40 20 10 8 4 fsr 0.2; 0.8 1.21
2 7 5 – – – – fsr 0.2; 0.8 1.28
3 60 20 10 8 4 – tanh 0.2; 0.8 1.30
4 7 5 3 2 – – tanh -0.8; 0.8 1.38

RMSE for the whole ensemble 1.05

Abbreviations: ANN, artificial neural networks; h, hidden layer; RMSE, root mean 
squared error.
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Further, in order to demonstrate the real application of 

the system, a new dataset was introduced, including data 

from the recent study published by Zaid et al concerning 

the in vitro-in vivo characteristics of montelukast,44 which 

is a completely unknown structure in the system. Prediction 

of its behavior is presented in Figure 6. It is not a perfect 

representation of the pharmacokinetic profile measured 

in vivo (normalized root mean squared error 23%), but 

ANNs were able to predict the general characteristics 

of the pharmacokinetic profile for montelukast from the 

immediate-release formulation, ie, t
max

 (overestimated by 

1.5 hours) and the last measured concentration. Moreover, 
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ANNs correctly predicted that the concentration of 

montelukast rises rapidly after administration of the drug, 

thus the first point measured is around 400  ng/mL. This 

result is an example of extrapolation beyond the known 

database, and this can be illustrated by comparison of the 

values for the Dreiding energy parameter, ie, the maximum 

value for the database is 137.26, whereas for montelukast 

it was estimated at 357.48. The numbers quoted above are 

confirmation of the long-range extrapolation performed by 

the neural model, and although not entirely precise, are still 

reasonable and within the range of concentrations measured 

in vivo (Figure 6).

Conclusion
While clinical trials have remained time-consuming and 

expensive despite significant technological improvements 

over the years, development of information technology has 

increased rapidly and provides inexpensive hardware with 

immense computation power as well as superior software. 

Therefore, it seems reasonable to use its potential in the 

field of pharmaceutical research. IVIVC/IVIVR is now a 

standard and necessary tool in the pharmaceutical industry 

and reduces the cost of clinical trials, but in its classical 

form has limited applications. Specifically, the classical 

IVIVC/IVIVR approach involves 2–4 formulations with 

a single active pharmaceutical ingredient and requires in 

vivo data along with in vitro release profiles. Therefore, 

the procedure is limited in its ability to identify a 

mathematical function describing two sets of data (in 

vivo versus in vitro), and it is obligatory to have both 

these datasets.

Any extension of the current capabilities of IVIVC/

IVIVR models would be benef icial, providing more 

scientific justif ication for decision-making in the early 

stages of drug development. The model presented here 

provides such an extension by introducing the complex 

relationships between active pharmaceutical ingredients 

and excipients, and mapping the in vitro profile directly 

to the in vivo profile for a particular drug formulation. 

The input of the system does not require an in vivo 

profile, so allows an IVIVR to be created at an earlier 

stage of drug development than does classical IVIVC/

IVIVR.

In this study, neural modeling was demonstrated to be 

capable of handling complex problems, such as building an 

IVIVR model using a generalized approach not identified 

in the published literature. A detailed methodology was 

established which is suitable for further extension of the 

database, which is a crucial task in future development of 

IVIVR for real-life application. It was a first step towards 

the development of an integrated IVIVC/IVIVR system 

in silico, which might be used in the early stages of drug 

development to assess the effects of formulation parameters 

on the biological properties of a given drug. Such an empirical 

modeling-based system would be an enhancement, but 

certainly not a replacement, for current systems based on 

mechanistic modeling. A major advantage of such neural 

models is that they can integrate information easily, thus 

enhancing the models currently used, and provide more 

detailed information on formulation characteristics and a 

better description of test subjects if the relevant data were 

provided in the future.
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