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ABSTRACT: Calculation of temperature-dependent kinetic isotope
effects (KIE) in enzymes presents a significant theoretical challenge.
Additionally, it is not trivial to identify enzymes with available
experimental accurate intrinsic KIEs in a range of temperatures. In the
current work, we present a theoretical study of KIEs in the primitive
R67 dihydrofolate reductase (DHFR) enzyme and compare with
experimental work. The advantage of R67 DHFR is its significantly
lower kinetic complexity compared to more evolved DHFR isoforms.
We employ mass-perturbation-based path-integral simulations in
conjunction with umbrella sampling and a hybrid quantum
mechanics−molecular mechanics Hamiltonian. We obtain temper-
ature-dependent KIEs in good agreement with experiments and
ascribe the temperature-dependent KIEs primarily to zero-point
energy effects. The active site in the primitive enzyme is found to be
poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.

■ INTRODUCTION
Enzymes are flexible biological macromolecules that greatly
accelerate chemical reactions relative to the uncatalyzed
reaction in aqueous media.1,2 The source of the catalytic
effect in enzymes is multifaceted, but much of the catalytic
power of enzymes may be ascribed to preorganization of the
charge distribution in active sites, which preferentially stabilizes
the transition state (TS).1,2 The many aspects of the catalytic
effect in enzymes have been studied extensively using both
experimental and theoretical methods.3−11

An important tool in studying enzymatic reactions is kinetic
isotope effects (KIE). KIE is a very sensitive tool for studying
enzyme reaction mechanisms as KIE can provide insights into
reaction kinetics,12−14 dynamics in the active site,15−18 solvent
effects,19,20 and TSs.21−23 KIEs explore the change in the rate
of a reaction upon isotopic substitution and can provide direct
information regarding changes in bonding during the chemical
event. Specifically, primary KIEs are the indicator for atoms
that are directly involved in bond making or breaking at the
TS, while secondary KIEs indicate the location of the TS along
a reaction coordinate.24 Another useful and characteristic
property is the temperature dependence of KIE as it provides
valuable information regarding the interplay between catalytic
site dynamics and mechanisms.25−27 The temperature depend-
ence of KIEs in enzymes has been studied extensively in recent
decades;11 however, the source of the temperature dependence
is controversial. The presence of temperature-independent
KIEs has been interpreted as an indicator of quantum
mechanical tunneling and the ability of enzymes to reach so-

called tunneling-ready states.28−33 It has been suggested that
the coupled protein motions on the ps−fs timescale might
reduce the barrier height6,34−36 or promote tunneling by
modulating the potential energy barrier along the chemical
reaction coordinate [e.g., donor−acceptor distances
(DAD)].37−42 Some studies suggest that fast protein motions
couple to the tunneling-ready conformation and directly
modulate the width of the activation barrier and hence the
reaction rate.37,43−46 It has also been proposed that slower
millisecond conformational fluctuations may be involved in
driving the chemical step of the reaction.47−51

Dihydrofolate reductase (DHFR) has been used as a
prototype protein to study enzyme kinetics and dynam-
ics,49,52−62 and in particular E. coli DHFR (ecDHFR) has been
widely used.42,47,48,62−67 Experimental and theoretical studies
on wild-type (WT) ecDHFR have shown varying degrees of
KIE temperature-dependence, depending on the methods
applied.16,30,35,51,62−65,68−73 Kohen and co-workers showed
significant variation in the temperature dependence of the KIE
for mutant forms of the enzyme.16,30,70,71 This was ascribed to
the effect of mutations on the enzyme dynamics, and especially
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on the DAD motion.74−78 Here, the temperature independ-
ence of the KIEs was proposed to originate from tightly
distributed DADs at the TS (e.g., in WT ecDHFR), which is
thought to be optimized for hydrogen tunneling and does not
change significantly with temperature. In contrast, temper-
ature-dependent KIEs have been suggested to be a
consequence of a loose active site where the TS is composed
of a wide range of DADs at thermal equilibrium, and therefore,
the distribution of DADs is temperature-sensitive. In contrast,
an experimental and computational study of standard ecDHFR
and heavy ecDHFR (isotopically labeled) suggested that the
fast enzyme vibrations are not electronically coupled to the
bond activation but found stronger coupling at lower
temperatures below 20 °C.79 In spite of the numerous
experimental and theoretical studies of ecDHFR, no consensus
have emerged as to the role of temperature dependence of KIE
and tunneling. Part of this lies in the complex kinetic scheme in
ecDHFR.68,80 Theoretical studies attempting to compute the
temperature-dependent KIEs in ecDHFR have also been
published,11,39,81−86 yet this remains a challenge.84 Hence, it
would be helpful to test theoretical methods for enzymes
where the kinetics is simpler and the rate-limiting step is
unmasked.
Experimental studies on the primitive R67 DHFR revealed

temperature-dependent KIEs. These studies suggested that the
primitive enzyme is poorly preorganized and requires
significant gating of its DAD prior to the reaction, resulting
in significant temperature dependence.87,88 The advantage of
studying R67 DHFR is its simple kinetic scheme, with
measured KIEs that are nearly free of kinetic complexity.
In the present study, we compute the KIEs for primitive R67

DHFR to investigate the correlation between the KIEs, their
temperature dependence, DAD distribution, and active site

preorganization and dynamics. The current study complements
earlier experimental work on this enzyme. Here, we employ
quantum mechanics−molecular mechanics (QM/MM), in
conjunction with classical molecular dynamics and quantum
path-integral (PI) methods, to understand the temperature
dependence of KIEs in R67 DHFR.

■ METHODS

System Preparation. Initial Michaelis complexes were
constructed using the X-ray crystal structures of plasmid-
encoded DHFR, that is, R67 (2rk1),89 with bound folate and
the oxidized cofactor NADP+. The activated ternary complex
of R67 DHFR exists as a homo-tetramer at physiological pH
which dissociates into dimers at low pH values. We used the
monomeric R67 (2rk1) from the Protein Data Bank, and the
coordinates were replicated with 222 symmetry to obtain the
tetrameric protein (Figure 1A). We note that R67 monomer
consists of 78 amino acids after cleavage of the highly
disordered 20 terminal amino acid long tail in the crystal
structure.90−93 His62 imparts a crucial role in maintaining the
tetrameric form of the enzyme as it forms a hydrogen bond
with Ser59 in another monomer.94−96 Therefore, the
protonation state of His62 was set to neutral to maintain the
H-bond between His62 and Ser59, otherwise, it dissociates
into dimers.94−96 The missing coordinates for the p-ABA-Glu
tail of DHF were modeled using Discovery Studio (Biovia,
Inc.), and the substrate N5 position was protonated.97−99

Furthermore, the protonation states of all titratable amino acid
residue side chains were adjusted to pH 7, and the protonation
states of the other His residues (either neutral tautomeric
forms or positively charged forms) were determined based on
the hydrogen bonding patterns of the local environment. The
HBUILD facility in the program CHARMM was employed to

Figure 1. (A) Schematic representation of R67 DHFR shown as surface and ligands shown as sticks in the active site pore. A subset of the active
site is shown in the enlarged version of the ligands and some active site residues. (B) Classical free-energy profile for the hydride transfer reaction
catalyzed by R67 DHFR at different temperatures. The error bars are shown as highlighted regions around the solid lines. (C) Computed H/D
KIEs for the R67 catalyzed hydride transfer reaction. Red and green points represent calculated KIEs in the enzyme and gas phase (with AM1-SRP
parameterization), respectively, while blue points are experimental87,88 KIEs. (D) Distribution of distances calculated between donor and acceptor
atoms from ground state (GS) and TS trajectories. Colors: black, red, green, blue, and orange represent energies at temperatures 278, 288, 298,
308, and 318 K, respectively. The color-temperature notation also applies to (B).
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add missing hydrogen atoms in the protein.100,101 The effect of
buffer charges and the overall negative charge of the ternary
complex were modeled by the addition of 25 sodium ions and
19 chloride ions, to yield a net neutral system. The ionic
concentration here mimics experimental conditions88 and
effectively screens the charges in the system.
Simulation Details. The potential energy surface in the

present study is described by a hybrid QM/MM Hamil-
tonian,102,103 where the catalytically active QM region is
treated with a modified AM1 semiempirical Hamiltonian104

denoted AM1-specific reaction parameter (AM1-SRP).105 This
Hamiltonian was designed to reproduce high-level calculations
for an assortment of electronic and thermodynamic properties
for reactions involving various nicotinamide and pterin
derivatives.106 Moreover, a ribose puckering correction surface
was also included in the Hamiltonian, wherein the potential
energy corrections and gradients are calculated on a grid
(termed mAM1-SRP).107 The QM region includes significant
fragments of DHF and NADPH (69 atoms in total), which are
proximal to the reaction center and is expected to be large
enough,108 whereas the MM region contains the remaining
ligand atoms, the entire protein, water molecules, and salt. The
water molecules were represented by the three-point charge
TIP3P model.109 The QM/MM boundary was treated with the
generalized hybrid orbital110 method. The interactions
between the QM and MM region were treated by electrostatic
embedding. A detailed QM/MM partitioning scheme and a
thorough description of the development of mAM1-SRP are
provided elsewhere.106,107,111 The MM region here was treated
with the all-atom CHARMM36 force field.111−114 The
Michaelis complex was solvated with a pre-equilibrated cubic
water box of dimensions ca. 65 × 65 × 65 Å3. Periodic
boundary conditions were employed, and long-range electro-
static interactions were accounted for using the Ewald QM/
MM summation technique (64 × 64 × 64 fast Fourier
transform grid, κ = 0.340 Å−1).115 The QM/MM calculations
were performed using the SQUANTM module in
CHARMM.103 The system was first minimized and sub-
sequently heated up gradually to 298 K for 25 ps, followed by
equilibration at the same temperature for 1 ns. The
equilibration run was performed in the isothermal−isobaric
(NPT) ensemble at 1 atm, and the target temperature was
controlled by the extended constant pressure/temperature
method116,117 and a Hoover thermostat.118 The leapfrog
integration scheme119 was used to propagate the equations
of motions, and the SHAKE algorithm120 was applied to
constrain all MM bonds involving hydrogen atoms, allowing a
time step of 1 fs. During the initial stages of the equilibration,
we applied several nuclear Overhauser effect restraints on key
hydrogen bond interactions between the ligands and the
surrounding residues, as well as within the protein. The
classical free-energy profiles for hydride transfers at different
temperatures (278−318 K) were obtained using the umbrella
sampling (UM) technique.121 The antisymmetric reactive
stretch (ζasym) reaction coordinate was used to describe the
hydride transfer.122,123 ζasym is the difference between the
lengths of the breaking C4N−H and forming H−C6 bonds.
The reaction coordinate was discretized and divided into 16
evenly spaced regions, or “sampling windows,” ranging from
−2.0 to 1.5 Å. Each sampling window was subjected to an
appropriate harmonic restraint, which keeps ζasym in the
desired region, and an umbrella potential [roughly the negative
of the potential of mean force (PMF)] as a function of ζasym.

The cumulative simulation time per window was 500 ps, and
the statistics for the reaction coordinate were sorted into bins
of width 0.01 Å. PMF profiles were computed using the
weighted histogram analysis method.124,125

To account for nuclear quantum effects, we employed PI
simulations within the framework of the quantized classical
path (QCP) approach126,127 with staging sampling
(SQCP).128−130 In this approach, SQCP quantum simulations
correct the classical UM simulations, and we term this
combined PI and UM technique PI−UM. To calculate the
KIE, we employed the mass free-energy perturbation (FEP)
version of SQCP termed PI-FEP/UM.129,131,132 The SQCP
simulations were employed on 6120 classical configurations of
the hydride transfer reaction, combined with 100 PI steps per
classical step. Each quantized atom was described by 32 beads
(hydrogen isotopes: 1H, 2H, and neighboring heavy atoms).
Thus, ∼20 million QM/MM energy calculations are needed
for the reaction at one temperature. In total, we calculated
KIEs at five different temperatures from 278 to 318 K with
increments of 10 K. To estimate the standard errors in the
computed KIEs, the combined PI simulation data at a given
state were divided into 10 separated blocks, each treated
independently. The standard uncertainties (±1σ) were
determined from these 10 blocks, and the total averages for
both the PI−UM and the PI-FEP/UM methods were
computed.132 All PI-simulation used the abovementioned
QM/MM potential. All simulations were performed using
the CHARMM program100,101 with a parallel version that
efficiently distributes integral calculations for the quantized
beads.

Gas-Phase Calculations. Temperature-dependent KIEs
were computed in the gas phase with the AM1-SRP
Hamiltonian using models for protonated dihydrofolate and
NADPH (6-CH3-H3pterin

+ and CH3-H2nic, respectively).
106

The reactant and TSs were geometry optimized and
characterized using frequency calculations. The KIEs were
computed within the harmonic approximation. All gas-phase
calculations employed the Gaussian 16 program.133

■ RESULTS AND DISCUSSION
We obtained the classical mechanics PMF profiles at 278, 288,
298, 308, and 318 K for the catalyzed hydride transfer from
NADPH to H3folate

+ (N5-protonated DHF) in the R67
DHFR, as shown in Figure 1B. The classical activation free
energies for the R67 catalyzed reaction, ΔG‡, at the
abovementioned temperatures are obtained as 17.4 ± 0.5,
18.4 ± 0.5, 18.4 ± 0.4, 17.0 ± 0.6, and 15.7 ± 0.6 kcal/mol,
respectively. The addition of nuclear quantum effects using
PI−UM (i.e., SQCP) to the hydride transfer further reduces
the barrier for this reaction by 2−3 kcal/mol,106 and the
corresponding quantum corrected free energies are calculated
as 15.6 ± 0.6, 16.2 ± 0.5, 15.7 ± 0.5, 14.2 ± 0.6, and 13.6 ±
0.6 kcal/mol, respectively. The quantum corrected PMF at 298
K underestimates the experimental free-energy barrier by ∼1.8
kcal/mol (∼1.3 s−1 translates into 17.3 kcal/mol using Eyring’s
equation),90,94 which might be a result of the pABA-Glu tail
flexibility, which impacts the reaction barrier as seen
previously.91,134 Interestingly, we observe temperature-depend-
ent free energies for the hydride transfer reaction in R67
DHFR, which is in accordance with the kinetic data obtained
at different temperatures.135 Although, our simulated activation
free energies underestimate the experimental values at
temperatures 298, 308, 318 K, the results follow the overall
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experimental trend.135 The correlation coefficient between
temperature and experimental activation free energies is
calculated as R = 0.97, while our simulated results yield R =
0.92 with slopes of −0.06 and −0.05 for the correlation curves,
respectively (Figure S1).
Further by employing mass-perturbation PI simulations (PI-

FEP/UM with SQCP), we incorporated nuclear quantum
effects for both light (H) and heavy (D) isotopes in the
hydride transfer reaction. The quantum corrected ratios of
phenomenological rates were computed, and using these ratios,
H/D KIEs are plotted in Figure 1C. The temperature-
dependent KIEs for R67 DHFR in this work are in good
agreement with the experimentally obtained trend87,88

although the values are slightly underestimated from the
calculations (Figure 1D). As a comparison, we also compute
the gas-phase KIEs within the standard harmonic approx-
imation (no tunneling correction) for the hydride transfer
between the reacting fragments CH3-H2nic and 6-CH3-
H3pterin

+.106 These values are slightly higher than the
simulated PI-FEP/UM values due to the harmonic approx-
imation. The similar experimental and computational values
and trends suggest that the temperature dependence observed
in these KIEs originates mainly from zero-point energy effects.
To explore the correlation between the DAD and KIEs, we

calculated the distance between the C4N atom in the
nicotinamide ring and the C6 atom of DHF (DAD) in R67
DHFR at the GS and TSs and plotted their distribution in
Figure 1D. The evolution of DADs from GS to TS provided in

Supporting Information (Figure S2) shows a smooth decrease
in the DADs, suggesting sufficient overlap between adjacent
sampling windows. We observe that in all of the GS
trajectories, the DAD distribution is centered around ∼4.0 ±
0.1 Å. These DADs are longer when compared to its evolved
counterpart (ecDHFR DAD = ∼3.6 ± 0.1 Å),75,77,136−139

suggesting that the more evolved enzyme is better
preorganized. Therefore, R67 DHFR requires significant
reorganization to bring the reactants together to a reactive
state. Turning to the TS, we note the narrow distribution of
DADs, with the major population situated at a distance of
∼2.65 ± 0.06 Å. At higher temperatures, the distributions shift
slightly toward larger DAD, suggesting that the TS complexes
are subject to thermal sampling. Overall, we ascribe this to the
loose and solvent-exposed active site of R67 DHFR, where the
amplitude of the oscillatory dynamics is higher, and thermally
activated sampling of the DAD gives rise to temperature-
dependent KIEs.
Comparison of the active site environment of several DHFR

isoforms provides a rationale for how these enzymes have
evolved to preorganize their active site. We recently
emphasized the critical role of the catalytic M20 loop in
DHFR,140,141 building on earlier work by Rod and
Brooks.142,143 The highly evolved ecDHFR and human
DHFR have a tightly bound M20 loop that packs against the
pterin ring conducive for the chemical reaction.144 The M20
loop preorganizes the active site by introducing a hydrophobic
environment near the substrate N5 atom to increase its

Figure 2. RDF between DHF N5 and water oxygen for (A) GS and (B) TS trajectories. Colors: black, red, green, blue, and orange in (A,B)
represent RDF at temperatures 278, 288, 298, 308, and 318 K, respectively. (C) Correlation between temperature and water count in GS and TS
trajectories colored tan and cyan, respectively. The correlation coefficient was calculated using linear regression analysis.

Figure 3. (A) RMSF of Cα of R67 at different temperatures. The top and bottom panels represent RMSF at GS and TS, respectively. (B)
Schematic representation of R67 DHFR shown as cartoons and substrate-cofactor shown as sticks in the active site pore. The red color in the
cartoon representation depicts highly flexible regions that correspond to high RMSF values. The roman numbers designate the number of the
monomers in R67 DHFR.
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basicity, as well as a water pocket near the C4-keto group for
effective charge screening.140,141 The hydrophobic amino acids
in the M20 loop effectively sequester the solvent molecules
from the substrate N5 atom which otherwise would suppress
the substrate basicity. The M20 loop is also suggested to play a
role in the protonation of the substrate N5.142

The characteristic difference between these two variants is
that ecDHFR possesses an intrinsically floppy loop that can
adopt multiple states, whereas loop motion in hsDHFR is
controlled by hinges. For catalysis, both these variants adopt a
fully closed and catalytically competent state, which is
inaccessible to bulk water. The active site hydration is crucial
for the charge screening as well as in determining the substrate
N5 pKa, as evident from recent studies.140,141,143 Therefore, we
calculated the radial distribution function (RDF) between the
substrate N5 atom and water oxygens to study the active site
hydration. We note a sharp peak near N5 within hydrogen
bonding distance (∼3.0 Å) for all GS complexes (Figure 3A),
suggesting a highly ordered water molecule. However, this
solvation peak shifts slightly to a greater distance (∼3.5 Å) for
TS complexes at higher temperatures (298.15−318.15 K), as
shown in Figure 2B. In addition, the second solvation peak at
∼5.5−6.0 Å becomes less prominent in the TS when compared
to the GS complexes, indicating exclusion of water near the
substrate at higher temperatures. Moreover, we calculated the
number of water molecules in the substrate vicinity (within 6 Å
from three atoms in the reacting cluster: NADPH:C4,
DHF:C6, and DHF:N5) to quantify the active site hydration
in R67 DHFR. We note nearly 9−11 water molecules in GS
and ∼8 for TS trajectories. Overall, we see a greater
penetration of water molecules (Figure S3A,C) in the substrate
proximity for R67 DHFR and, perhaps the reason for smaller
N5 pKa.

140,141,143 In contrast, the evolved counterparts
(ecDHFR and human DHFR) have ∼3 water molecules
situated farther (∼6.0 Å) from the N5 atom41,141,145 as the
M20 loop provides a hydrophobic environment near N5 and
increases its pKa by 6 units relative to solution.

140,141,143,146 We
also calculated the number of water molecules in the first
solvation shell for the reacting atoms showing one water
molecule interacting with N5 (Table S1), although we note
differences only in the second solvation shell.
Interestingly, we note anticorrelation between hydration

number and temperature for both GS and TS complexes with
correlation coefficients of 0.97 and 0.86, respectively (Figure
2C). Furthermore, we find good correlation between the
hydration number and the activation free energies at different
temperatures both in GS (R = 0.74) and TS (R = 0.71)
complexes (Figure S3B), illustrating the impact of solvation on
the free-energy barriers. The relationship between the solvent
exposure and reduced catalytic rates has also been reported for
thermophilic tmDHFR.147−150 This infers that active site water
is detrimental to the enzyme activity and in R67 DHFR, the
active site is porous, solvent exposed, with a poorly
preorganized active site, which requires significant reorganiza-
tion for efficient catalysis. This reorganization requires thermal
activation including the removal of water from the active site.
As a final point, we studied the dynamics of R67 DHFR by

calculating root mean square fluctuations (RMSF) of the Cα
atom positions. Unsurprisingly, we note a slight gradual
increase in the thermal fluctuation of Cα when moving from
lower to higher temperatures. The higher thermal fluctuations
are noted mostly for the flexible loops of the enzyme and some
of which are in the proximity (>4 Å) of the substrate and

cofactor. The residues K32 and K33, which interact
predominantly with the DHF pABA-Glu tail and adenosine
binding domain of NADPH, also show higher thermal
fluctuations (4−5 Å), suggesting overall loose binding of the
ligands in the active site.

■ CONCLUSIONS

In the current work, we presented a theoretical study of KIEs
in the primitive R67 DHFR enzyme and compared the results
with the experimental work. We employed mass-perturbation-
based PI simulations in conjunction with UM and a hybrid
QM/MM Hamiltonian. We obtained that temperature-
dependent KIEs are in quite good agreement with experiments.
We ascribe the temperature-dependent KIEs mainly to zero-
point energy effects. We identified a poorly preorganized active
site in the primitive enzyme, which allows excessive water
access to the active site and results in loosely bound reacting
ligands. The significance of preorganization, that is, creating a
hydrophobic environment near the active site has been
reported earlier for various enzymes and is also evident from
our previous studies. The exposure of the active site to solvent
due to mutations, poor preorganization or protein flexibility,
has profound effect on the enzyme activity. Studies of enzymes
such as DHFR,140,141,150 glycerol-3-phosphate-dehydrogen-
ase,151 triosephosphate isomerase,152 peraoxonase,153 and
organophosphatase154 have shown that penetration of solvent
molecules to the active site is detrimental to catalytic activity.
In fact, these enzymes might have evolved to exclude solvent
from the active site cage, and this is crucial for their activity.141
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Ramos, A.; Major, D. T.; Dybala-Defratyka, A. Role of Microsolvation
and Quantum Effects in the Accurate Prediction of Kinetic Isotope
Effects: The Case of Hydrogen Atom Abstraction in Ethanol by
Atomic Hydrogen in Aqueous Solution. J. Chem. Theory Comput.
2020, 16, 847−859.
(21) Schramm, V. L.; Horenstein, B. A.; Kline, P. C. Transition State
Analysis and Inhibitor Design for Enzymatic Reactions. J. Biol. Chem.
1994, 269, 18259−18262.
(22) Moult, J. A Decade of Casp: Progress, Bottlenecks and
Prognosis in Protein Structure Prediction. Curr. Opin. Struct. Biol.
2005, 15, 285−289.
(23) Berti, P. J. Determining Transition States from Kinetic Isotope
Effects. Meth. Enzymol. 1999, 308, 355−397.
(24) Streitwieser, A.; Jagow, R. H.; Fahey, R. C.; Suzuki, S. Kinetic
Isotope Effects in the Acetolyses of Deuterated Cyclopentyl
Tosylates1,2. J. Am. Chem. Soc. 1958, 80, 2326−2332.
(25) Wiberg, K. B. The Deuterium Isotope Effect. Chem. Rev. 1955,
55, 713−743.
(26) Bell, R. P. Liversidge Lecture. Recent Advances in the Study of
Kinetic Hydrogen Isotope Effects. Chem. Soc. Rev. 1974, 3, 513−544.
(27) Giagou, T.; Meyer, M. P. Kinetic Isotope Effects in Asymmetric
Reactions. Chemistry 2010, 16, 10616−10628.
(28) Luk, L. Y. P.; Loveridge, E. J.; Allemann, R. K. Protein Motions
and Dynamic Effects in Enzyme Catalysis. Phys. Chem. Chem. Phys.
2015, 17, 30817−30827.
(29) Ruiz-Pernía, J. J.; Behiry, E.; Luk, L. Y. P.; Loveridge, E. J.;
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