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Abstract: Confronted with a series of problems caused by surging generation of municipal solid waste
(MSW), the Chinese central and local governments have promulgated and implemented policies
to deal with them, including promotions of the classification of MSW. However, to date, practical
knowledge and understanding about benefits for garbage classification from its environmental
performance perspective is still limited. The present study is purposed to comprehensively investigate
the environmental effects of garbage classification on municipal solid waste management (MSWM)
systems based on three proposed garbage classification scenarios in China, via a comparative life cycle
impact assessment (LCIA). Taking advantage of Impact Assessment of Chemical Toxics (IMPACT)
2002+ method, this comparative LCIA study can quantitatively evaluate midpoint, endpoint, and
single scored life cycle impacts for the studied MSWM systems. A Monte Carlo uncertainty analysis
is carried out to test the effectiveness and reliabilities of the LCIA results. The LCIA and uncertainty
analysis results show that MSWM systems based on various garbage classification scenarios have
significant variations in the studied midpoint, endpoint, and single scored environmental impacts.
Different garbage classification scenarios have their individual environmental-friendly superiority
for specific impact categories. Overall, results of this study demonstrate that MSW treatment
systems integrated with garbage classification are more environmentally friendly by comparison with
non-classification; and that the more elaborate the level of MSW classification, the smaller its impacts
on the environment.

Keywords: municipal solid waste; life cycle impact assessment; garbage classification;
uncertainty analysis

1. Introduction

1.1. Current Garbage Classification Practice

There are various practical approaches of garbage classification/sorting, in different countries.
For instance, Japanese citizens are required to dispose garbage per local garbage sorting guidance,
with specific requirements for disposal of incinerable and non-incinerable wastes. Germany adopts
recyclable, nonrecyclable, and biomass wastes and with a specific focus on mechanical sorting and
processing. The US puts efforts on waste source reduction and pays more attention on the recycling of
paper, glass, plastics etc. Recent decades have witnessed the rapid increasing generation amount of
China’s annual national municipal solid waste (MSW), from 0.025 billion tons in 1979 to 0.204 billion
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tons by approximate 7.12 times [1,2]. Aware of the severity of environmental impacts from MSW
treatment, the central and local Chinese governments have been developing strategical and tactical
policies, laws and regulations, to improve the environmental performances of the municipal solid waste
management (MSWM) systems. For instance, Regulations on The Management of Domestic Garbage in
Shanghai will be officially implemented as a mandatory garbage classification in Shanghai, and China
plans to establish a nationwide garbage classification and processing system in 46 domestic cities [3].
As of the time of writing this paper, over 40 Chinese cities have set up pilot zones to promote garbage
sorting and recycling [4–11]. However, effective promotion of the garbage classification is a complicated
issue, involving economical topics such as charge mechanism and cost benefit, social topics such as
behavior and psychology of residents, and of course the environmental issues [12].

1.2. State of the Art of Life Cycle Assessment on Municipal Solid Waste Management Systems

Life cycle assessment (LCA) has been widely applied as a systematical tool to evaluate the
environmental performance of MSWM systems.

LCAs on MSWM technologies: LCA is used for the evaluation of MSWM technologies, such as
fuel generation form MSW [13], valorizing MSW to bioenergy microbial protein, lactic and succinic
acid via different biorefinery platforms [14], pyrolysis–gasification treatment processing of MSW [15],
fast pyrolysis of MSW [16], use of compost from contaminated biodegradable MSW with silver and
titanium dioxide nanoparticles [17], as well as comparisons in between practical technologies [18].
LCA has also been applied for assessing emerging new treatment technologies, such as an innovative and
enhanced mechanical and biological treatment (MBT) demo plant installed in Mertesdorf (Germany),
as part of Material Advanced Recovery Sustainable Systems [19], comparisons of three dual-stage
advanced energy-from-waste technologies, i.e., gasification and plasma gas cleaning, fast pyrolysis
and combustion and gasification with syngas combustion [20], mechanical biological pre-treatment
of MSW [21]. Effects of specific treatment processing was also studied through LCA, such as street
sweeping services [22], and source-separated collection [23]. LCA was also applied to investigate
environmental burdens perceived through specific MSW processing, e.g., incineration [12,24–26],
specifically, to quantitatively evaluate the life cycle environmental impacts of treatment of bottom ash
from incineration [27–29].

MSW LCA case studies and scenario analysis: Many case studies have been conducted based on
different geographical distributed MSWM systems, such as systems based in China [23,30], Sao Paulo,
Brazil [31], Finland and China comparison [32], Sakarya, [33], Naples, Italy [34], Lahore, Pakistan [35],
Bolivia [36], and France [37]. Scenario analysis is a commonly used method in the conduction of MSW
comparative studies [38–49].

MSW LCA methodology development: With the development of LCA practices in MSWM systems,
different LCA methods are also proposed based on the modification of conventional methodologies,
such as an integrated LCA method encompassing both environmental and economic indicators [50],
and a modular LCA framework [51].

1.3. Uncertainty Analysis Practice in Life Cycle Assessment Studies

Current practice suggests three types of commonly used methods for LCA uncertainty analysis,
namely, sampling methods, analytical approach, and the fuzzy logic method [52]. Among various
numerical methods of sampling, the Mont Carlo method is the most widely used and is performed by
carrying out a large number of random samplings and propagating to generate the output probability
distribution. Further, sensitivities due to the inherit uncertainties’ propagating effects are evaluated
through various numerical methods such as regression coefficients [53], the Pearson correlation
coefficient [54–56]; the Spearman correlation coefficient [57–62]; key issue analysis, [63–65], and the
Fourier amplitude test [66].
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1.4. Research Gaps in Municipal Solid Waste Management Life Cycle Assessments and Scope
of the Present Study

The following research limitations are identified through our extensive literature review:
(a) Few LCAs of MSW systems are based in China, and no existing discussions of LCA on garbage
classification is especially noticed; (b) very few LCAs focus on the evaluation of effects of garbage
classification on MSWM systems—on the other hand, within the life cycle of a product or service,
the variations of materials and unit processes will cause different levels of energy consumption and
environmental releasement, due to the variations among associated with transportations, end of life
disposal and recycling scenarios, etc. [67]; (c) insufficient discussion of uncertainties decrease the
reliabilities of the LCA results on MSWM systems, and uncertainty analysis is usually omitted in
comparative LCA studies on MSW systems. Therefore, this study is aimed to: (a) conduct a comparative
life cycle impact assessment (LCIA) study on three MSWM systems based on three garbage classification
scenarios in China to investigate the environmental performances of different garbage classification
scenarios; (b) carry out a comprehensive uncertainty analysis for the life cycle impacts of the studied
MSWM systems, as well as the comparisons in between, to increase the knowledge on the uncertainty
propagating mechanism of input data and its relationship with the output reliabilities. The results of
this study are expected to provide data and information support for stakeholders, such as decision
makers and the public, about the environmental benefits of garbage classification from the perspective
of the life cycles of the MSWM systems. The results of LCIA and the comparative uncertainty analyses
also provide information needed for trading off among different environmental impacts to improve
the overall environmental performances of MSWM systems.

The main body of the paper is structured as follows: Section 2, materials and methods, will discuss
garbage classification based MSWM-scenario descriptions; LCA goal and scope definition including
system boundary, functional unit, and cut-off criteria; life cycle inventory data; life cycle assessment
methodology and uncertainty analysis method. Section 3 will discuss the findings through an in-depth
analysis of the LCIA results and uncertainty analysis. Finally, a few concluding remarks, as well as
limitations of this study are briefly discussed in Section 4.

2. Materials and Methods

2.1. Garbage-Classification Based Municipal Solid Waste Management Scenarios

Scenario 1 (S-1). This is the conventional scenario of MSWM in China and the baseline scenario
for the present LCIA study. As shown in Figure 1a, under this scenario, mixed MSW is collected
without sorting prior to its disposal to the collecting site, e.g., garbage carts for household garbage.
The collected mixed garbage then goes through transportation and mechanical sorting, with the
sorted recyclables separated and the remaining portion sent to integrated treatment facilities.
The proportions of treatments in this integrated treatment systems are assumed to be 40% for
incineration, 30% for composting, and 30% for landfilling [68,69].

Scenario 2 (S-2). This scenario describes an MSW management system based on an integrated
treatment method incorporating four-category sorting of garbage prior to its disposal to garbage
carts for collection (Figure 1b). Hazardous, perishable, recyclable, and other garbage is classified for
household garbage disposal with specifically provided garbage cans available on the collecting sites.
The perishable garbage is collected and transported to local landfill sites; the hazardous garbage is
collected and transported to specific treatment facility; the recyclable garbage is collected and sorted to
be delivered for reuse; other garbage is sent to the incineration facility. Ashes from composting and
incineration are then collected and sent to landfill sites for landfilling.

Scenario 3 (S-3). This is an improved version of S-2 with enhanced efforts of classification for
recyclables, under which the recyclable garbage is further classified into five categories, namely,
paper/cardboard, plastics, metals, glass and textiles. The further classified and sorted garbage is
disposed into specified garbage cans, collected, and transported to sorting facilities and treated
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for reuse (Figure 1c). Under this scenario, it is assumed that the recyclables are collected and
transported through separate transportations services. Similar with under S-2, ashes from composting
and incineration are collected and sent to landfill site for sanitary landfilling.
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Figure 1. Schematic flowcharts of municipal solid waste (MSW) management systems based on
proposed scenarios in China under study. (a) Scenario 1 (S-1); (b) Scenario 2 (S-2); (c) Scenario 3 (S-3).

2.2. Main Waste Treatment Processes

There are three commonly used garbage treatment technologies involved in this study: sanitary
landfill, incineration, and composting. The schematic processing flowcharts are shown in Figures 2–4.
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Landfill: Collected municipal solid garbage is treated through primary processes such as
sorting, spreading, compacting, and covering, and then delivered to the landfill sites for treatment,
as shown in Figure 2.
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Incineration: Collected MSW is fed into the incinerator for combustion and the contained
hazardous and toxicity composition is removed through incineration. The main processes involved
in the incineration treatment are incinerating, dry smoke washing, dust collecting, and ash magnetic
separating, as shown in Figure 3.

Composting: The three main treatment sub-processes are pretreatment, including sorting and
shredding, fermentation including storage, mixing and fermentation, and post composting including
screening and packaging, as shown in Figure 4.

2.3. Life Cycle Assessment Goal and Scope Definition

This LCA study is aimed at comparatively evaluating the environmental performances of MSWM
systems based on three garbage classification scenarios that have the potentials to be applied in China.
The results are expected to provide data and information support for decision makers, as well as to
increase public awareness of the necessity of garbage sorting.

Figure 5 shows the system boundary of the MSWM systems. Physically, the life cycle of the
MSWM system encompasses the MSW collection, transportation, mechanical sorting through treatment
processing such as landfill, incineration and composting, as well as all associated with consumption of
materials, resources and energy.
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The main function of the MSWM system is the treatment of MSW, so the functional unit of an
LCA study is normally defined as the weight or volume of the solid waste [71,72]. As this case study is
based on a generalized case in China, and due to the spatial-variation caused composition-proportion
variations, this study defines 1 kg MSW as the functional unit for the LCA. According to current
practice of LCA studies, this study uses weight and environmental significance as the cut-off criteria.

2.4. Life Cycle Inventory Data

Primary data, i.e., the main compositions of MSW in China, is listed in Table 1. The data is obtained
from peer-reviewed publications about Chinese MSW [70,73–76]. In real world case, the compositions
of MSW in different geographical locations may vary with level of economy development, living
conditions, food habits and among others, however, the average local compositions have limited
variations in China municipal areas. Secondary data used as the background data are taken from
Ecoinvent database. As shown in Table 1, the detailed proportions of the main compositions are
distributed as: paper/cardboard 13.35%; metals 1.21%, glass 3.14%, plastics 14.54%, textiles 4.45%,
ceramics 3.62%, wood/bamboo 3.53%, ashes 9.07%, kitchen waste 46.54%, and hazardous 0.55%.
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Table 1. Compositions of mixed municipal solid waste (MSW) in China [70,73–76].

Composition Proportion (%) Detailed Composition

Paper/cardboard 13.35 Waste books, newspapers, paper boxes, waste papers,
waste toilet papers, sanitary napkins etc.

Metals 1.21 Aluminum cans, tin cans, wasted metal components and
parts (excluding button batteries), etc.

Glass 3.14 Glass bottles, bowls, containers, handicraft, etc.

Plastics 14.54 Plastic bottles, packages, wet contaminated plastic,
rubbers, leatherware, etc.

Textiles 4.45 Wasted cloth, cotton textiles, etc.
Ceramics 3.62 Wasted bricks, tiles, ceramics, stones, cement, etc.

Wood/bamboo 3.53 Wasted wood, bamboo, flowers, plants, etc.
Ashes 9.07 Dirt, ash, lime sands, etc.

Kitchen waste 46.54 Wasted plant foods, meats, fruits, etc.
Hazardous 0.55 Wasted batteries, paints, pesticides, etc.

2.5. Life Cycle Impact Assessment Methodology

This study adopts IMPAC T2002+ as the LCIA method, which is a combination of Impact
Assessment of Chemical Toxics (IMPACT) 2002 [77], Eco-indicator 99 [78], CML [79], and IPCC.
This method provides both four damage oriented endpoint categories, namely, human health, ecosystem
quality, climate change, resources, and midpoint impact categories carcinogens (kg C2H3Cl eq),
non-carcinogens (kg C2H3Cl eq), respiratory inorganics (kg PM2.5 eq), ionizing radiation (Bq C−14 eq),
ozone layer depletion (kg CFC−11 eq), respiratory organics (kg C2H4 eq), aquatic ecotoxicity
(kg TEG water), terrestrial ecotoxicity (kg TEG soil), terrestrial acidi/nutri (kg SO2 eq), land occupation
(m2org.arable), aquatic acidification (kg SO2 eq), aquatic eutrophication (kg PO4 P-lim), global
warming (kg CO2 eq), non-renewable energy (MJ primary), and mineral extraction (MJ surplus).
The normalization of IMPACT 2002+ is carried out by dividing the specific category of impact by
annual average impact of an EU citizen.

2.6. Uncertainty Analysis

Life cycle inventory data is acquired from different sources, such as observations, peer-reviewed
publications, public database, etc. Uncertainties of the collected data are unavoidably aggregated and
propagated through the stepwise life cycle assessment procedures, namely, data calculation, modelling,
cutting off, allocating, and computer data processing with large amount of rounding offs. Therefore,
as a result, both the life cycle inventory analysis and the impact assessment results will inherit the
uncertainties initiated from various data sources. Thus, a proper uncertainty analysis is crucial to
validate the LCA results and ensure the reliability of the interpreted information. As triangle distribution
is an effective method to determine the distribution of variables when the sample data of uncertain
parameters are finite [80], for this LCA study, the uncertainties of the collected input data are assumed
to be following triangular distributions, with ±0.05% errors suggested. Monte Carlo has been widely
applied for the uncertainty analysis in many LCA studies [81,82]. Monte Carlo uncertainty analysis
is normally carried out through the following steps: (a) definition of the probability distributions of
input data; (b) definition of the output values as numerical functions of inputs; (c) carrying out random
sampling for input data for a large number of runs; (d) generation of probability distribution of outputs.
The stepwise procedures can be expressed as below:

y = y(x1, x2, . . . xM), (1)

yi = y(x1i, x2i, . . . xMi), (2)

y =
1
N

N∑
i=1

yi, (3)
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σ2 =
1

N − 1

N∑
i=1

(yi − y)2, (4)

where, (x1i, x2i, . . . xMi), ith random sampling of input data x1, x2, . . . xM; y, an arbitrary output value,
as a function of input parameters x1, x2, . . . xM; yi, the output parameter value decided by the ith
random sampling; y, mean output of parameter y after N random sampling; σ, standard deviation of
output parameter y after N random sampling.

3. Results and Discussion

3.1. Life Cycle Impact Assessment

3.1.1. Midpoint Impacts

The midpoint life cycle impacts are calculated through IMPACT 2002+ method, with the
comparisons of all categories shown in Figure 6 and detailed numerical valued available in Table S1.
The calculated results of the midpoint impacts show that: (a) S-1 has the most significant impacts in
categories: carcinogens 2.771E−01 kg C2H3Cl, non-carcinogens 4.199E−01 kg C2H3Cl eq, ionizing
radiation 6.300E+01 Bq C−14 eq, aquatic eutrophication 3.768E−03 kg PO4 P-lim, mineral extraction
6.016E−01 MJ surplus, and the least significant impacts in categories: aquatic ecotoxicity 2.733E+03 kg
TEG water, terrestrial ecotoxicity 9.386E+02 kg TEG soil, terrestrial acid/nutri 3.731E−01 kg SO2 eq,
and land occupation 1.047E+01 m2org.arable; (b) S-2 has the highest impacts in categories: respiratory
inorganics 2.159E−02 kg PM2.5 eq, aquatic ecotoxicity 2.749E+03 kg TEG water, terrestrial ecotoxicity
9.464E+02 kg TEG soil, aquatic eutrophication 7.279E−02 kg SO2 eq, global warming 1.109E+01 kg
CO2 eq, non-renewable energy 1.880E+02 MJ primary; (c) S-3 is the most significant contributor in such
impact categories as ozone layer depletion 2.277E−06 kg CFC−11 eq, respiratory organics 1.214E−02 kg
C2H4 eq, terrestrial acid/nutri 3.811E−01 kg SO2 eq, land occupation 1.065E+01 m2org.arable,
as well as contributing the least significant impacts in categories: carcinogens 2.416E−01 kg
C2H3Cl eq, non-carcinogens 4.118E−01 kg C2H3Cl eq, respiratory inorganics 2.137E−02 kg PM2.5 eq,
ionizing radiation 5.225E+01 Bq C−14 eq, aquatic acidification 7.203E−02 kg SO2 eq, aquatic
eutrophication 3.693E−03 kg PO4 P-lim, global warming 1.097E+01 kg CO2 eq, and mineral extraction
5.131E−01 MJ surplus.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 20 
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Figure 6. Midpoint life cycle impacts of studied municipal solid waste management (MSWM)systems
based on Scenarios S1–3. Notes: CA, climate change; N-CA, non-carcinogens; RI, respiratory inorganics;
IR, ionizing radiation; OD, ozone layer depletion; RO, respiratory organics; AEC, aquatic ecotoxicity;
TE, terrestrial ecotoxicity; TA, terrestrial acid/nutri; LO, land occupation; AA, aquatic acidification;
AEU, aquatic eutrophication; GW, global warming; N-R, non-renewable energy; and, ME, mineral
extraction; IMPACT, Impact Assessment of Chemical Toxics; S, scenario.
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3.1.2. Endpoint Impacts

IMPACT 2002+ method calculates the damage of human health per contributions from midpoint
impact categories: carcinogens, non-carcinogens, respiratory inorganics, ionizing radiation, ozone
depletion, respiratory organics and; damage of ecosystem quality per: aquatic ecotoxicity, terrestrial
ecotoxicity, terrestrial acid/nutri, land occupation, aquatic acidification, and aquatic eutrophication;
damage of climate change per: midpoint impact category global warming; and damage of resources
per non-renewable energy and mineral extraction. The comparative endpoint life cycle impacts,
i.e., damages are calculated and shown in Figure 7. The main finding of the endpoint LCIA results
demonstrate that: (a) S-1 is the least significant contributor of ecosystem quality, with an amount of
1.9357E+01 PDF*m2*yr; (b) S-2 is the most significant contributor of human health with an amount
of 1.7070E−05 DALY, ecosystem quality with an amount of 1.9631E+01 PDF*m2*yr, climate change
1.1093E+01 kg CO2 eq, resources with amount of 1.8856E+02 MJ primary; (c) S-3 contributes the least
significant to damages of human health with 1.6827E−05 DALY, climate change with 1.0965E+01 kg
CO2 eq, and resources depletion with 1.8508E+02 MJ primary. The detailed contributions per midpoint
impact categories of the three scenarios are shown in Table 2.
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Figure 7. Endpoint life cycle impacts, i.e., damages via municipal solid waste management
(MSWM)systems based on S1–3.

Table 2. Damage assessment results, i.e., endpoint life cycle impacts of studied municipal solid waste
(MSW)systems based on S1–3.

Damage Category Impact Category Unit S-1 S-2 S-3

Human health

Human health total DALY 1.6959E−05 1.7070E−05 1.6827E−05
Carcinogens DALY 7.763E−07 7.445E−07 6.766E−07

Non-carcinogens DALY 1.179E−06 1.176E−06 1.156E−06
Respiratory inorganics DALY 1.500E−05 1.515E−05 1.499E−05

Ionizing radiation DALY 2.677E−08 2.562E−08 2.279E−08
Ozone layer depletion DALY 2.346E−09 2.377E−09 2.392E−09
Respiratory organics DALY 2.494E−08 2.556E−08 2.586E−08

Ecosystem quality

Ecosystem quality total PDF*m2*yr 1.9357E+01 1.9631E+01 1.9591E+01
Aquatic ecotoxicity PDF*m2*yr 1.376E−01 1.384E−01 1.376E−01

Terrestrial ecotoxicity PDF*m2*yr 7.445E+00 7.506E+00 7.472E+00
Terrestrial acid/nutri PDF*m2*yr 3.880E−01 3.959E−01 3.963E−01

Land occupation PDF*m2*yr 1.141E+01 1.161E+01 1.160E+01
Aquatic acidification - - - -

Aquatic eutrophication - - - -
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Table 2. Cont.

Damage Category Impact Category Unit S-1 S-2 S-3

Climate change Climate change total kg CO2 eq 1.1052E+01 1.1093E+01 1.0965E+01
Global warming kg CO2 eq 1.105E+01 1.109E+01 1.097E+01

Resources
Resources total MJ primary 1.8796E+02 1.8856E+02 1.8508E+02

Non-renewable energy MJ primary 1.874E+02 1.880E+02 1.846E+02
Mineral extraction MJ primary 6.016E−01 5.546E−01 5.131E−01

DALY is the acronym of Disability-Adjusted Life Year, quantifying the burden of disease from mortality and
morbidity [83]; PDF*m2*yr, potentially disappeared fraction of species * square meters * year; kg CO2 eq, kilogram
carbon dioxide equivalents; MJ, megajoule.

3.1.3. Single Scored Impacts

IMPACT 2002+ provides such a way that the values of different impact categories are grouped,
weighted and added up to be a single score index. As the levels of life cycle impacts that we intend
to interpret are very likely dependent on the actual audience, a single scored impact gives the most
straightforward understandable approach to compare the environmental performance of a product
system with others. With all the weighted sores of midpoint impact categories added together,
the single scored life cycle impacts of S-1, S-2, and S-3 are 6.16, 6.2, and 6.13 mPt. The most dominant
midpoint impacts for the scores are respiratory inorganics, global warming and non-renewable energy.
Their weighted scores are 2.11, 2.13, and 2.11 mPt; 1.12, 1.12, and 1.11 mPt; 1.23, 1.24, and 1.21 mPt,
for S-1, S-2, and S-3 respectively, as shown in Figure 8.
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Figure 8. Single scored life cycle impacts with 95.0% confidence intervals calculated by Monte
Carlo uncertainty analysis based on S1–3. Means, 2.5 to 97.5% confidence intervals are: S-1,
6.3140E−03, 6.0029E−3~6.6557E−03; S-2, 6.2086E−03, 6.0506E−03~6.3681E−03; S-3, 6.1342E−03,
and 5.9790E−03~6.2883E−03. (See Tables S2 and S3 for details).

3.2. Uncertainty Analysis

With application of Monte Carlo method, 10,000 run samplings are conducted to test the
probability distributions of the differences for the same impact categories in between different scenarios.
The probabilities of the subtractions of impacts in between S-1 vs. S-2, S-1 vs. S-3, as well as S-2 vs.
S-3. The testing results for midpoint, damage, i.e., endpoint, and single scored impacts are shown as
Figures 9–11. The associated with details of their numerical values are listed in Tables S2 and S3.
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Figure 9. Probability distributions of midpoint life cycle impact comparisons in between scenarios.
(a) comparison between S-1 vs. S-2, (b) comparison between S-1 vs. S-3, (c) comparison between
S-2 vs. S-3. Notes: with confidence interval of 95%, simulated by Monte Carlo sampling, 10,000 runs.
CA, climate change; N-CA, non-carcinogens; RI, respiratory inorganics; IR, ionizing radiation;
OD, ozone layer depletion; RO, respiratory organics; AEC, aquatic ecotoxicity; TE, terrestrial ecotoxicity;
TA, terrestrial acid/nutri; LO, land occupation; AA, aquatic acidification; AEU, aquatic eutrophication;
GW, global warming; N-R, non-renewable energy; and, ME, mineral extraction; IMPACT, Impact
Assessment of Chemical Toxics; S, scenario.
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Figure 10. Probability distributions of damages, i.e., endpoint life cycle impact comparisons in between
scenarios. (a) comparison between S-1 vs. S-2, (b) comparison between S-1 vs. S-3, (c) comparison
between S-2 vs. S-3. Notes: with confidence interval of 95%, simulated by Monte Carlo sampling,
10,000 runs; IMPACT, Impact Assessment of Chemical Toxics; S, scenario.
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Figure 11. Probability distributions of single scored life cycle impacts in between scenarios.
(a) comparison between S-1 vs. S-2, (b) comparison between S-1 vs. S-3, (c) comparison between S-2 vs.
S-3. Notes: with confidence interval of 95%, simulated by Monte Carlo sampling, 10,000 runs; IMPACT,
Impact Assessment of Chemical Toxics; S, scenario.

3.2.1. Uncertainties of Midpoint Impact Comparisons in Between Scenario 1, Scenario 2 and Scenario 3

S-1 vs. S-2:aAs shown in Figure 9a and Table S4, the uncertainty analyses show that
with a confidence interval of 95%, the mean values of the differences (S-2’s minus S-1’s) for
each of the midpoint life cycle impacts are expected to be −1.730E−03 kg SO2 eq for aquatic
acidification, −2.798E+00 kg TEG water for aquatic ecotoxicity, −7.195E−05 kg PO4 P-lim for
aquatic eutrophication, −1.251E−02 kg C2H3Cl eq for carcinogens, −3.734E−01 kg CO2 eq for global
warming, −8.306E+00 BqC−14 eq for ionizing radiation, 1.822E−01 m2org.arable for land occupation,
−4.883E−02 MJ surplus for mineral extraction, −2.866E−03 kg C2H3Cl eq for non-carcinogens,
−5.770E+00 MJ primary for non-renewable energy, −4.712E−08 kg CFC−11 eq for ozone layer depletion,
−4.134E−04 kg PM2.5 eq for respiratory inorganics, −4.917E−04 kg C2H4 eq for respiratory organics,
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and −7.792E−03 kg SO2 eq for terrestrial acid/nutri, 2.443E+00 kg TEG soil for terrestrial ecotoxicity.
The probabilities that S-1 ≥ S-2 for the midpoint impacts are: 74.1% for aquatic acidification, 51.71%
for aquatic ecotoxicity, 77.45% for aquatic eutrophication, 97.06% for carcinogens, 81.06% for global
warming, 99.18% for ionizing radiation, 24.57% for land occupation, 99.98% for mineral extraction,
60.78% for non-carcinogens, 79.88% for non-renewable energy, 70.46% for ozone layer depletion, 70.82%
for respiratory inorganics, 74.53% for respiratory organics, 67.81% for terrestrial acid/nutri, and 45.93%
for terrestrial ecotoxicity. Land occupation and terrestrial ecotoxicity are the only two impact categories
where the probabilities of S-2 being greater than S-1 are over 50%. This indicates that it is more likely
that S-2 has a more friendly environmental performance than S-1 in most of the midpoint impacts
excluding land occupation and terrestrial ecotoxicity.

S-1 vs. S-3: as shown in Figure 9b and Table S5, with a confidence interval of 95%, the mean
values of the differences (S-3’s minus S-1’s) for each of the midpoint life cycle impacts are expected
to be −2.457E−03 kg SO2 eq for aquatic acidification, −1.762E+01 kg TEG water for aquatic
ecotoxicity, −1.100E−04 kg PO4 P-lim for aquatic eutrophication, −3.668E−02 kg C2H3Cl eq for
carcinogens, −4.942E−01 kg CO2 eq for global warming, −2.169E+01 BqC−14 eq for ionizing
radiation, 1.786E−01 m2org.arable for land occupation, −9.020E−02 MJ surplus for mineral extraction,
−9.892E−03 kg C2H3Cl eq for non-carcinogens, −9.097E+00 MJ primary for non-renewable energy,
−3.130E−08 kg CFC−11 eq for ozone layer depletion,−6.218E−04 kg PM2.5 eq for respiratory inorganics,
−3.400E−04 kg C2H4 eq for respiratory organics, −7.170E−03 kg SO2 eq for terrestrial acid/nutri, and
−1.574E+00 kg TEG soil for terrestrial ecotoxicity. The probabilities that S-3 ≥ S-1 for the midpoint
impacts are: 16.05% for aquatic acidification, 40.25% for aquatic ecotoxicity, 12.55% for aquatic
eutrophication, 0% for carcinogens, 10.35% for global warming, 0% for ionizing radiation, 75.06% for
land occupation, 0% for mineral extraction, 17.82% for non-carcinogens, 7.67% for non-renewable
energy, 36.98% for ozone layer depletion, 18.67% for respiratory inorganics, 34.29% for respiratory
organics, 33.33% for terrestrial acid/nutri, and 47.54% for terrestrial ecotoxicity. Land occupation is the
only impact category where the probability of S-3 being greater than S-1 are over 50%. This indicates
that it is likely that S-3 has more friendly environmental performance than S-1 in most of the midpoint
impacts excluding land occupation.

S-2 vs. S-3: as shown in Figure 9c and Table S6, with a confidence interval of 95%, the mean
values of the differences (S-3’s minus S-2’s) for each of the midpoint life cycle impacts are expected
to be −7.693E−04 kg SO2 eq for aquatic acidification, −1.564E+01 kg TEG water for aquatic
ecotoxicity, −3.914E−05 kg PO4 P-lim for aquatic eutrophication, −2.424E−02 kg C2H3Cl eq for
carcinogens, −1.278E−01 kg CO2 eq for global warming, −1.345E+01 Bq C−14 eq for ionizing
radiation, −6.180E−03 m2org.arable for land occupation, −4.150E−02 MJ surplus for mineral extraction,
−7.134E−03 kg C2H3Cl eq for non-carcinogens, −3.442E+00 MJ primary for non-renewable energy,
1.449E−08 kg CFC−11 eq for ozone layer depletion, −2.205E−04 kg PM2.5 eq for respiratory
inorganics, 1.400E−04 kg C2H4 eq for respiratory organics, 3.763E−04 kg SO2 eq for terrestrial
acid/nutri, and −4.293E+00 kg TEG soil for terrestrial ecotoxicity. The probabilities that S-3 ≥ S-1 for
the midpoint impacts are: 0% for aquatic acidification, aquatic ecotoxicity, aquatic eutrophication,
carcinogens, global warming, ionizing radiation, land occupation, mineral extraction, non-carcinogens,
non-renewable energy, respiratory inorganics, terrestrial ecotoxicity; 100% for ozone layer depletion,
respiratory organics, and terrestrial acid/nutri. This indicates that S-3 has better environmental
performance than S-2 in all midpoint categories except for land occupation, respiratory organics,
and terrestrial acid/nutri.

3.2.2. Uncertainties of Damages, i.e., Endpoint Impact Comparisons in Between Scenario 1, Scenario 2
and Scenario 3

S-1 vs. S-2: as illustrated in Figure 10a, and with detailed numerical values available in Table S7,
the results of Monte Carlo sampling with 10,000 runs show that with a confidence interval of 95%,
the mean values of the differences (S-2’s minus S-1’s) for each of the endpoint life cycle impacts
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are expected to be −3.73E−01 kg CO2 eq for climate change, 2.10E−01 PDF*m2*yr for ecosystem
quality, −3.35E−07 DALY for human health, −5.82E+00 MJ primary for resources. The probabilities
that S-2 ≥ S-1 for the endpoint impacts are: 18.94% for climate change, 66.3% for ecosystem quality,
27.74% for human health, and 19.91% for resources.

S-1 vs. S-3: as shown in Figure 10b and Table S8, the means of the differences (S-3’s minus S-1’s)
for each of the endpoint life cycle impacts are calculated to be −4.94E−01 kg CO2 eq for climate change,
1.74E−01 PDF*m2*yr for ecosystem quality, −5.71E−07 DALY for human health, −9.19E+00 MJ primary
for resources. The probabilities that S-3 ≥ S-1 for the endpoint impacts are: 10.35% for climate change,
63.51% for ecosystem quality, 13.77% for human health, and 7.49% for resources.

S-2 vs. S-3: as shown in Figure 10c and Table S9, the means of the differences (S-3’s minus S-2’s)
for each of the endpoint life cycle impacts are −1.28E−01 kg CO2 eq for climate change, −4.11E−02
PDF*m2*yr for ecosystem quality, −2.45E−07 DALY for human health, −3.48E+00 MJ primary for
resources. All the probabilities that S-3 ≥ S-2 for the endpoint impacts are calculated to be 0%.

3.2.3. Uncertainties of Single-Scored Impacts in Between Scenario 1, Scenario 2, and Scenario 3

As illustrated in Tables S10–S12, with a confidence interval of 95%, the mean values of the single
score impact differences in between S-1, S-2, and S-3 are −1.08E−04 for S-2 minus S-1, −1.78E−04 for S-3
minus S-1, and −1.78E−04 for S-3 minus S-2. The probability distribution of the differences in between
single scores of S-1 vs. S-2, S-1 vs. S-3, S-2 vs. S-3 are shown in Figure 11a–c.

The probabilities that S-2 ≥ S-1, S-3 ≥ S-1, and S-3 ≥ S-2, are 29.43%, 17.15%, and 0%. This indicates
that it is more likely that S-3 has the best environmental performance, followed by S-1 and then S-2.
The reason that S-2 has a larger score than S-1 may be caused by the consumption of energy and
resources, as its treatment of the sorted garbage involves more transportation and sorting processing.
However, with a more detailed sorting requirements, S-3 shows better environmental performance
than S-2 in terms of a single score index.

4. Conclusions

A comparative LCIA study was performed for MSWM systems based on three garbage
classification scenarios in China. The LCIA results indicate that systems based on various scenarios
show significant variations for the studied environmental impacts. For midpoint impacts, S-1 is the
most significant contributor to categories: carcinogens, non-carcinogens, ionizing radiation, aquatic
eutrophication, mineral extraction, and the least significant contributors in categories aquatic ecotoxicity,
terrestrial ecotoxicity, terrestrial acid/nutri, and land occupation; S-2 has the highest impacts in
categories: respiratory inorganics, aquatic ecotoxicity, terrestrial ecotoxicity, aquatic eutrophication,
global warming, non-renewable energy; S-3 is the most significant contributor to ozone layer depletion,
respiratory organics, terrestrial acid/nutri, land occupation, and contributes the least significant impacts
in carcinogens, non-carcinogens, respiratory inorganics, ionizing radiation, aquatic acidification,
aquatic eutrophication, global warming, and mineral extraction.

As for damage assessment results, S-1 is the least significant contributor of ecosystem quality;
S-2 is the most significant contributor of human health; ecosystem quality, and climate change;
S-3 contributes the least significant to damages of human health, climate change, and resources
depletion. Finally, S-2 is calculated to be the most significant environmental impact contributor,
followed by S-1 and S-3, from the perspective of single scoring the weighted midpoint impacts’ overall
environmental effects.

Monte Carlo uncertainty analysis was conducted to quantitatively investigate the probabilistic
nature of the comparisons in between the environmental impacts of the three proposed scenarios.
The probabilities of the comparisons of each life cycle impact category for midpoint, endpoint,
and single score for every two scenarios are calculated and discussed. The probability distributions of the
comparisons show that different garbage classification scenarios have their own environmental-friendly
superiority is various of impact categories.
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As per the results of LCIA and Monte Carlo uncertainty analysis, it is concluded that:
(1) the environmental effects of garbage classification are likely to be positive, by comparison with
MSWM systems without classification; (2) more detailed-classification based MSWM system has
better environmental performance; (3) tradeoffs should be carefully made for real world practice of
MSWM system designing; (4) the transportation services, garbage treatment facilities and processing
techniques must be updated and optimized for better implementation of garbage classification laws and
regulations; (5) it is necessary to increase the public awareness of the benefits of garbage classification
from social, economic, environmental and psychological perspectives. Due to availability of data,
the spacial and temporal variations are not considered, but should however be included in our
future study.
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