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Abstract: Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse
and extensively abundant in water environments. As a result of selective pressure, cyanophages often
acquire a range of metabolic genes from host genomes. The host-derived genes make a significant
contribution to the ecological success of cyanophages. In this review, we summarize the host-derived
metabolic genes, as well as their origin and roles in cyanophage evolution and important host
metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate
pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the
host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of
cyanophages in natural environments.
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1. Introduction

Viruses in general, and bacteriophages in particular, have been shown to be the most abundant
biological entities on the planet, outnumbering bacteria by more than one order of magnitude [1,2].
Viruses are recognized as one of the major causes of microbial mortality in natural aquatic
environments [3]. Through cell lysis, they exert a significant influence on microbial diversity and
biogeochemical cycling [4–6]. Furthermore, viruses also impact the biological and ecological processes
of host organisms through antagonistic co-evolution [7–9]. Some of the most extensively studied
viruses are those that specifically infect cyanobacteria, called cyanophages. Cyanophages are of special
interest due to their potential impact on cyanobacterial distribution, physiological processes and
evolution [10–16].

Cyanophages have been shown to be a significant agent in regulating the dynamics and
composition of cyanobacterial populations [17–21]. Like their host cyanobacteria, they are
widespread and numerically abundant components of microbial communities in natural waters,
and possess amazing amounts of genetic diversity and biological activity [22–29]. During the past
decade, numerous cyanophages have been isolated from freshwater and marine environments.
They morphologically belong to three different double-stranded DNA virus families; Myoviridae,
Podoviridae and Siphoviridae [30–33]. On the basis of the sequencing of complete genomes, it has
been found that cyanophages contain unique genetic resources [12–16,34–42], a vast majority of
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which are considered as genome database orphans. Previously, it was suggested that these unique
genes probably encode specific enzymes or proteins for the cyanophage life cycle [43,44]. However,
comparative genomic analyses have demonstrated that the majority of them show high similarity with
cellular homologues of host cyanobacterial origin at the DNA sequence level [45,46]. There are many
studies showing evidence of cyanophage acquisition of host genes encoding proteins or enzymes
in key metabolic processes [47–49]. For example, many cyanophages infecting strains of marine
unicellular cyanobacteria of the genera Prochlorococcus and Synechococcus carry copies of the psbA and
psbD genes encoding the D1 and D2 proteins of photosystem II [48,49]. They have been observed
to be transcribed and translated during infection and proposed to be involved in regulating the
photosynthetic activities of the infected cyanobacterial cells [50,51]. Therefore, those genes linking
cyanophages to the modulation of the host metabolic pathway are of particular interest because they
likely contribute to overcoming biochemical bottlenecks in the metabolic processes of infected host
cells [52–55].

Such genes encoding host homologues associated with metabolic processes have been termed
auxiliary metabolic genes [54]. The occurrence of auxiliary metabolic genes in cyanophage genomes
provides new insights into the novel interactions between cyanophages and their host cyanobacteria.
In order to gain a better understanding of the significant implications of cyanophage-encoded
metabolic genes, this review mainly focuses on the physiological and ecological roles of host-derived
metabolic genes involved in key metabolic pathways, such as photosynthesis and pigment biosynthesis,
phosphate metabolism, carbon metabolism and nucleic acid synthesis. Furthermore, we will discuss
the possibility of using them as a diagnostic signature for analyzing the genetic diversity of cyanophage
populations in water ecosystems.

2. Origin of Host-Derived Metabolic Genes

Viruses never cease their struggle against their respective hosts. For a long time, the interactions
between viruses and their hosts have led to a reciprocal genome evolution. Under survival pressure,
microbial hosts have evolved a variety of antiviral resistance mechanisms by acquiring exogenous
nucleotide sequences from phages, which are incorpotated into host genomes, such as clustered
regularly-interspaced short palindromic repeats (CRISPRs) [56,57]. On the other hand, viruses could
acquire certain genes from their hosts during viral DNA synthesis to obtain a fitness advantage [58].
The acquisition of host genes and their integration in viral genomes makes a significant contribution to
the evolution and diversity of viral populations.

A number of cultured cyanophage genomes have been completely sequenced [12–16,34–41,58,59],
and revealed numerous DNA fragments of host-like metabolic gene origin, many of which encode
important proteins for cellular and metabolic functions. There is increasing evidence that these host-like
genes are frequently derived by phages through horizontal gene transfer from the viral gene pool or
their hosts [39,60,61]. Through complete or partial genome sequencing, a variety of genes encoding
homologues of host proteins has been found in many cyanophages [40–42,61]. A survey of cyanophages
infecting marine cyanobacterium Synechococcus indicated that a copy of the psbA gene was found in
more than 50% of cyanophage genomes isolated from the Red Sea [41]. Another survey screening for the
presence of photosystem II core reaction center genes, psbA and psbD, revealed that 88% of cyanophage
genomes possess psbA and 50% possess both psbA and psbD, and specifically, the psbA gene was found
in all myoviruses [58]. It was suggested that the acquisition of photosynthetic genes by cyanophages
is a widespread event. On the basis of cluster analysis, cyanophage-encoded psbA genes contain
an identical 212-bp insertion that shows canonical characteristics of a group I self-splicing intron [41,62];
and the high light-inducible protein (HLIP) encoded by the cyanophage hli gene possesses a strongly
conserved TGQIIPGF motif found in the C terminus of cyanobacterial homologues [13]. These genes,
of cyanobacterial origin, were suggested to be derived multiple times from a potential host or by
recombination with other cyanophages infecting similar hosts [49,58]. Based on phylogenetic trees,
these host-derived genes cluster with those from their potential host cyanobacteria, implying that
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they originated from cyanobacteria and supporting the evidence that cyanophages acquired these
genes horizontally from their cyanobacterial hosts multiple times [58]. Additionally, in some genomes
of freshwater cyanophages, an nblA gene was found to encode a small polypeptide present in all
organisms containing phycobilisomes [34,35,38]. The cyanophage NblA has a high amino acid identity
with its homologues in cyanobacteria. It contains the highly conserved LTMEQ motif in the N terminus
and two residues in the C terminus binding to the phycobilisome [34,35]. It was suggested that
cyanophage nblA may have evolved by horizontal gene transfer from their host cyanobacteria.

The exchange via homologous recombination among phages, and between phages and their hosts, is
also considered as one of the important processes for cyanophage evolution [50,53,59,63]. To improve their
fitness, cyanophages have evolved a molecular mechanism for acquiring environmentally-significant
genes of host origin. The acquisition of new genetic materials may contribute to the life cycle of
cyanophages in specific environments and shape cyanophage genetic diversity. More importantly,
only the most necessary genes for the adaptation of cyanophage to certain environmental conditions
are expected to be enriched in cyanophage genomes. This may be related to the physical limitation on
the phage genome, as well as the energetic demands of genome replication. Supporting this hypothesis,
Thompson et al. showed that phage genes are generally shorter than their host homolog [54]. It was
speculated that those host-derived metabolic genes may improve the physiological and ecological
fitness of cyanophages by temporarily increasing host metabolic activities before cell lysis and also
facilitate cyanophages’ adaptation to changing environments [64]. Furthermore, the host-derived
metabolic genes carried by cyanophages are enabling a deeper understanding of the evolutionary
mechanism of cyanophage genomes, and how they contribute to their genetic diversity.

3. Physiological Functions of Host-Derived Metabolic Genes

Due to the lack of a metabolic system of their own, viral replication and structural assembly
depend on host metabolic processes [65]. Host-derived metabolic genes are intimately related to
the metabolism and life cycle of host cyanobacteria and may reflect the physiological interaction of
cyanophages with their host cyanobacteria during infection. For example, Puxty et al. recently have
shown that a cyanophage containing genes involved in carbon metabolism inhibits CO2 fixation during
infection more rapidly than a cyanophage lacking them [52]. It has been suggested that the enzymes
and proteins encoded by cyanophage metabolic genes exert a significant impact on the key metabolic
processes during infection, such as the light-dependent reactions of photosynthesis, the pentose
phosphate pathway (PPP), phosphate acquisition and DNA biosynthesis (Figure 1). More importantly,
host-derived metabolic genes likely play a decisive role in the interaction between cyanophages
and their cyanobacterial hosts and make a significant contribution to the unique selective pressure
of cyanophages responding to ecological environments [66,67]. The host-derived metabolic genes
may be the key genes for cyanobacterial growth and development, the expressed products of which
can facilitate cyanophage genome replication and phage particle assembly. If a reaction, converting
substrate to product, catalyzed by a host enzyme is limited during infection and if cyanophage
replication depends on having enough product, the phage may encode its own enzyme to maintain
the reaction and thus the availability of the product. This reaction could be limited because there is
insufficient host enzyme, and therefore, cyanophages would increase the amount of the total enzyme;
or because the activity of the host enzyme is suppressed under certain conditions, in which case the
cyanophage enzyme would be active under those same conditions.
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Figure 1. Model of the metabolic pathways regulated by cyanophage host-like genes in infected
cyanobacterial cells. Cyanophage host-like genes are marked in red. Abbreviations: TM, thylakoid
membrane; TL, thylakoid lumen; CM, cell membrane; PSI, photosystem I; PSII, photosystem II; PPP, pentose
phosphate pathway; CBB, Calvin–Benson–Bassham; HLIP, high light-induced protein; PQ, plastoquinone
(oxidized); PQH2, plastoquinone (reduced); PTOX, plastoquinol terminal oxidase; Cyt b6f, cytochrome
b6f complex; PCred, plastocyanin (reduced); PCox, plastocyanin (oxidized); FNR, ferredoxin-NADP
reductase; Fd, ferredoxin; G-6-P, glucose-6-phosphate; R-5-P, ribose-5-phosphate.

3.1. Photosynthetic Membrane

There are many studies showing that cyanophages carry genes related to two photosystems
(PSI and PSII) of the cyanobacterial photosynthetic membrane and other photosynthesis-related
genes involved in polyamine biosynthesis, photosynthetic electron transport and pigment
biosynthesis [41,44,46,48–50,53]. The presence of photosynthesis genes in cyanophage genomes
revealed that the life cycle of cyanophages is closely tied to the photosynthetic activity of host
cyanobacteria [46]. It has been suggested that these genes involved in host cyanobacterial
photosynthesis function so as to increase energy (ATP) and reductant (NADPH) for nucleotide
biosynthesis and phage genome replication [52,54,66]. Among them are the genes psbA and psbD
that are revealed to be most widespread in cultured and environmental cyanophage genomes [41,68].
Particularly, phage-encoded psbA gene expression has been detected during infection, yielding D1
proteins, and is suggested to play a functional role in photosynthesis for increasing phage fitness [50,52].
The decline of host D1 protein levels leads to the inhibition of photosynthetic activity [69,70],
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but cyanophage D1 proteins may help to supplement the content of host D1 proteins and maintain
host photosynthesis. The homologue to polyamine biosynthesis gene speD was also found in marine
cyanophage genome sequences [41]. The speD gene has been commonly recognized to catalyze the
terminal step in polyamine synthesis and exerts a significant impact on the structure and oxygen
evolution rate of the PSII reaction center [71]. If expressed, the cyanophage-encoded speD gene
may serve to maintain the activity of the cyanobacterial PSII reaction center during phage infection.
Furthermore, cyanophages possess a range of genes related to photosynthetic electron transport, such
as plastocyanin (petE), plastoquinol terminal oxidase (PTOX) and ferredoxin (petF), for the redirection
of the electron transport chain in the infected cyanobacterial cells [39,42,72]. Based on the homologies
with cyanobacterial proteins, it was suggested that the cyanophage proteins participate in respiration
and cyclic electron flow around PSI during infection, probably improving their fitness by increasing
the production of ATP required for phage reproduction [73]. The cyanophage plastocyanin (petE) has
been suggested to donate electrons to the alternate terminal electron acceptor cytochrome oxidase
instead of PSI. PTOX is thought to accept electrons from reduced plastoquinone (PQH2) and to reduce
O2 to H2O [74,75], which prevents oxidative damage. In addition, cyanophages frequently encode
homologues of host genes involved in the biosynthesis of photosynthetic pigments, such as phycobilin
(hol, pebS, pcyA) and phycoerythrin (cpeT) [76,77]. The cyanophage-encoded homologues of host genes
involved in pigment biosynthesis have been proposed to regulate the consumption of the infected host
carbon and photosynthetic energy. The potential functions of those genes have been revealed through
their expression in heterologous cells and are possibly adjusted to the light conditions for increasing
cyanophage replication [77].

To date, no genes related to PSI have been identified in all sequenced cyanophages. However,
a cluster of genes forming a monomeric PSI were found in viral metagenomic sequences, which may
have originated from cyanophages due to the presence of cyanophage-like genes on the scaffolds [44].
This cluster contains the genes psaJF-C-A-B-K-D and appears to encode a fusion protein between psaJ
and psaF. Therefore, it was speculated that cyanophages may redirect metabolism from the respiratory
chain through PSI to generate energy for replication.

3.2. Phycobilisome Degradation

Interestingly, the homologues of the nblA (non-bleaching) genes that were detected in
freshwater cyanophage genomes may represent another example of the capture of photosynthesis
system-associated genes from hosts [34,35]. The product encoded by the nblA gene is a small protein
of cyanobacterial and red algae origin and plays an important role in the degradation of the major
light-harvesting complex, phycobilisome, during nitrogen starvation. The nblA-like genes probably
confer physiological and ecological benefits to cyanophages by reducing the absorption of excess light
energy and providing an important source of amino acids for cyanophage protein synthesis through
the degradation of the phycobilisome during infection.

3.3. Carbon Metabolism

Genes encoding key regulatory proteins or enzymes of the Calvin cycle-PPP of the carbon
metabolism are also found in cyanophage genomes [42,54]. The cyanophage PPP-related genes
mainly include the NADPH-producing enzyme glucose-6-phosphate dehydrogenase (zwf ) and
6-phosphogluconate dehydrogenase (gnd), and the sugar transferase transaldolase (talC) [39]. Although
no genes coding for the Calvin cycle proteins were detected, a gene for an inhibitor of the host
cyanobacterial Calvin cycle, cp12, was identified in many cyanophage genomes [42]. It was suggested
that cyanophages participate in modulating the PPP rather than the Calvin cycle of their hosts during
infection. Indeed, there is recent evidence showing that a rapid shutdown of CO2 fixation was observed
in marine cyanobacteria infected by cyanophages that contain genes modifying the central carbon
metabolism (cp12, talc, zwf, gnd) [52]. The acquisition of PPP-related genes and cp12 by cyanophages,
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contrasted with their absence from other viruses infecting non-cyanobacteria, suggests that they are
a specific strategy used by cyanophages to redirect the host carbon metabolism during infection [42].

In cyanobacteria, the Calvin cycle fixes inorganic carbon to carbohydrates by consuming
NADPH (electron carrier) and ATP (energy carrier) from the light reaction of photosynthesis
during the day, while the PPP primarily oxidizes glucose at night to produce the nucleotide
precursor ribose-5-phosphate (R-5-P) and the reducing equivalent (NADPH) [78]. The Calvin
cycle and the PPP share several reactions, which reverse the direction of carbon metabolic flux.
CP12 shuts down the Calvin cycle by forming a protein complex with two key Calvin cycle
enzymes, PRK (phosphoribulokinase, prkB) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase,
gap2) [79], and then redirects the carbon flow toward the PPP. Thus, the presence of the cp12 gene
and PPP-related genes in cyanophage genomes was in support of the hypothesis that cyanophages
may short-circuit the host carbon metabolism during infection and favor carbon flux through the PPP
to generate NADPH and ribose-5-phosphate [42]. The NADPH and ribose-5-phosphate produced
by the PPP and NADPH and ATP from the light reactions of photosynthesis, together, would make
a significant contribution to the nucleotide biosynthesis that is essential for cyanophage replication [54].

3.4. Phosphate Acquisition

Phosphorus is an essential element for nucleotide biosynthesis and DNA replication, but extremely
scarce in oligotrophic waters and thought to be one of the limiting factors for cyanobacterial growth [80–82].
Thus, it is not surprising that some phosphorus-acquisition genes, such as phosphate-inducible
genes pstS and phoH and alkaline phosphatase gene phoA, which are regulated by the PhoR/PhoB
two-component regulatory system to sense phosphorus availability, were found in the genomes of
cyanophages infecting cyanobacteria [42,66,83]. These genes could be upregulated in response to
phosphate starvation in host cells and play an important role in regulating phosphorus absorption and
the transportation of host cells under low-phosphorus content or phosphorus-deprived conditions.
The pstS gene encoding for a periplasmic high-affinity phosphate-binding transporter has been
detected in several cyanophages [82], which were isolated from low-phosphorus oligotrophic waters.
This suggests that cyanophages probably use the pstS gene that they encode to enhance the infection
cycle through increasing phosphate availability in the infected host cells [84]. Cyanophage-encoded
phoA lacks similarity to bacterial phoA based on sequence analysis, and its function is not clear.
However, the alkaline phosphatase gene, phoA, encoded by cyanophages, may be related to the
acquisition of organic phosphorus from the environment or from within the host, which contributes to
cyanophage replication under the conditions of phosphorus depletion [66,82]. The phosphate-inducible
gene phoH was found to be the most widespread phosphorus regulon detected in marine and
freshwater cyanophage genomes [63,85], but its function has not been experimentally confirmed.
Based on bioinformatic analyses, it is suggested that phoH genes may be part of a multi-gene
family with divergent functions from phospholipid metabolism and RNA modification to fatty acid
beta-oxidation [86]. These phosphorus-associated genes are in support of the hypothesis that there is
a selective pressure for cyanophages to acquire environmentally-significant genes that might serve to
power phosphorus acquisition during the infection of phosphate-starved cells. Furthermore, due to
the high demand on a significant amount of phosphorus for the replication of cyanophage genomes,
they could confer a fitness advantage to cyanophages by influencing host phosphorus acquisition in
phosphorus-limited conditions.

3.5. DNA Biosynthesis

Several genes involved in the nucleotide biosynthesis pathway have been discovered in all
known T4-like cyanophage genomes. Of these, the most prevalent gene is ribonucleotide reductase
(RNR), which can provide the building blocks for DNA synthesis through reducing ribonucleotide
diphosphates to deoxyribonucleotide diphosphates during the nucleotide metabolism [87].
This suggests that cyanophages could use RNRs that they encode to degrade host DNA for the
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genome replication of progeny phages. These RNRs are commonly found in lytic T4-like phages, but
are not common in lysogenic phages. These nucleotide biosynthesis genes are thought to be essential
for the rapid replication of lytic phages [12]. The rate of DNA synthesis of phages encoding RNR
was found to be 10 times higher than that of phages lacking these enzymes [88]. A cobalt chelatase
subunit cobS gene, which catalyzes the final step in cobalamin biosynthesis and could be potentially
associated with RNR, was found in many T4-like cyanophage genomes. Cobalamin is an important
cofactor of cyanobacterial class II RNRs during nucleotide metabolism [89] and makes a significant
contribution to increasing the activity of RNRs for DNA biosynthesis. It is becoming evident that the
cyanophage gene cobS is not actually homologous of bacterial cobS. However, if the functions of cobS,
found in cyanophages, were similar to those of host homologs, it is tempting to speculate that the
cyanophage-encoded cobS gene contributes to enhancing the production of cobalamin in the infected
host cells and then provides physiological benefits for cyanophage genome replication.

Additionally, cyanophages encoded several genes related to purine biosynthesis, including
purH, purl, purM and purN, and pyrimidine biosynthesis, such as pyrE and thyX [41]. With the help
of different purine and pyrimidine biosynthesis enzymes, cyanophages catalyze many important
phases of DNA biosynthesis to provide a great amount of deoxynucleotide triphosphates for their
DNA replication and biosynthesis. Among these genes, the thyX gene is found in all three types
of cyanophages and is thought to be a critical and limiting enzyme for DNA biosynthesis and
modification [67]. The acquisition of DNA metabolism genes may be an ecologically-selective
mechanism for cyanophages living in stress environments. Although the degradation and reuse
of host DNA is very important for DNA biosynthesis of the progeny cyanophages, it is believed that
de novo DNA synthesis, catalyzed by cyanophage-encoded nucleotide biosynthesis genes, is likely
critical for cyanophages to achieve the optimal production [50,64].

4. Signature Markers for Cyanophage Evolution

The high abundance of viruses in natural waters has attracted particular attention to the
understanding of their evolution and genetic diversity over the past decade. Due to the lack of a single
universal gene, such as bacterial 16S rRNA, common to all viruses for PCR-based surveys, assessing
the genetic diversity of the total viral community in natural water environments is challenging.
Cyanophages are a group of extremely diverse tailed viruses. Although a variety of structural genes,
such as g20 (portal protein) [90–94], mcp (major capsid protein) [95], g91 (tail sheath protein) [96],
Syn_g101 (putative tail fiber) [63] and DNA polymerase [97,98], were used as marker molecules for
investigating the genetic diversity and phylogenetic relationship of cyanophages, they are found to be
restricted to specific groups that can be used as PCR targets. For example, the DNA polymerase gene is
restricted to only a subset of the T7-like phage group, and the structural gene (g20) that encodes a portal
protein in myophage has been restricted to T4-like cyanophages. Although these results revealed the
high diversity of cyanophages in natural waters, the primers not only target cyanomyophages, but also
other myoviruses that do not infect cyanobacteria.Hence, finding common marker genes is essential
for studying the genetic diversity and phylogenetic relationship of cyanophages.

Host-derived metabolic genes are commonly found in cyanophages, but not other phages infecting
non-cyanobacteria and, consequently, provide ideal molecular markers to investigate the genetic
diversity and evolutionary history of cyanophages in nature [99]. In contrast to viral structural
genes, the use of host-like metabolic genes as candidate marker genes would enable a deeper
understanding of the ecological relationship and molecular diversity of cyanophages in response to
specific environments. Currently, a range of host-derived metabolic genes have been used as signature
biomarkers to investigate the genetic diversity and the evolutionary relationship of cyanophages from
cultured and environmental samples (Table 1). The cyanophage-encoded photosynthesis genes psbA
and psbD have been used as additional marker molecules to investigate the genetic diversity and
evolution of phage populations in natural aquatic environments [100–104]. Phylogenetic analyses,
based on the psbA gene, indicated that cyanophages from freshwater environments possess an
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evolutionary history different from their marine counterparts. It was suggested that psbA has the
potential to address greater insights into the population structure, phylogenetic relationship and
genetic diversity of cyanophage communities in marine and freshwater environments and of their
infecting host cyanobacteria. The psbA gene has been found to be widespread in cyanomyoviruses
and cyanopodoviruses [47,48], and is considered a more complete marker than g20 for cyanophages.
However, due to the lack of this signature gene in the cyanosiphoviruses, and the occurrence of
introns within cyanophage psbA genes, the primers targeted cyanophage psbA sequences, usually
leading to underestimated diversity [62]. Additionally, the global distribution of cyanophages has
been identified through examining the presence of homologues of MazG, a regulator of programmed
cell death in Escherichia coli, in cyanophages isolated from different oceanic regions [105,106]. Based on
the phylogenetic tree of the mazG gene from phages and bacteria, it was suggested that cyanophages
cannot acquire the mazG genes from their primary hosts, and the frequent gene exchange may occur
among different marine cyanophages by horizontal gene transfer [85,107]. More recently documented,
phoH has been developed as a novel signature gene to assess the genetic diversity of viruses in
multiple families of double-stranded DNA tailed phages [108]. Through the deep sequencing of the
phoH gene, the composition and diversity patterns of the phages in the Sargasso Sea were shown
to be closely associated with spatio–temporal structure [109]. Also, phoH has been found in many
cyanophages infecting cyanobacteria, such as marine cyanophages P-SSM2, P-SSM4 [41], Syn9 [15],
and freshwater cyanophages Ma-LMM01 [34] and MaMV-DC [38]. From the analysis of the phoH
phylogenetic tree, a high diversity of cyanophages has been found in all sampling sites [108]. However,
due to the presence of the phoH gene in phages infecting autotrophs and heterotrophs, caution is
needed to use this signature gene because it could lead to an increased signal in cyanophage diversity
in a chosen environment.

Table 1. Primer list of host-derived metabolic genes described in this study.

Signature Gene Function Primer Sequence References

psbA Photosynthesis protein D1

psbA-F: 5′-GTNGAYATHGAYGGNATHMGNGARCC-3′

psbA-R: 5′-GGRAARTTRTGNGCRTTNCKYTCRTGCAT-3′ [100]

Pro-psbA-F: 5′-AACATCATYTCWGGTGCWGT-3′

Pro-psbA-R: 5′-TCGTGCATTACTTCCATACC-3′ [58]

psbA-93F: 5′-TAYCCNATYTGGGAAGC-3′

psbA-341R: 5′-TCRAGDGGGAARTTRTG-3′ [109]

psbD Photosynthesis protein D2

psbD-26Fa: 5′-TTYGTNTTYRTNGGNTGGAGYGG-3′

psbD-26Fb: 5′-TTYGTNTTYRTNGGNTGGTCNGG-3′ [58]

psbD-54Fa: 5′-GTNACNAGYTGGTAYACNCAYGG-3′

psbD-54Fb: 5′-GTNACNTCNTGGTAYACNCAYGG-3′ [58]

psbD-308Ra: 5′-YTCYTGNGANACRAARTCRTANGC-3′

psbD-308Rb: 5′-YTCYTGRCTNACRAARTCRTANGC-3′ [58]

psbD-F: 5′-GGNTTYATGCTNMGNCARTT-3′

psbD-R: 5′-CKRTTNGCNGTVAYCAT-3′ [27]

cobS Putative porphyrin
biosynthetic protein

cobS-For: 5′-BACYGTWTGGCACAAYGG-3′

cobS-Rev: 5′-CTTRGTNTCMTCATCRAARCG-3′ [63]

mazG Nucleoside triphosphate
pyrophosphohydrolase

mazG-For: 5′-CTTCTTACTGCTGSYGTTGG-3′

mazG-Rev: 5′-TTATCKGTCRTCKRCWGATT-3′ [104]

phoH Putative phosphate protein
vPhoHf: 5′-TGCRGGWACAGGTAARACAT-3′

vPhoHr: 5′-TCRCCRCAGAAAAYMATTTT-3′ [106]

phoH-For: 5′-GARATYGGDTTCYTDCCTGG-3′

phoH-Rev: 5′-ACWARWCCAGADCKWACRATRTC-3′ [63]

If a single metabolic gene was used as a diagnostic marker, information about the genetic diversity
would be restricted to a specific group of cyanophages that carry the marker metabolic gene. For better
investigation of the diversity and evolutionary history of cyanophages in a relatively comprehensive
way, it is essential to combine a variety of host-derived metabolic genes encoded by cyanophages
or identified from certain environments to characterize their gene type and composition by using
microbial ecological techniques, such as metagenomics and metaproteomics.
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5. Future Perspectives

Since the isolation of the first cyanophage from natural waters, the biological function and
ecological importance of cyanophages in aquatic ecosystems have received great attention. Particularly,
the potential roles of cyanophages in terminating harmful cyanobacterial blooms have become one of
the important focuses of environmental science and virology. In recent years, studies of the genetic
diversity and evolutionary history of cyanophages have advanced through the use of various methods
of molecular biology [110,111]. However, information about the ecological impact of cyanophages on
cyanobacterial populations in natural environments is still limited; many studies should be further
performed to address the molecular and physiological mechanism of cyanophage–cyanobacterial
interaction during infection. Furthermore, due to the limitation of microbial culture techniques,
it is still difficult to select unknown cyanobacterial hosts for the isolation and cultivation of a novel
cyanophage in the lab and, thus, the study of the physiological relationship between cyanophages and
their host cyanobacteria.

There is no doubt that the ecological functions of cyanophages in natural aquatic environments
are much more important than what we have known from cultivated cyanophages. The genetic
diversity of cyanophages in natural environments is still largely unclear. Nevertheless, the discovery
of metabolic genes in sequenced cyanophages provides us with a clue for using the cyanophage
metabolic genes as signature markers to elucidate the physiological and ecological characteristics of
cyanophages in natural environments. For future studies on the genetic diversity and ecological roles of
cyanophages, traditional culture methods of viral isolation and purification should be further improved
to establish different systems for cultivating more cyanophages from natural waters and to analyze
their genome sequences for evaluating the possible presence and biological functions of auxiliary
metabolic genes. A variety of technical means, such as isotopic labeling, physiology experiments,
mutagenesis, structural biology, enzymology and gene knockout, would be comprehensively applied
to determine the potential roles of host-derived metabolic genes during the interaction of cyanophages
with their host cyanobacteria. On the other hand, it is essential to adopt modern molecular biological
techniques, such as viral shotgun metagenomics, gene chip and proteomics, to identify different
cyanophage metabolic genes from marine and freshwater environments, and subsequently use them
as markers to characterize the population dynamics and genetic diversity of cyanophages in the
same locations. Therefore, given the origin and biological functions of host-derived metabolic genes
encoded by cyanophages, their utility as signature genes for cyanophages will serve to illustrate the
phylogenetic relationship and population structure of cyanophages in natural environments and also
address the physiological mechanism of cyanophage–cyanobacterial interaction from the genetic and
metabolic level.

Currently, PCR-based diagnostics are considered to be a much more effective method to assess
the genetic diversity of cyanophages from multiple samples, time points and locations. As more
cyanophage genome or metagenomics data sets become available, it is possible that the appropriate
PCR primers could be designed to capture existing signature genes, including metabolic genes and
structural genes, which will increase coverage for the true diversity of cyanophage populations
in chosen habitats. With the decline of genome sequencing costs, more metabolic genes would
be identified from the cyanophage genomes and metagenomics, and become the best signature
in combination with PCR-based fingerprinting to investigate cyanophage diversity and evolution.
This will become the ideal way for studying the evolutionary and ecological roles of cyanophage
population in a wide range of environments.
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