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Abstract 

Background: To validate and compare various MRI-based radiomics models to evaluate treatment response to neo-
adjuvant chemoradiotherapy (nCRT) of rectal cancer.

Methods: A total of 80 patients with locally advanced rectal cancer (LARC) who underwent surgical resection after 
nCRT were enrolled retrospectively. Rectal MR images were scanned pre- and post-nCRT. The radiomics features were 
extracted from T2-weighted images, then reduced separately by least absolute shrinkage and selection operator 
(LASSO) and principal component analysis (PCA). Four classifiers of Logistic Regression, Random Forest (RF), Decision 
Tree and K-nearest neighbor (KNN) models were constructed to assess the tumor regression grade (TRG) and patho-
logic complete response (pCR), respectively. The diagnostic performances of models were determined with leave-
one-out cross-validation by generating receiver operating characteristic curves and decision curve analysis.

Results: Three features related to the TRG and 11 features related to the pCR were obtained by LASSO. Top five princi-
pal components representing a cumulative contribution of 80% to overall features were selected by PCA. For TRG, the 
area under the curve (AUC) of RF model was 0.943 for LASSO and 0.930 for PCA, higher than other models (P < 0.05 for 
both). As for pCR, the AUCs of KNN for LASSO and PCA were 0.945 and 0.712, higher than other models (P < 0.05 for 
both). The DCA showed that LASSO algorithm was clinically superior to PCA.

Conclusion: MRI-based radiomics models demonstrated good performance for evaluating the treatment response 
of LARC after nCRT and LASSO algorithm yielded more clinical benefit.
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Background
Locally advanced rectal cancer (LARC) is routinely man-
aged by neoadjuvant radiotherapy and chemotherapy 
in combination with total mesorectal resection [1, 2]. 
Patients’ response to nCRT is of high importance in 
long-term prognosis and treatment decision making; 

about 15–27% cases can achieve the pathological com-
plete response (pCR), and are expected to take the treat-
ment measures of observation and waiting [3]. Compared 
with surgical treatment, the total survival period is not 
significantly different, and operative complications and 
mortality are effectively reduced [4, 5]. At present, high-
resolution rectal magnetic resonance imaging (MRI) is 
recommended as an efficient routine imaging technique 
for evaluating the efficacy of nCRT. However, TRG clas-
sification or pCR status determination can only be con-
firmed by postoperative pathology, and no reliable and 
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accurate evaluation system has been developed for pre-
operative therapeutic response [6]. Meanwhile, accurate 
evaluation of the curative effect of preoperative nCRT 
and early judgment of prognosis would make the treat-
ment more personalized and effective.

Radiomics shows multiple advantages in evaluating 
therapeutic response over traditional imaging analy-
sis [7–10], thereby providing important details of tissue 
features [11–19]. Mounting evidence indicates potential 
benefits for radiomics in assessing therapeutic response 
in LARC [20–24]. To our knowledge, however, which 
feature reduction and machine learning model can yield 
more clinically benefit remains unclear. Therefore, this 
work aimed to validate and compare different radiomics 
feature reduction and machine learning models in evalu-
ating the treatment response after nCRT in patients with 
LARC.

Methods
Participants
All methods of the present research were carried out in 
accordance with the Declaration of Helsinki and were 
approved by the local Institutional Review Board (Com-
mittee on Ethics of Biomedicine, Changhai Hospital, 
Shanghai, China) Informed consent was waived for this 
retrospective study. Totally 114 LARC patients examined 
by rectal MRI and administered surgical resection upon 
nCRT in our hospital between June 2016 and June 2019 
were retrospectively assessed. Inclusion criteria were: 
(1) histologically confirmed rectal adenocarcinoma with 
baseline MRI data (≥ cT3 or N +); (2) pre-nCRT MRI 
within 7 days prior to nCRT and post-nCRT MRI within 
7 presurgical days; (3) surgical resection after nCRT com-
pletion. Exclusion criteria were: (1) a history of previous 
malignant tumor or pelvic surgery (n = 3); (2) multiple 
colorectal cancers (n = 2); (3) poor quality of the images, 
which could not be used for image segmentation and 
radiomic feature extraction (n = 11); (4) any other ther-
apy before baseline MR examination (n = 9); (5) interval 
between nCRT and rectal surgery greater than 12 weeks 
(n = 9). The trial eventually included 80 cases.

Imaging acquisition
Rectal MR examination was carried out before and after 
treatment, respectively, on a 3.0 T MR scanner (including 

Siemens MAGNETOM Skyra 3.0 T MRI System and GE 
Discovery MR 750w 3.0 T MRI System) using an abdomi-
nal phase array coil. All patients fasted for 4  h before 
MR examination. Before scanning, intestinal cleaning 
was performed by enema administration with 20  ml of 
glycerin. Conventional rectal MR sequences and high-
resolution T2W sequences were obtained. Conven-
tional sequences included sagittal T2WI fat suppression 
sequence, DWI sequence, cross-sectional T1WI and 
enhanced T1WI. High-resolution T2WI followed an 
oblique cross-section, with the scanning plane perpen-
dicular to the long axis of the intestinal tract comprising 
the lesion. The parameters applied for high-resolution 
T2W sequence, which were used for radiomics models, 
are presented in Table 1.

Neoadjuvant chemoradiotherapy treatment
All patients received long-term pelvic radiation therapy 
with 50.4  Gy in 25–28 fractions plus oral capecitabine 
(825  mg/m2 given twice/day). All patients underwent 
total mesorectal excision (TME), and were followed up 
for 8–10 weeks upon treatment completion.

Pathological evaluation of therapeutic response
Based on the National Comprehensive Cancer Network 
and American Joint Committee on cancer staging system 
[25], all pathological stages and tumor regression grades 
(TRGs) were recorded. TRG was categorized as follows: 
TRG 0 and TRG 1 as good response group (no residual 
viable malignant cells, only small cell clusters, or single 
malignant cells); TRG 2 and TRG 3 as poor response 
(residual malignant cells with substantial fibrosis, lim-
ited/no cancer cell death, or important residual tumor). 
Pathological complete response (pCR) was reflected by 
no viable cancer cells in primary tumors or lymph nodes 
(ypT0N0M0); others constituted the non-pCR group.

Radiomics feature extraction
The original high-resolution T2W DICOM images 
acquired pre- and post- nCRT were, respectively, 
imported into the Radcloud radiomics platform (Hui-
ying Medical Technology, Beijing, China). The tumors 
were manually delineated on each transverse image 
with the platform. Then, radiomics feature extraction 
was performed from the volumes of interest pre- and 

Table 1 High-resolution T2W sequence acquisition parameters

TR/TE (m/s) Matrix FOV (mm) Slice thickness/gap 
(mm)

Bandwidth (Hz) /flip 
angle (°)

Acquisition times

Siemens 4000/108 320 × 320 180 × 180 3/0 108/150 4 min 10 s

GE 6538/116 320 × 320 180 × 180 3/0 62.5/110 3 min 16 s
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post-nCRT  (VOIpre and  VOIpost) (Fig.  1). Each image 
intensity was normalized to minimize the MRI signal 
variations.

Using the above platform, radiomics features were 
obtained based on the “PyRadiomics” package in 
Python (version 3.0, https ://pyrad iomic s.readt hedoc 
s.io/), including four types as follows: (1) first-order 
statistics (peak and mean values and variance, among 
others) that quantitate voxel intensity distribution in 
MR images; (2) shape properties (volume, surface area 
and spherical value, among others), reflecting the 3D 
properties of the outlined area’s shape and size; (3) tex-
ture properties (gray-level co-occurrence, run length, 
size zone and neighborhood gray-tone difference 
matrices), quantifying the selected area’s heterogene-
ity; (4) higher-order statistics (first-order statistics and 
texture properties after transformation, i.e., logarithm, 
exponential, gradient, square, square root, local binary 
patterns (LBP) and wavelet filters) [26, 27].

Feature reduction
Two radiologists (H.L. and Z.L., with more than 5 years 
of experience in rectal MRI) performed image process-
ing of all cases on the platform independently and then 
reviewed by a senior radiologist (F.S., with 11  years of 
experience in imaging diagnosis). In addition, one radi-
ologist (Z.L.) repeated the segmentations of 40 cases 
randomly selected from dataset one week later. The inter- 
and intraclass correlation coefficient (ICC) was com-
puted for evaluation of the inter-observer reliability and 
intra-observer reproducibility of features. Features with 
both inter- and intra-observer ICCs greater than 0.8 were 
applied for subsequent analysis, which suggested good 
robustness of features. Then, the variance threshold algo-
rithm (variance threshold selected at 0.8, so that eigen-
values with variance smaller than 0.8 were removed) was 
applied for further reduction. At last, the least absolute 
shrinkage and selection operator (LASSO) algorithm 
and principal component analysis (PCA) were utilized 
respectively to determine optimal features related to 
TRG and pCR. The principal components representing a 

Fig. 1 Representative images for lesion contouring. a–d. Images acquired in a 54-year-old man with LARC, staged as cT3N0. He underwent 
MRI scanning pre- and post- nCRT. a, b Delineation of ROIs on oblique-axial T2-weighted MR images pre- and post- nCRT (arrow). c, d Volume 
renderings of VOIs pre- and post- nCRT 

https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/
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cumulative contribution of 80% to overall features were 
selected.

Machine learning and model analysis
Machine learning was performed with the “scikit-learn” 
package in Python (version 0.23.2, https ://sciki t-learn 
.org/stabl e/), comprising random forest (RF), decision 
tree (DT), k-nearest neighbor (KNN) and logistic regres-
sion (LR) models, leave-one-out cross-validation (LOO-
CV) method was adopted for prediction model building 
based on the optimal features related to TRG classifica-
tion and pCR, respectively. Details of parameters used 
in machine learning were shown in Additional file  1: 
Table S1.

Receiver operator characteristic (ROC) curve genera-
tion was performed to assess the performances of vari-
ous models by calculating areas under the ROC curves 
(AUCs) in LOO-CV. The Delong test was performed for 
assessing differences among various classifier models. 
Decision curve analysis (DCA) was conducted to deter-
mine the benefits of radiomics models. P < 0.05 indicated 
statistical significance.

Results
Participant characteristics
Totally 80 patients (60 men and 20 women) were 
assessed. The average age was 56.5 ± 9.5  years. The 
patient characteristics and pathological outcomes were 
summarized in Table 2. According to TRG by pathologi-
cal examination after surgery, 29 patients (36.25%) were 
classified as good response, including 15 (18.75%) who 
showed pCR.

Radiomics features
Totally 1409 radiomics features were obtained from rec-
tal MRI pre- and post- nCRT each, indicating a total of 
2818 radiomic features. Totally 2561 features (90.9%) 
had good robustness (both inter- and intra-observer 
ICCs ≥ 0.8), and were applied for subsequent analysis.

The LASSO algorithm was performed to select vital 
features. Finally, 3 features related to TRG and 11 fea-
tures associated with pCR were selected to build the radi-
omics models (Fig. 2).

Meanwhile, PCA was performed to reduce data dimen-
sionality by identifying new variables, selecting five 
principal components that can represent a cumulative 
contribution of 80% to the overall TRG and pCR feature 
matrix (Fig. 3), respectively.

Radiomics models of TRG classification
In TRG classification, the ROC curves of four models 
from the LASSO algorithm were shown in Fig. 4a. The RF 
model had an AUC of 0.943 (95% CI 0.883–0.978), with a 

sensitivity of 90.3% and a specificity of 92.7%, indicating 
a better performance compared with the other models. 
The Delong test showed PRF-LR < 0.001, PRF-KNN = 0.004 
and PRF-DT = 0.010, and the other three models were not 
significantly different (P > 0.05). Details contained in the 
models were shown in Table 3.

In the PCA method, the RF model’s AUC was 0.930 
(95% CI 0.849–1.000) (Fig.  4b), which was higher than 
those of other models (Table 3). The Delong test showed 
PRF-LR < 0.001, PRF-KNN = 0.002, and PRF-DT < 0.001, and 

Table 2 Demographic, pathological and  treatment data 
of the patients

BMI body mass index
a Preoperative blood samples

Characteristic N = 80 (%)

Gender

 Male 60 (75.0%)

 Female 20 (25.0%)

Age (year)

 Mean ± SD 56.5 ± 9.5

BMI (kg/m2)

 Mean ± SD 24.1 ± 2.6

Tumor location

 Upper 18 (22.5%)

 Middle 38 (47.5%)

 Lower 24 (30.0%)

ypT stage

 T0 15 (18.75%)

 T1 0 (0%)

 T2 24 (30.0%)

 T3 36 (45.0%)

 T4 5 (6.25%)

ypN stage

 N0 47 (58.75%)

 N1 15 (18.75%)

 N2 18 (22.5%)

CEAa

  < 5 ng/ml 29 (36.25%)

  ≥ 5 ng/ml 51 (63.75%)

CA19-9a

  < 37U/ml 44 (55.0%)

  ≥ 37U/ml 36 (45.0%)

TRG 

 TRG 0 15 (18.75%)

 TRG 1 14 (17.50%)

 TRG 2 32 (40.0%)

 TRG 3 19 (23.75%)

pCR

 pCR 15 (18.75%)

 Non-pCR 65 (81.25%)

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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the other three models were not significantly different 
(P > 0.05).

Radiomics models of pCR classification
In pCR classification based on the LASSO algorithm, 
the ROC curves of the four models were shown in 

Fig.  5a. The KNN demonstrated significantly better 
performance (AUC = 0.945, 95% CI 0.870–0.984) in the 
detection of pCR; sensitivity and specificity were 85.7% 
and 98.5%, respectively. The Delong test yielded PKNN-

DT = 0.008, PKNN-LR = 0.006, and PKNN-RF = 0.009, and 
the other three models were not significantly different 
(P > 0.05). Details were shown in Table 3.

Fig. 2 LASSO algorithm for radiomics feature selection. Totally 3 and 11 features for TRG (a) and pCR status (b) were obtained, respectively

Fig. 3 Pareto diagrams of cumulative feature contribution for TRG (a) and pCR (b). Histograms represent the contribution rates of various principal 
components. Line graphs depict the cumulative contribution rates of various principal components
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In PCA (Fig.  5b), the comprehensive performance of 
KNN model was better than those of other classifiers, 
with an AUC of 0.712 (95% CI 0.557–0.867, Table 3). The 
Delong test yielded PKNN-LR = 0.033, PKNN-RF < 0.001, and 
PKNN-DT = 0.048, and the other three models were not 
significantly different (P > 0.05).

Decision curve analysis
The decision curves demonstrated that for TRG clas-
sification, the RF model based on the LASSO algorithm 
showed a greater advantage compared with the PCA 
scheme at a threshold probability of 0.0–0.9. However, 
both models were similar at the probability threshold of 
0.4 (Fig. 6a). Meanwhile, DCA showed that at threshold 

probabilities of pCR ranging from 0.1 to 0.85, the LASSO 
algorithm added more net benefit than the PCA method 
(Fig. 6b).

Discussion
In this study, we obtained radiomics features from rec-
tal high-resolution T2WI images pre- and post- nCRT, 
respectively. The various machine learning models were 
shown to constitute an effective non-invasive approach 
for TRG and pCR assessments in LARC, by both the 
LASSO algorithm and PCA.

The LASSO algorithm was used for variable filtration 
and complexity reduction in various models. Finally, 3 
features related to TRG and 11 associated with pCR were 

Fig. 4 Receiver operator characteristic (ROC) curves of TRG classification models. a LASSO algorithm (AUCs were 0.734, 0.943, 0.838 and 0.777 for 
the LR, RF, DT and KNN models, respectively). b PCA (AUCs were 0.761, 0.930, 0.633 and 0.840 for the LR, RF, DT and KNN models, respectively)

Table 3 ROC analysis of TRG and pCR classification models

TRG pCR

AUC 95% CI Sensitivity (%) Specificity (%) AUC 95% CI Sensitivity (%) Specificity (%)

LASSO

 LR 0.734 0.643–0.813 48.4 91.5 0.801 0.696–0.882 64.3 84.6

 RF 0.943 0.883–0.978 90.3 92.7 0.912 0.827–0.964 78.6 92.3

 DT 0.838 0.757–0.901 87.1 80.5 0.870 0.775–0.935 78.6 95.4

 KNN 0.777 0.689–0.850 51.6 93.9 0.945 0.870–0.984 85.7 98.5

PCA

 LR 0.761 0.697–0.828 100 0.0 0.597 0.552–0.642 54.0 45.0

 RF 0.930 0.849–1.000 90.3 40.0 0.693 0.556–0.830 54.0 35.0

 DT 0.633 0.59–0.676 73.3 0.0 0.666 0.570–0.762 40.0 63.3

 KNN 0.840 0.788–0.892 100 0.0 0.712 0.557–0.867 78.7 56.7



Page 7 of 10Li et al. BMC Med Imaging           (2021) 21:30  

obtained. Meanwhile, the PCA method was used for 
feature reduction. The idea behind PCA reduction is to 
combine the original indexes with a certain correlation 
into a new set of principal components to replace them. 
The correlation among multiple variables is investigated; 
this technique is widely used in applications that need 
a large number of data processing steps [28]. We per-
formed PCA to reduce the dimensionality of the original 
features, and the first five principal components which 

best represented the whole feature matrix were selected 
for TRG and pCR, respectively. The clinical decision-
making curves found that the clinical benefits of the 
LASSO algorithm were greater than those of the PCA 
approach in the evaluation of TRG and pCR status.

In recent years, relevant studies have proposed the 
concept of MR tumor regression classification (mrTRG). 
Several clinical trials have shown that the imaging 
grade of tumors is related to the prognosis of patients. 

Fig. 5 Receiver operator characteristic (ROC) curves for pCR status assessment. a LASSO algorithm (AUCs were 0.801, 0.912, 0.870 and 0.945 for the 
LR, RF, DT and KNN models, respectively). b PCA (AUCs were 0.597, 0.693, 0.666 and 0.712 for the LR, RF, DT and KNN models, respectively)

Fig. 6 Decision curve analysis (DCA) of the two schemes of reduction. At probability thresholds of 0.0 to 0.9, the RF model based on the LASSO 
algorithm for TRG classification provided more net benefit than that utilizing PCA (a). Except at the probability threshold of 0.4, with comparable 
benefits from both models (AUCs of 0.943 and 0.930 respectively). Meanwhile, at threshold probabilities of 0.1 to 0.85, the KNN model based on the 
LASSO algorithm had increased net benefit than the PCA scheme (b)
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Therefore, mrTRG can be used as the main end point 
with high clinical relevance [6]. The current mrTRG clas-
sification system is mainly based on high resolution T2 
weighted imaging (T2WI). However, it lacks quantita-
tive evaluation, which leads to low accuracy in predict-
ing the degree of pathological regression [29]. Indeed, the 
sensitivity and specificity of mrTRG 1/2 for pCR are only 
69.9% and 62.2% based on a meta-analysis [30].

Studies have shown that MR-based radiomics mod-
els demonstrate good performance in the prediction of 
treatment response to nCRT in LARC patients [22, 31, 
32], indicating that they could help evaluate the post-
treatment TRG of rectal cancer. In the current study, 
individuals with TRG 0 and 1 were classified in the good 
efficacy group, and TRG 2 and 3 cases were considered as 
the poor efficacy group. The above analysis indicated that 
the RF model exhibited a higher predictive performance 
than the other three models (P < 0.05) for TRG classifica-
tion, with AUCs of 0.943 (LASSO algorithm) and 0.930 
(PCA), suggesting good diagnostic efficiency.

Following nCRT, 15%-27% of LARC cases show no 
tumor cell survival, which reflects pCR. The long-term 
prognosis of such individuals is markedly better com-
pared with that of cases with residual tumor cells. The 
local recurrence rate at 5  years after operation is close 
to 0%, and the overall survival rate is as high as 95% [4]. 
Based on high resolution T2WI, sensitivity and specificity 
of mrTRG 1 for pCR are 32.3% and 93.5%, as suggested 
by a meta-analysis [30]; this sensitivity was far from 
satisfactory. However, several studies have shown that 
MRI-based radiomics models can predict the pCR status 
effectively [20–24]. Some researchers also combined the 
pre- and post-nCRT MRI sequence to predict the treat-
ment response using a specific machine learning model, 
with high predictive value for pCR status evaluation. 

In our study, different radiomics feature reduction and 
machine learning models based on T2W images before 
and after treatment were compared, some of them 
showed good performance in the evaluation of pCR 
in patients with LARC (Fig.  7). Among them, the KNN 
model was better than the other three classifiers (P < 0.05) 
with an AUC of 0.945 (LASSO algorithm), and sensitivity 
and specificity of 85.7% and 98.5%, respectively. Identify-
ing individuals with elevated odds of pCR preoperatively 
could help reassess the need for TME, since pCR cases 
post-resection and the “W&W” group show comparable 
long-term survival rates.

This study had some limitations. Firstly, VOIs were 
manually rather than semi-automatically/automatically 
delineated, making it difficult to avoid the impact of 
intestinal wall deformation, which is prone to subjective 
errors; this is not suitable for large-scale data processing 
[33, 34]. Secondly, this was a retrospective single-center 
study. The main limitation was the lack of external vali-
dation, with relatively few patients and sample distribu-
tion was not uniform. Therefore, large multicenter trials 
are needed to reduce the impact of data bias on model 
accuracy [35, 36]. Finally, this study did not include rel-
evant clinical influencing factors, such as tumor mark-
ers and other molecular biological indicators [37], which 
deserves further investigation.

Conclusion
Overall, using high resolution T2WI data before and 
after neoadjuvant chemoradiotherapy, predictive radiom-
ics models were built based on various machine learning, 
and demonstrated great performance. Such models can 
be applied for assessing the treatment response of LARC 
after nCRT to aid clinicians make appropriate treatment 

Fig. 7 Images acquired in a 64-year-old man with LARC. a High resolution T2WI pre-nCRT showed the tumor at the anterior rectal wall (arrow). 
b High resolution T2WI post-nCRT showed obvious tumor regression, with minimal low-signal-intensity residual cells (arrow). The radiomics 
model suggested a diagnosis of pCR, although a radiologist’s subjective evaluation would call for non-pCR. c Postoperative pathological analysis 
(hematoxylin and eosin, × 1) confirmed this case as pCR
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decisions, especially the LASSO algorithm yielded more 
clinical benefit in feature reduction.
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