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Abstract: Advanced prostate cancers that progress to tumor metastases are often considered incurable
or difficult to treat. The etiology of prostate cancers is multi-factorial. Among other factors,
de-regulation of calcium signals in prostate tumor cells mediates several pathological dysfunctions
associated with tumor progression. Calcium plays a relevant role on tumor cell death, proliferation,
motility-invasion and tumor metastasis. Calcium controls molecular factors and signaling pathways
involved in the development of prostate cancer and its progression. Such factors and pathways
include calcium channels and calcium-binding proteins. Nevertheless, the involvement of calcium
signaling on prostate cancer predisposition for bone tropism has been relatively unexplored. In this
regard, a diversity of mechanisms triggers transient accumulation of intracellular calcium in prostate
cancer cells, potentially favoring bone metastases development. New therapies for the treatment
of prostate cancer include compounds characterized by potent and specific actions that target
calcium channels/transporters or pumps. These novel drugs for prostate cancer treatment encompass
calcium-ATPase inhibitors, voltage-gated calcium channel inhibitors, transient receptor potential
(TRP) channel regulators or Orai inhibitors. This review details the latest results that have evaluated
the relationship between calcium signaling and progression of prostate cancer, as well as potential
therapies aiming to modulate calcium signaling in prostate tumor progression.
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1. Introduction to Prostate Cancer

Genetic and environmental factors contribute to alterations of prostate that may lead to uncontrolled
cell growth and prostate tumorigenesis and cancer. Prostate cancer (PCa) is a heterogeneous and
multifactorial disease [1]. Heterogeneity is reflected at different levels: (I) at the level of gene
expression—not all the cells within a cancer mass express tumor markers to the same extent—(II) at the
genetic level—with multiple loci susceptible to be affected [2]; and (III) in patient response to common
therapies -tumors show diverse responses to standard chemotherapy treatments- [3].

PCa is asymptomatic in the early stages of the disease. However, in advanced stages PCa can
block urine flow from the bladder, invade the adjacent seminal vesicles and metastasize mainly to bone,
lung, liver, pleura and adrenals [4–6]. Patients with localized PCa can survive long periods of time
and a large percent of patients develop skeletal metastases suggesting that bone provides a favorable
microenvironment for its localization and progression [7]. Skeletal metastases cause a variety of
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complications, such as bone pain, fractures, spinal cord compression, and bone marrow suppression
severely compromising patients [8,9].

Androgens, male steroid hormones that act through the androgen receptor (AR), are required for
prostate development and physiological prostate function [10]. Approximately 80–90% of PCas are
dependent on androgens at initial stages. Although serum androgens alone do not promote prostate
carcinogenesis, androgen actions and the functional status of AR are important mediators of PCa
progression [11]. Therefore, androgen deprivation therapy is the first line treatment for PCa. Therapies
based on chemical or surgical castration are directed towards the reduction of serum androgens and
inhibition of AR activity [12–14]. Over 80% of patients show a positive response to androgen reduction.
However, many patients with metastatic PCa will develop castrate resistant PCa after 2–3 years, leading
to an increase in mortality [4]. The tumors of these patients are considered to be hormone refractory,
in the sense that they progress despite a reduction in serum androgens [11]. Tumor cell growth is
sustained in castrate resistant PCa by a diversity of mechanisms including intratumoral or adrenal
production of androgens, overexpression of AR or mutated AR forms, ligand-independent activation
of AR or stabilization of hyper-responsive AR by chaperones (reviewed in [15]). Neuroendocrine
differentiation has also been associated with the progression of PCas to a castrate resistant phenotype
and increased mortality [16,17].

PCa is a major cause of morbidity and mortality worldwide. It is the second most frequent cancer
in men and the fifth leading cause of cancer death in men. It was estimated that 1.3 million new cases
would be diagnosed causing 359,000 associated deaths worldwide in 2018 [18]. Due to the elevated
incidence and mortality of PCa, there is an urgent need to determine the key mechanisms of disease
development and response to treatments. Identification of biomarkers for disease progression and
therapeutic targets is also considered of the utmost importance.

2. Role of Calcium Signaling in PCa Progression

Advanced PCa leading to bone metastases involves several phases regulated by mechanisms
that are still not fully understood [19]. Calcium signaling has been described to contribute to the
development of PCa characteristics and to participate in different phases of tumor progression [20–22].
Calcium signals that differ from those of normal cells in amplitude, subcellular localization or kinetics
of the signal are characteristic of PCa cells. These differences on calcium signaling affect cell survival,
proliferation, differentiation and other processes that contribute to PCa development [23].

Particular calcium-dependent modifications of prostate tumor cell processes rely on altered
homeostasis of calcium and calcium-dependent pathways in these cells. Dysregulated calcium
homeostasis in PCa depends on changes in the ratio of influx/efflux and storage of calcium compared
with non-tumoral cells [23]. Alterations in plasma membrane and endoplasmic reticulum channels,
as well as GAP junctions are mainly responsible for the abnormal calcium intracellular levels of
PCa cells [24,25]. These alterations cause calcium influx into the cell and mobilization from internal
stores by a variety of mechanisms including constitutive calcium entry [26] store-operated calcium
entry (SOCE) [27] and store-independent calcium entry (SICE) [28] processes. On the other hand,
increased concentrations of intracellular calcium ([Ca2+]i) due to dysregulated calcium homeostasis
and tumorigenic overexpression of calcium-binding proteins result on altered calcium-dependent
signaling pathways.

Evasion of apoptosis, self-sufficiency and limitless cell proliferation and promotion of angiogenesis
are cancer hallmarks in PCa [29]. In addition, characteristics acquired by prostate tumors that are
required for metastatic PCa include; epithelial to mesenchymal transition, pro-migration and invasion
features and metastatic colonization of organs [19,29].

A large number of molecules and signaling pathways have been associated with calcium-dependent
modulation of processes involved in PCa cancer hallmarks and PCa progression [21,23,30]. Several of
them participate in various phases of PCa development. Herein, we briefly review the role of calcium
signaling pathways directly involved in different acquired features and stages of PCa.
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2.1. Evasion of Apoptosis

Calcium has a dual role in cells being able to induce cell survival or triggering apoptosis. For
instance, oscillations in [Ca2+]i usually promote cell proliferation and survival whereas sustained
cytosolic calcium induces cell apoptosis [31]. Calcium-dependent enhanced cell survival is based on
a variety of molecular mechanisms in PCa (Figure 1).

Cancers 2020, 12, 1071 3 of 24 

 

review the role of calcium signaling pathways directly involved in different acquired features and 
stages of PCa. 

2.1. Evasion of Apoptosis 

Calcium has a dual role in cells being able to induce cell survival or triggering apoptosis. For 
instance, oscillations in [Ca2+]i usually promote cell proliferation and survival whereas sustained 
cytosolic calcium induces cell apoptosis [31]. Calcium-dependent enhanced cell survival is based on 
a variety of molecular mechanisms in PCa (Figure 1). 

 
Figure 1. Proposed mechanisms of calcium-dependent apoptosis inhibition in prostate cancer (PCa) 
cells. Survival signals are induced by calcium entry through transient receptor potential (TRP) TRPM 
and TRPV channels and Orai 1 and 3 heteromultimers. Elevation of cytoplasmic calcium levels trigger 
different anti-apoptotic signals including caspase 8 and 9 inhibition by activation of 
Calcium/Calmodulin-Dependent Kinase II (CAMKII). Alternative mechanisms include inhibition of 
calcium-dependent mitochodrial apoptosis; excess of intracellular calcium is inhibited by 
downregulation of Orai homomultimers, of sarco/endoplasmic reticulum calcium ATPase (SERCA) 
(via cartilage oligomeric matrix protein (COMP) expression) and of IP3R (via COMP1 expression and 
PTEN (phosphatase and tensin homolog deleted on chromosome 10) channels in PCa cells. Arrows 
indicate upregulated expression or activity (↑) and downregulated expression or activity (↓ ). 
Crosses (X) and ˫  symbol indicate inhibition. Blue filled arrows indicate stimulation. ER: Endoplasmic 
reticulum. F-box protein XL2: FBXL2. 

2.1.1. Calcium Channels 

A diversity of calcium channels have been involved in promotion of PCa cell survival. 
PCa progression has been associated with enhanced Orai3 protein expression [24]. Orai proteins 

are calcium-channel subunits that form part of the calcium release-activated calcium channels 
(CRAC) in the SOCE pathway and of the arachidonic acid-regulated calcium (ARC) and leukotriene 
C4-regulated calcium (LRC) channels in the SICE pathway [24,27,28,32,33]. It has been described that 
increased levels of Orai3 proteins in PCa cells favors the formation of heteromultimeric channels with 

Figure 1. Proposed mechanisms of calcium-dependent apoptosis inhibition in prostate cancer
(PCa) cells. Survival signals are induced by calcium entry through transient receptor potential
(TRP) TRPM and TRPV channels and Orai 1 and 3 heteromultimers. Elevation of cytoplasmic
calcium levels trigger different anti-apoptotic signals including caspase 8 and 9 inhibition by
activation of Calcium/Calmodulin-Dependent Kinase II (CAMKII). Alternative mechanisms include
inhibition of calcium-dependent mitochodrial apoptosis; excess of intracellular calcium is inhibited by
downregulation of Orai homomultimers, of sarco/endoplasmic reticulum calcium ATPase (SERCA)
(via cartilage oligomeric matrix protein (COMP) expression) and of IP3R (via COMP1 expression and
PTEN (phosphatase and tensin homolog deleted on chromosome 10) channels in PCa cells. Arrows
indicate upregulated expression or activity (↑) and downregulated expression or activity (↓). Crosses (X)
and

⊥

symbol indicate inhibition. Blue filled arrows indicate stimulation. ER: Endoplasmic reticulum.
F-box protein XL2: FBXL2.

2.1.1. Calcium Channels

A diversity of calcium channels have been involved in promotion of PCa cell survival.
PCa progression has been associated with enhanced Orai3 protein expression [24]. Orai proteins

are calcium-channel subunits that form part of the calcium release-activated calcium channels (CRAC) in
the SOCE pathway and of the arachidonic acid-regulated calcium (ARC) and leukotriene C4-regulated
calcium (LRC) channels in the SICE pathway [24,27,28,32,33]. It has been described that increased levels
of Orai3 proteins in PCa cells favors the formation of heteromultimeric channels with Orai1 leading to
the formation of SICE channels that resemble ARC channels [24]. OraiI3-Orai1 heteromultimers were
proposed to form to the detriment of Orai1 homomultimeric CRAC/SOCE channels [24]. OraiI3-Orai1
heteromultimer have shown to promote cytosolic calcium-dependent proliferation in PCa cells whereas
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Orai1 homomultimeric channels potentially trigger ER calcium-dependent apoptosis. Given that
Orai3-Orai1 heteromultimers could be formed at the expense of homomultimeric Orai1 channels, it has
been proposed that Orai3-Orai1 channel predominance confers an oncogenic phenotype of apoptotic
resistance and enhanced proliferation in PCa cells [24]. In contrast, another report has described
Orai3 downregulation in tumorous versus non-tumorous tissues [34,35]. It was suggested that these
contradictory results might be due to selection of different stages of cancer cell differentiation in
these studies [36].

A role of members of the transient receptor potential (TRP) calcium ion channel family (reviewed
in [37]) on promotion of PCa survival has also been proposed. In this regard, alterations in the
expression of TRP Melastatin 2 (TRPM2), TRPM4, TRPM8, TRP Vanilloid 1 (TRPV1) and TRPV6 have
been observed in PCa cells [38–44], some of them related to cancer cell survival. Increased TRPM2
expression in high grade PCa samples has been associated with alterations of autophagy leading
to potential consequences on tumor cell survival [38]. Similarly, de novo expression of TRPV6 and
translocation of the channel to the plasma membrane via an Orai1/SOCE-mediated mechanism has
been shown in PCa cells. TRPV6 translocation would then constitutively increase cytosolic cellular
calcium concentrations enhancing PCa cell survival [45]. Regarding TRPM8, experimental data have
revealed that this channel modulates cell proliferation, survival, and invasion depending on the cancer
cell type and AR requirements. TRPM8, a calcium permeable channel expressed in the endoplasmic
reticulum and the plasma membrane that is experimentally activated in response to cooling and
menthol has been described to be needed for the survival of AR-dependent LNCaP prostate cancer
cells [46]. In contrast, PC-3 are AR-independent PCa cells that express low levels of TRPM8 [46].
In these cells, persistent cytosolic [Ca2+]i due to TRPM8 overexpression by permanent transfection
has revealed increased susceptibility to cell apoptosis and decreased proliferation and migration
capabilities [40]. Interestingly, TRPM8 has also been associated with inhibition of cell migration via
a non-channel function in endothelial cells [47].

Calcium channels mainly located at the endoplasmic reticulum (ER) such as IP3 receptors
(IP3Rs) have also been involved in PCa cell survival [48]. These receptors can mediate persistent
transport of calcium through ER–mitochondria protein bridges allowing calcium transfer from the
ER to mitochondria. This transport can lead to mitochondrial calcium overload and activate the
mitochondria-dependent program of cell apoptosis [49]. It has been described that IP3R type3
(IP3R3)-induced apoptosis may be inhibited by F-box protein FBXL2 that targets IP3R3 to proteasome
degradation [48]. In turn, activity of FBXL2 has been shown to be inhibited by PTEN (phosphatase
and tensin homolog deleted on chromosome 10) tumor suppressor gene. Inactivation or mutation
of PTEN tumor suppressor gene is common in PCa and is associated with poor prognosis and
metastatic disease [50]. Therefore, it has been suggested that PTEN loss of activity in PCa cells leads to
FBXL2 overactivation, IP3R3 proteasomal degradation and inhibition of persistent calcium-dependent
mitochondrial apoptosis [48]. ER transfer of calcium to the mitochondria has also been involved
in increased mitochondrial activity and subsequent enhanced proliferation and cell survival [51].
In this regard, calcium signals in the mitochondria can be interpreted differentially depending on
its spatiotemporal features; intermittent and low calcium levels seem to stimulate metabolism and
pro-survival signaling whereas mitochondrial calcium continuous overload results in apoptosis [52].

Several TRP channels are expressed and functional in the ER membrane [53]. Presence of TRP
channels, such as TRPM8, has been described in the ER of androgen-sensitive LNCaP cells compared
to preferential plasma membrane localization (although comparatively expressed at lower levels) in
androgen-insensitive PC-3 cells [46]. TRPM8 localization at the ER membrane has been associated
with release of calcium from intracellular stores to the cytoplasm leading to increased survival in
AR-dependent LNCaP PCa cells [46].

Cartilage oligomeric matrix protein (COMP) has been shown to be expressed in PCa specimens
related to increased growth and recurrence. In vitro, COMP has been associated with inhibition
of calcium release from the ER in DU145 cells [54]. In this regard, it has been observed that
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sarco/endoplasmic reticulum calcium ATPase (SERCA) is inhibited by COMP, thereby blocking ER
calcium uptake [54]. Similarly, SOC entry into the ER was also decreased by COMP and thus ER calcium
store refilling was diminished [54]. In addition, calcium release from the ER to the cytoplasm through
IP3Rs as well as transport of calcium from the ER to mitochondria were hampered by COMP [54].
It has been proposed that these actions altogether result in COMP-dependent decrease of PCa cell
apoptosis via inhibition of calcium overload of mitochondria [54].

2.1.2. Calcium-Dependent Proteins and Processes

Several calcium-binding proteins, when bound to calcium, interact with other protein targets
to regulate a diversity of cellular functions. Therefore, increased levels of cytosolic calcium caused
by overexpression of calcium channels might overactivate calcium-binding proteins—also often
overexpressed in PCa—thus acting on processes involved in tumor cell progression.

Calcium/Calmodulin-Dependent Kinase II (CAMKII), among other proteins, seems to play
an important role in PCa cell ability to escape apoptosis after androgen deprivation and facilitates the
progression of PCa cells to an androgen-independent state. Promotion of PCa cell survival by this
kinase is mediated by inhibiting pro-apoptotic triggers caspase-7 and caspase-8 [55].

2.2. Self-Sufficiency in Cell Proliferation and Insensitivity to Anti-Proliferatives and Cell Differentiation

Androgens play a key role in PCa progression [11] and calcium signaling has been involved in
androgen receptor actions on PCa cell proliferation [16]. Furthermore, androgen-dependent increases
of [Ca2+]i levels have previously been shown in LNCaP PCa cells [56]. Androgen-independent
prostate tumor cell lines express multiple channels that are capable of elevating [Ca2+]i as well [57].
Mechanisms involved in calcium-dependent proliferation of prostate cancer cells are shown in Figure 2.
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Figure 2. Proposed mechanisms of calcium-dependent proliferation in prostate cancer (PCa) cells.
Upregulation of T-Type Calcium Channels (TTCC) increases the proliferative signals Akt kinase, mammalian
target of rapamycin (mTOR), cyclin-dependent kinase 4 (CDK4) and cyclin D1. Transient receptor
potential (TRP)V6 (TRPV6) increase proliferation via calcium-dependent activation of Nuclear factor of
activated T-cells (NFAT). TRPM4 induces proliferation through activation of calcium-dependent Akt
and catenin/Tcf/Lef signaling. Piezo1, TRPC6 and TRPM7 contribute to increased calcium cytosolic
levels. Nuclear localization of TRPM2 as well as sarco/endoplasmic reticulum calcium ATPase
(SERCA) also promote PCa cell proliferation. Upregulation of muscarinic acetylcholine receptor M3
(CHRM3) induces Akt, glycolysis, lipogenesis, and androgen receptor (AR) re-activation via activation
of Calcium/Calmodulin-Dependent Kinase Kinase (CAMKK) causing cell proliferation. Proliferation is
also triggered by overactivation of Akt and Extracellular-regulated (ERK) kinases by S100 proteins and by
downregulation of regucalcin. Arrows indicate upregulated expression or activity (↑) and downregulated
expression or activity (↓). Blue filled arrows indicate stimulation. ER: Endoplasmic reticulum.

2.2.1. Calcium Channels

Induction of cell proliferation by physiological stimuli, including epidermal growth factor, serum
and androgens, has been described to be controlled by SERCA in LNCaP cells [58]. This study has
revealed that the expression of SERCA correlates with PCa cell proliferation and ER intraluminal
calcium levels [58].

Overexpression of voltage-operated calcium channel T-type calcium channels (TTCCs) has also
been observed in PCa with androgen receptor mutations [59]. Moreover, it has been shown that
pharmacological or silencing inhibition of TTCCs causes a decrease in PCa cell proliferation and
survival [59]. Based on these observations, it has been proposed that TTCCs control the proliferation of
androgen-receptor negative PCa cells [59]. It has also been suggested that an androgen refractory state in
which androgen receptor signaling is disrupted causes overexpression of TTCCs and increased cytosolic
calcium in PCa cells [16]. In this regard, TTCCs upregulation was associated with tumor progression
and the acquisition of neuroendocrine morphological and biochemical changes by PCa cells [16,60].

It has been suggested that TRPV6 expression is upregulated by androgen receptors in
a ligand-independent manner in LNCaP prostate tumor cells [61]. Overexpressed TRPV6 channels
were described to be constitutively open and act as key mediators of calcium uptake and increased
cytosolic calcium in this report. TRPV6-mediated calcium entry was associated with activation of
NFAT transcription factor-mediated signaling pathways subsequently promoting cell proliferation [61].
TRP canonical 6 (TRPC6) channels have been proposed as mediators of hepatocyte growth factor
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(HGF) effects on calcium entry in PCa cells [62]. TRPC6-mediated increase of cytosolic calcium
triggered by HGF was shown to induce PCa cell proliferation [62]. In addition, overexpression
of TRPM4 in PCa PC3 cells has been associated with increased cell proliferation via activation of
β-catenin and phosphorylation of Akt signaling [63]. Both β-catenin and Akt signaling pathways have
previously been related to PCa cell proliferation [64]. TRPM4 has been shown to regulate cytosolic
calcium concentrations through changes in membrane potential and in calcium electrochemical driving
force [65]. In PC3 cells TRPM4 levels positively correlated with enhanced proliferation, Akt activation,
protein expression and nuclear localization of β-catenin and transcription of β-catenin target genes
dependent on binding with Tcf/Lef transcription factors [63]. In this regard, it has been shown that
TRPM4 promotes calcium influx associated with calcium/calmodulin-dependent activation of Akt
kinase leading to PC-3 cell proliferation [63]. Similarly, TRPM2 has been associated with PC-3 and
DU-145 cell proliferation [66]. Localization of TRPM2 into the cell nuclei has been described to induce
cell proliferation in PC-3 and DU-145 cells by an unknown mechanism [66].

Piezo type mechanosensitive ion channel component 1 (Piezo1) is a nonselective cationic
mechanosensitive channel able to induce calcium influx in cells [67] that has been described to
be overexpressed in PCa cell lines and tissues [68]. Upregulation of Piezo1 has been associated with
increased cytosolic [Ca2+]i, phosphorylation of Akt kinase and mammalian target of rapamycin
(mTOR), activation of cyclin dependent kinase 4 (CDK4) and cyclin D1 and cell proliferation/survival
in DU145 PCa cells [68].

Increased extracellular calcium ([Ca2+]o) levels have also been proposed as modulators of PCa
cell proliferation via activation of calcium channels [69]. In particular, increased calcium/magnesium
ratios overactivate TRPM7 channels leading to enhanced calcium entry and promotion of DU145 and
PC3 PCa cell proliferation [69]. Moreover, increased serum ratios of calcium/magnesium have been
observed in PCa patients compared with patients without any cancer [69]. These observations suggest
a potential mechanism of PCa progression based on increased [Ca2+]o concentrations that boost
cytosolic [Ca2+]i levels. Moreover, increased [Ca2+]o has been described to induce PC-3 proliferation
by a mechanism associated with SOC entry and dependent on CasR and TRPC6 expression [70].

2.2.2. Calcium-Dependent Proteins and Processes

Increased cytosolic [Ca2+]i levels switch calcium/calmodulin-dependent kinases from a basal
inactive state of auto-inhibition to an active state [71]. Moreover, it has also been described that the
androgen receptor is recruited to the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2)
promoter in both androgen-dependent and castrate-resistant PCa cell lines [72]. Overexpression of
the calcium-dependent CAMKK2 protein has previously been described in PCas and cell lines [72].
Therefore, androgen receptor signaling may promote CAMKK2 signaling by both increasing calcium
intracellular levels and inducing CAMKK2 protein upregulation.

Previous reports have described that inhibition of CAMKK2 reduces glucose uptake and produces
less lactate and citrate suggesting a reduction in aerobic glycolysis. Furthermore, CAMKK2 inhibition
showed decreased anabolism from glucose to citrate, ribose and amino acids [72]. Other reports
described androgen-dependent CAMKK2 promotion of the glucose transporter GLUT12 trafficking
to the plasma membrane [73]. Altogether, these results support the role of CAMKK2 as a mediator
of androgen receptor-fueling of PCa metabolism and biosynthesis [72]. In addition, CAMKK2
overexpression has been described to increase the lipogenic enzymes acetyl-CoA carboxylase and fatty
acid synthase, thus promoting PCa cell growth by a mechanism dependent on de novo lipogenesis [74].
Furthermore, CAMKK2 upregulation and over-stimulation has been proposed as a mechanism that
re-activates androgen receptor signaling in castrate-resistant PCa [75]. A feedback loop in which
CAMKK2 is induced by the androgen receptor to maintain this receptor activity and trigger tumor cell
proliferation has been proposed during PCa progression [76].

In addition, muscarinic acetylcholine receptor M3 (CHRM3) has been described to be highly
upregulated in castration-resistant C4-2B and PC-3 cells and moderately upregulated in the
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androgen-dependent cell line LNCaP [77]. Activation of CHRM3 revealed to cause castration-resistance
growth in LNCaP cells through CAMKK–induced activation of Akt kinase [77].

Estrogens have been shown to induce calcium signaling in LNCaP cells [78] although whether
these hormones trigger similar CAMPKK2 actions on PCa cells remains elusive.

Increased and persistent [Ca2+]i stimulates androgen receptor breakdown by the protease calpain
that forms a complex with calmodulin in LNCaP cells [79]. The resulting androgen fragments have been
associated with tumor cell growth arrest [79]. Moreover, persistent [Ca2+]i has been associated with
downregulation of androgen receptor expression in LNCaP cells [80]. These results suggest that PCa
cell proliferation could be decreased by constant [Ca2+]i via modulation of androgen receptor levels.

Regucalcin expression has been shown to be decreased in human PCas and downregulated in
LNCaP PCa cells by an androgen-dependent pathway [81]. Regucalcin is a calcium-binding protein
that regulates [Ca2+]i homeostasis by enhancing calcium pumping activity in the plasma membrane,
ER and mitochondria of many cell types [82]. Regucalcin was shown to suppress cell proliferation,
inhibit expression of oncogenes, and increase the expression of tumor suppressor genes [81].

Proteins of the calcium-binding S100 family have been described to be up-regulated in
androgen-refractory and metastatic PCa [44]. One of the members of the S100 family of proteins,
S100A16, has been involved in promotion of cell proliferation and metastasis via Akt and extracellular
signal-regulated (ERK) kinases signaling pathways in human PCa [83].

2.3. Angiogenesis

During PCa progression formation of new blood vessels to supply tumor cell survival and
proliferation is required [29]. Constant production of angiogenic factors such as vascular endothelial
growth factor (VEGF) frequently occurs in prostate tumor progression (Figure 3).Cancers 2020, 12, 1071 8 of 24 
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Figure 3. Proposed mechanisms of calcium-dependent angiogenesis in prostate cancer (PCa) and
endothelial (EC) cells. PCa cells secrete the angiogenic factor VEGF (vascular endotelial growth factor)
by increasing intracellular calcium [Ca2+]i via voltage-dependent calcium channel α2δ2 auxiliary
subunit overexpression. [Ca2+]i upregulates VEGF through activation of transcription factor Activator
protein 1 (AP-1). ECs in the primary prostate tumor induce angiogenic genes by overexpression of S100
proteins. [Ca2+]i upregulation by Transient receptor potential (TRP) TRPC, TRPA and TRPV channels
induces proliferation of ECs in prostate primary tumors. Arrows indicate upregulated expression or
activity (↑). Blue filled arrows indicate stimulation.
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2.3.1. Calcium Channels

Voltage-dependent calcium channelα2δ2 auxiliary subunit has been reported to be more frequently
expressed in PCa tissues compared with non-cancer tissues [84]. Overexpression of this protein has
been described to trigger alterations of calcium homeostasis and stimulate angiogenesis via an increased
secretion of VEGF in LNCaP nude mice xenografts. These actions have been associated with increased
tumorigenesis of LNCaP cells in nude mice and with PCa cell proliferation and tumor development [84].

TRP channels have also been related to angiogenic responses and increased cytoplasmic calcium
concentrations. Upregulation of TRPV2 levels has been associated with human prostate tumor-derived
endothelial cell proliferation. Moreover, TRPC3 has been identified as an endothelial PCa cell
attraction factor whereas TRP Ankyrin1 (TRPA1) has been described to act as a prostate tumor-derived
endothelial cell angiogenic factor [85]. These actions were associated with constitutive calcium
entry due to basal activation of the three overexpressed TRP channels in endothelial cells and
experimentally corroborated with the TRPA1, TRPV2 and TRPC3 agonists Allyl isothiocyanate (AITC),
L—Lysophosphatidylcholine(LPC) and 1-Oleoyl-2-acetyl-sn-glycerol (OAG), respectively [85].

2.3.2. Calcium-Dependent Proteins and Processes

It has been described that vasoactive intestinal peptide (VIP) triggers VEGF expression in LNCaP
cells. These actions have been attributed to calcium-dependent activation of activator protein-1 (AP-1)
response elements in the promoter region of the VEGF gene [86].

In addition, S100A4 calcium-binding protein has been shown to be a key player in development of
prostate tumors [87]. It has been described that S100A4 induces capillary formation in endothelial cells
in vitro whereas its silencing inhibits angiogenesis and tumor growth in human PCa xenografts
of PC3 cells in mice [88]. These effects were associated with alterations in the expression of
angiogenesis-related genes in S100A4 knockdown endothelial cells [downregulation of genes
related with endothelial migration and microvessel formation; aquaporin-1, fibroblast growth
factor 18, resistin, mitogen-activated protein kinase kinase kinase 5 (map3k5), thymus cell antigen,
forkhead box O6 (foxo6), heparan sulfate 6-O-sulfotransferase 1 and matrix metalloproteinase 3
(mmp3), and upregulation of anti-angiogenesis genes; cyclin-dependent kinase inhibitor 1A (cdkn1a),
thrombospondin 1, and sprouty homolog 4] [88].

2.4. Epithelial to Mesenchymal Transition (EMT), Migration and Invasion

EMT is a process whereby epithelial cells acquire a complete or partial mesenchymal phenotype [89].
EMT promotes a decrease of tumor cell adhesion to the basement membrane and migration of malignant
cells from the primary tumor. These processes potentiate prostate tumor cell abilities to migrate
to neighbor tissues and to entry into blood or lymphatic vessels [90,91]. EMT allows motility of
tumorigenic cells but also contributes to different stages of cancer progression from initiation, primary
tumor growth, invasion, dissemination and metastasis to colonization and resistance to therapy [92].
EMT transcriptional program is regulated by transcription factors mainly of the SNAIL, TWIST and
Zinc finger E-box-binding homeobox (ZEB) families [92]. Recent findings have reported that calcium
entry is required for the upregulation of Zeb1 expression in DU145 and PC-3 PCa cells [93] (Figure 4).
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Figure 4. Proposed mechanisms of calcium-dependent Epithelial to Mesenchymal Transition
(EMT), migration and invasion in prostate cancer (PCa) cells. Upregulation of intracellular calcium
levels dependent on K+ channel (small conductance calcium-activated potassium channel 3) SK3,
Transient receptor potential (TRP) and Orai channels overactivate transcription factor Zinc finger
E-box-binding homeobox 1 (Zeb1) triggering the expression of EMT genes. EMT genes are also
activated by ATP-stimulated P2X7 channel. Invasion of PCa cells is mediated by upregulation of
metalloproteases (MMPs) and cathepsin B via TRPV2 and TRPC6-dependent increase of cytosolic
calcium levels by a constitutive mechanism. MMPs are also increased by psoriasin. Prostate
cell migration is promoted by actin remodeling via calcium receptor (CasR)/calpain/filamin and
Wnt5a/Calcium/Calmodulin-Dependent Kinase (CAMK)II pathways. Decreased annexin II and
increased Stromal-interacting molecule 1 (STIM1)/Akt kinase activation lead to enhanced cell migration
as well. Decreased TRPM8 expression decrease in late stages of androgen-insensitive PCA and is
associated with increased cell migration. Arrows indicate upregulated expression or activity (↑) and
downregulated expression or activity (↓). Crosses (X) indicate inhibition. Blue filled arrows indicate
stimulation. ER: Endoplasmic reticulum.

2.4.1. Calcium Channels

It has been shown that calcium-activated K+ channel (small conductance calcium-activated
potassium channel 3) SK3 as well as Orai and TRP channels were required for promotion of calcium
entry and subsequent Zeb1 expression in these cells [93]. In addition, TRPM7 channel overexpression
in DU145 and PC3 was found to increase PCa cell migration mediated through EMT [94,95]. Although
promotion of cell migration has been observed to be associated with overexpression of channels
such as TRPM7, TRPM4 and TRPM2 [39,94–96] the role of calcium on TRPM-mediated cell motility
is contradictory. TRPM2 channels induce cytosolic increase of not only calcium but also zinc [96].
Although TRPM2 itself does not directly contribute to calcium entry as a plasma membrane channel,
it has been shown that activated TRPM2 induces calcium release from lysosomes contributing to
increased cytosolic calcium concentrations in dendritic cells [97]. TRPM2-mediated increase of
cytosolic [Ca2+]i has been described to regulate size and number of cell focal adhesions whereas
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zinc promoted filopodia-cell protrusions required for cell migration- in PC-3 cells [96]. In this regard,
migration and motility of PC-3 cells showed to be mediated by TRPM2 in a zinc-dependent rather
that calcium-dependent manner [96]. Other reports suggest that promotion of PCa migration by
channels is not exclusively due to ion transport. Formation of channel-dependent signaling complexes
has been suggested to mediate migration in PCa cells [98]. For example, it has been proposed
that the calcium-activated potassium channel BKCa, that is overexpressed in PCa cells, promotes
PCa cell migration as well as proliferation [98]. BKCa would act by forming a complex with αvβ3
integrin subsequently increasing phosphorylation of focal adhesion kinase (FAK) in an ion-conducting
independent fashion [98].

TRPV2 cationic channel levels are also overexpressed in metastatic PCa compared to primary
tumors [99]. It has been shown that introducing TRPV2 into androgen-dependent LNCaP cells enhances
cell migration along with expression of invasion markers matrix metalloproteinase (MMP) 9 and
cathepsin B. Constitutive activity of TRPV2 showed to mediate the growth and invasive properties of
PC3 prostate tumors suggesting that upregulation of this channel is a feature of castration-resistant
PCa [99]. Similarly, overexpression of TRPC6 has been observed in PCa samples and different prostate
carcinoma cell lines (PC3, DU145, LNCaP and 22Rv1) [100]. It has been described that upregulated
levels of TRPC6 promote cell migration and overexpression of metalloproteases MMP2 and MMP9 [100].
Therefore, TRPV2 and TRPC6 role as promoters of proteolytic breakdown of tissue barriers by MMPs
to increase PCa cell invasion potential has been proposed [99,100].

TRPM8 expression has been shown to decrease in late stages of androgen-insensitive PCa [101]
and TRPM8 overexpression induced by transfection has been associated with reduced PCa cell
migration [40,102]. Inhibitory actions of TRPM8 overexpression by transfection on cell migration have
been proposed to act through inactivation of the cell migration regulator focal-adhesion kinase in
the AR-deficient PC-3 cell line [40]. These actions were associated with persistent cytosolic [Ca2+]i
concentrations. In addition, accumulation and activation of TRPM8 channels at the plasma membrane
of TRPM8-transfected PC3 cells have been described to be induced by prostate-specific antigen (PSA)
related with increased [Ca2+]i and decreased PCa cell migration [102].

2.4.2. Calcium Pumps and Cation Permeable Channels

Plasma membrane Ca2+-ATPases (PMCAs) are calcium pumps that use ATP hydrolysis to push
calcium from the cytosol into the extracellular milieu. PMCA1 has been identified as a protein that is
regulated by the AR in PCa LNCaP cells [103]. Increased secretion of PMCA1 in extracellular vesicles
has been associated with inhibition of the AR by the AR antagonist enzalutamide [103]. These results
suggest that PMCA1 might have an important role in castrate-resistant PCa and invasion abilities.

Purinergic P2X7 are ligand-gated cation permeable channels activated by ATP that are highly
expressed in PCa and PCa cell lines [104,105]. Moreover, extracellular ATP has been described as
an important pro-migration and invasion molecule in prostate cancer cells [106]. P2X7 has been
involved in ATP-induced enhanced migration and invasion of prostate cancer cells in association with
ATP-dependent increase of cytoplasmic [Ca2+]I [105]. The expression of the EMT/invasion-related
genes Snail, interleukin-8 (IL-8) and MMP-3 was described to increase whereas the expression of
the non-tumor epithelial markers E-cadherin and Claudin-1 was reduced in PC-3M human prostate
carcinoma 1E8 and 2B4 cell lines by ATP-activated P2X7 [105].

2.4.3. Calcium-Dependent Proteins and Processes

Stromal-interacting molecule 1 (STIM1), a calcium sensor located in the ER and a component
required to induce SOCE, has been shown to be upregulated in PCa [107]. Overexpression of STIM1
has been described to mediate migration and invasion in LNCaP, PC-3 and DU-145 PCa cell lines via
activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway [107].

Dysregulation of the annexin family of calcium-binding proteins has also been associated with
PCa progression [108]. Decreased or absence of annexin II has been shown in Du145 and PC3 PCa cells,
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respectively. Re-expression of annexin II in these cells inhibited PCa cell migration without affecting
cell proliferation or apoptosis [109].

[Ca2+]o has been described to promote the migration of DU145 and PC-3 PCa cell lines
(AR-deficient and metastatic) compared to LNCaP PCa cells (AR-positive and less metastatic) [110].
Regarding cell motility, cleavage of filamin A, an actin-binding protein overexpressed in PCa, was
shown to be induced by [Ca2+]o [110]. Filamin A cleavage triggered by [Ca2+]o via a calcium-sensing
receptor (CasR)-p115RhoGEF-calpain dependent pathway revealed to be essential for promotion of
DU145 and PC-3 cell migration [110].

Calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) has shown to be upregulated
in PCa too [111]. Expression and activity of CaMKKβ was described to be increased by
androgens leading to phosphorylation of AMP-activated protein kinase (AMPK) [111]. The pathway
CaMKKβ/phosphorylated AMPK was shown to induce androgen-mediated migration and invasion of
LNCaP and VCaP cells [111].

Wnt5A is another protein that has been shown to be upregulated in PCas [112]. Stimulation of PCa
cells with Wnt5A was described to cause [Ca2+]i waves and subsequent activation of CAMKII [112].
CAMKII calcium-dependent activation showed to be indispensable for actin cytoskeleton remodeling
and increased motility in PC3 PCa cells [112].

Proteins of the S100 family have also been implicated in tumor cell invasion. The calcium-binding
protein psoriasin (S100A7) has been shown to be expressed in PCa specimens and to increase PCa cell
survival [113]. However, psoriasin main function was mainly related to increased cell invasiveness
abilities through upregulation of matrix metalloproteases in PC-3 cells [113]. Other member of the
S100 family of proteins, S100A4, has been reported to be overexpressed in PCa and increase the
proliferative and invasive capabilities of PC-3 cells [114]. In this report, enhanced invasion was
associated with S100A4-induced transcriptional activation and increased proteolytic activity of the
metalloprotease MMP-9 [114].

2.5. Homing of PCa to Bone

Advanced PCa most frequently metastasize to bone, followed in frequency by lung, liver, pleura
and adrenals [6,115]. Thus, bone metastasis is a common complication in advanced stages of patients
with PCa [115]. It has been hypothesized that tumor cells establish in specific areas of bone such as
the endosteal niche, the niche of hematopoietic stem cells and the vascular niche [116]. These niches
are complex microenvironments in which bone cells secrete factors and stablish cell-cell interactions
that promote cell proliferation and differentiation as well as bone turnover (bone resorption and
formation). It has been shown that increasing the number of these niches experimentally also increases
the number of primary tumor disseminated cells [117]. Therefore, the PCa high predilection for skeletal
metastasis has been attributed to favorable reciprocal interactions between the bone microenvironment
and cancer cells [118,119]. Such interactions may be different in nature, including actions of calcium
channels, [Ca2+]o, bone soluble factors, bone-tumor cell-cell direct communication and bone matrix
proteins (Figure 5).
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Figure 5. Proposed mechanisms of calcium-dependent bone colonization in prostate cancer (PCa) cells.
Migration to bone and invasion mechanisms are induced by Transient receptor potential V2 TRPV2 and
TRPV6-dependent upregulation of cytosolic calcium levels in PCa cells. Adrenomedullin translocates
TRPV2 to the membrane triggering migration and invasion mechanisms. Calcitonin induces migration
and invasion of PCa cells. Bone osteoblasts transfer calcium to tumor cells via GAP junctions. In turn,
cytosolic calcium induces bone colonization by overactivation of NFAT and MEF2 transcription factors
and calcium-binding proteins CaMKII and calcineurin. Proliferation of PCa cells in bone is triggered by
osteopontin activation of α(v)β3 integrin-dependent upregulation of intracellular calcium levels. PCa
cells also secrete the bone resorbing peptide parathyroid hormone-related protein (or PTHrP) inducing
receptor activator of nuclear factor-κB (RANK) ligand (RANKL) secretion by osteoblasts. RANKL
activates RANK receptor in osteoclasts promoting osteoclast-dependent bone resorption and release of
calcium. [Ca2+]o activates the calcium receptor (CasR) in PCa cells triggering cell proliferation via Akt
and cyclin D1 activation. Vitamin D antagonizes the effects of high extracellular calcium concentrations
on CasR. Arrows indicate upregulated expression or activity (↑) and downregulated expression or
activity (↓). Crosses (X) and

⊥

symbol indicate inhibition. Blue filled arrows indicate stimulation.

2.5.1. Calcium Channels

TRPV6 calcium channel overexpression has been associated with development of osteoblastic
bone metastasis in addition to promotion of PCa cell survival [45]. PC-3 clones overexpressing TRPV6
have shown to generate osteoblastic lesions compared with control PC3 cells which generate osteolytic
lesions when inoculated in the bone marrow of immunodeficient mice [45].

2.5.2. Calcium-Dependent Proteins and Processes

[Ca2+]o: During the process of bone turnover, calcium is the main inorganic component released
to the extracellular medium. Normally, physiologic calcium levels are kept within a narrow range of
1.1 to 1.3 mmol/L [120]. However, in active bone resorptive lacunae, [Ca2+]o can reach levels as high as
8 to 40 mmol/L [121,122]. In this regard, [Ca2+]o has been involved in promotion of PCa cell metastasis
to bone. [Ca2+]o acts mainly through activation of the heterotrimeric G-protein–coupled receptor
CaSR [110]. Effects of [Ca2+]o have been associated with overexpression of calcium-sensing receptor
(CasR) and activation of Akt kinase signaling pathway in PC-3 and C4-2B cell lines [7]. Stimulation
of CasR and Akt pathways has also been shown to favor metastatic progression in vivo [7]. In vitro,
cyclin D1-dependent proliferation and cell attachment of PC-3 cells was enhanced by activation of
CasR and Akt, suggesting that [Ca2+]o mediates PCa bone metastasis [7]. Furthermore, the deleterious
actions of [Ca2+]o on PCa progression have been associated not only with CasR upregulation but also
with overexpression of TRPC6 [70]. Vitamin D has shown to antagonize the effects of high [Ca2+]o
concentrations on PCa causing downregulation of both CasR and TRPC6 proteins [70].
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It has been observed that elevated [Ca2+]o also stimulates PTHrP secretion in PCa cells [123,124].
PTHrP is a peptide that binds PTH receptor type 1 (PTH1R) in osteoblasts. PTH1R-stimulated
osteoblasts secrete the pro-resorption factor RANKL that activates RANK in osteoclasts promoting
bone resorption and calcium release [7]. Bone metastases have been associated with activation of the
PTHrP-calcium-CaSR axis. It has been proposed that PCa cells cause PTHRP-dependent increase of
calcium release from the bone microenvironment. In turn, increased [Ca2+]o levels activate CasR in
PCa cells promoting tumor cell proliferation and supporting PCa cell homing to bone [7].

Bone soluble factors: Some reports have shown that bone cells can decrease [Ca2+]i levels while others
have described an increase of [Ca2+]i levels in PCa cells [25,118]. This apparent contradiction might be
explained due to the existence of dual mechanisms; some would promote high [Ca2+]i levels that sustain
processes of prostate tumor bone colonization while others are activated to evade calcium-dependent
apoptosis due to overload of mitochondrial calcium. In this regard, bone-metastatic PC3-ML PCa cells
have shown downregulated levels of cytoplasmic [Ca2+]i levels upon agonist stimulation via decreased
calcium entry when co-cultured with osteoblasts in vitro [118]. A role of the osteoblast microenvironment
on reducing apoptosis of PCa cells caused by overload of cytoplasmic [Ca2+]i levels was suggested [118].
In contrast, other studies describe upregulated levels of [Ca2+]i upon stimulation with soluble factors.
The role of TRPV2 has been described to mediate adrenomedullin promotion of PC-3 migration, adhesion
and invasion abilities. Adrenomedullin, a peptide overexpressed in PCa, was shown to induce TRPV2
translocation to the plasma membrane via a PI3 kinase pathway [125]. In turn, TRPV2 translocation to the
plasma membrane caused an increase of the resting cytosolic calcium levels of PC-3 cell line, which induced
PCa cell migration, adhesion and invasion [125]. Some studies have linked adrenomedullin and other
members of the calcitonin family of peptides including calcitonin itself and calcitonin gene-related peptide
to the tropism of PCa to the bone (reviewed in [126]). Although calcitonin exerts hypocalcemic effects by
inhibiting bone resorption, it has been described to be highly expressed in malignant prostate tumors and to
promote PCa cell proliferation and invasion [126,127].

In addition, soluble factors from bone cells have been related to altered [Ca2+]i levels and increased
proliferation in PCa cells [128]. Stimulation of PC-3 cells with conditioned media of pre-osteoblastic MC3T3-E1
and osteocytic MLO-Y4 cells induced an increase in PC-3 cell proliferation. Associated with these actions,
osteoblastic and osteocytic conditioned media also caused transient increase in [Ca2+]i accumulation [128].

Bone-tumor cell-cell interactions: Bone colonization has revealed to be mediated through activation of
the calcium transducers CaMKII and calcineurin in PCa cells [25]. Moreover, overexpression of transcription
factors downstream of calcium and associated with promotion of EMT, migration, angiogenesis and invasion,
such as NFAT and MEF2 [129,130] were also observed in PCa bone metastases [25]. It was suggested
in these studies that bone colonization requires calcium flows from osteogenic cells to cancer cells via
connexin 43-based gap junctions [118]. In this regard, it has been proposed that entry of calcium through
calcium channels (Orai for example) mediate initial prostate tumorigenesis whereas bone-cancer cell to cell
communication via gap junctions is responsible for bone metastasis after initial tumorigenesis [25].

Bone extracellular matrix proteins: Bone matrix protein fractions have been described to induce
rapid fluctuations in cytosolic [Ca2+]i associated with PCa cell proliferation [131]. The non-collagenous
matrix proteins osteonectin and osteopontin were able to trigger calcium signals in PCa cells derived
from bone (PC-3), but not from lymph-nodes (LNCaP) or brain (DU-145) cells [131]. Effects of
osteopontin on calcium signaling were described to be mediated by α(v)β3 integrin in PC-3 cells [131].

3. Targeted Calcium Signaling Therapies in PCa

The therapeutic field of PCa has broadened over the last years. These advances coincide with
better understanding of the underlying molecular processes of PCa [132]. Aside from calcium-binding
proteins, promising new therapies for treatment of PCa include compounds that mainly target various
calcium channels and transporters [133]. Table 1 summarizes relevant clinical trials regarding prostate
cancer treatment using calcium-targeted therapies.
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Table 1. Clinical trials regarding prostate cancer treatment using calcium-targeted therapies.

Treatment Results Recruitment
Status Phase Interventions Conditions Clinicaltrials.Gov

Identifier Study Title:

Study: Suramin (antagonist of P2X
purinergic receptors)

Patients receive low, intermediate
or high-dose suramin IV over 1

hour on days 1, 2, 8, 9, 29, 30, 36, 37,
57, 58, 64, and 65 in the absence of

disease progression or
unacceptable toxicity. Patients with

new progression after partial or
complete response may receive

additional courses, at the discretion
of the study chairperson.

No Study Results
Posted on

ClinicalTrials.gov
for this Study

Completed

Randomized phase III trial to
compare the effectiveness of low,

intermediate, and high dose
suramin

Low (3.192g/square meter total
dose given decreasing

concentrations in 250 cc normal
saline IV), Intermediate (5.320

g/square meter total dose given in
decreasing concentrations in 250 cc
normal saline via IV), or High (7.661
g/square meter toal dose given in

decreasing concentrations in 250 cc
normal saline IV) Dose Suramin

Stage IV prostate cancer
that is refractory to
hormone therapy

NCT00002723

Low, Intermediate, or High Dose
Suramin in Treating Patients With

Hormone-Refractory Prostate
Cancer

Within 3 days after randomization,
all patients receive daily flutamide.

On day 4, patients undergo
orchiectomy or begin monthly
LHRH analogue therapy with

leuprolide or goserelin. Patients
randomized to receive suramin

begin a 12-week course 8-25 days
after orchiectomy/LHRH therapy.

Hydrocortisone replacement
therapy begins concomitantly with
suramin and continues for at least 3

months after the completion of
suramin treatment or until disease

progression intervenes.

No Study Results
Posted on

ClinicalTrials.gov
for this Study

Completed

Randomized phase III trial to
evaluate the effectiveness of

treatment with flutamide and
suramin with or without

hydrocortisone

ORCHIECTOMY/LHRH ANALOG
+ FLUTAMIDE + SURAMIN +

HYDROCORTISONE VS
ORCHIECTOMY/LHRH ANALOG

+ FLUTAMIDE

Metastatic or recurrent
prostate cancer NCT00002881

Flutamide, Suramin,
and Hydrocortisone in Treating
Patients With Prostate Cancer

No Study Results
Posted on

ClinicalTrials.gov
for this Study

Completed Phase II Trial
Combine androgen blockage

(Leuprolide and Flutamide) with
suramin

Metastatic prostate cancer NCT00001266
A Phase II Trial of Leuprolide +

Flutamide + Suramin in Untreated
Poor Prognosis Prostate Carcinoma

No Study Results
Posted on

ClinicalTrials.gov
for this Study

Completed Phase I Trial
Suramin followed by doxorubicin

in patients with advanced
solid tumors.

Histologic or cytologic
confirmation of malignant
solid tumor including, but

not limited to: Breast
cancer Prostate cancer

Colon cancer
Adrenocortical tumors

NCT00003038

Combination Chemotherapy With
Suramin Plus Doxorubicin in

Treating Patients With Advanced
Solid Tumors

Study: Mipsagargin (G-202)
[thapsigargin-based prodrug]

Inhibitor of ER calcium
ATPase (SERCA)

G-202 administered by intravenous
infusion over one hour on Days 1, 2
and 3 of a 28-day treatment cycle.
The G-202 dose will be 40 mg/m2

on Day 1 and 66.8 mg/m2 on Days 2
and 3.

Withdrawn Phase 2 Study
G-202 dose will be 40 mg/m2 on
Day 1 and 66.8 mg/m2 on Days 2

and 3.

Patients With
Chemotherapy-Naïve

Metastatic
Castrate-Resistant

Prostate Cancer

NCT01734681

Phase 2 Study of G-202 in Patients
With Chemotherapy-Naïve

Metastatic Castrate-Resistant
Prostate Cancer

Clinicaltrials.Gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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Table 1. Cont.

Treatment Results Recruitment
Status Phase Interventions Conditions Clinicaltrials.Gov

Identifier Study Title:

G-202 administered by intravenous
infusion on Days 1, 2 and 3 of each

28-day cycle for up to 3 cycles.

No Study Results
Posted on

ClinicalTrials.gov
for this Study

Completed Phase II clinical trial G-202
Patients With

Adenocarcinoma of
the Prostate

NCT02381236
G-202 in the Neoadjuvant Setting

Followed by Radical Prostatectomy
in Patients With Prostate Cancer

G-202 administered by intravenous
infusion over 1 hour on Days 1, 2

and 3 of each 28-day cycle.

No Study Results
Posted on

ClinicalTrials.gov
for this Study

Completed Dose-Escalation Phase 1 Study G-202 on Days 1, 2 and 3 of each
28-day cycle. Advanced Prostate Cancer NCT01056029

Dose-Escalation Phase 1 Study of
G-202 (Mipsagargin) in Patients
With Advanced Solid Tumors

Study: SOR-C13 (synthetic peptide
inhibitor of TRPV6 developed from
the C-terminal region of soricidin
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3.1. IP3R Receptor Targets

Unlike in other types of cancers altered IP3R activity has not been extensively described in PCa.
However, an unexpected dependency on IP3R-mediated calcium transfer to mitochondria for viability of
PCa cells has been found [51]. Treatment with xestospongin B (XeB), a specific IP3R inhibitor, has shown
diminished formation of colonies by tumorigenic prostate PC3 cells. Furthermore, XeB-mediated
killing and morphological changes including rounding up and shrinkage were observed in PC-3 and
DU145 cells. Interestingly, little effect on viability and normal morphology on non-tumorigenic PNT2
prostate line were observed with XeB [51].

On the other hand, the BH4 domain of the anti-apoptotic protein Bcl-2 has been shown
to inhibit calcium-mediated apoptosis by inhibiting IP3R-mediated calcium release [134,135].
Interestingly, increased levels of Bcl-2 are required for the progression of prostate cancer cells from
an androgen-dependent to an androgen-independent growth stage [136]. Moreover, Bcl-2 upregulation
is necessary for androgen-independent prostate cancer cell survival [136]. Therefore, targeting of
Bcl-2/IP3R interactions could be a potential therapy in several cancer types including PCa [137]. In this
regard, synthetic peptides such as Bcl-2 IP3R Disruptor-2 (BIRD2) are being developed [137]. BIRD2
disrupts Bcl-2-IP3R interplay by binding to the BH4 domain of Bcl-2 and inhibiting Bcl-2 control of
IP3R leading to calcium-mediated apoptosis [137]. Whether this approach may be useful has been
argued to be dependent on several factor including the levels of Bcl-2 in different stages of cancer cells
and their reliance on Bcl-2 for survival [137].

3.2. Ca2+ -ATPase Inhibitors

3.2.1. SERCA Inhibitors

Thapsigargin (Tg), a potent inhibitor of ER calcium ATPase (i.e., ATP2A2 or SERCA 2b)
pumps [138] causes an increase in apoptotic death of metastatic castration-resistant PCa cells [139]
and anti-proliferative effects after several days of treatment. Furthermore, it has been shown to
inhibit the lysosomal degradative autophagy pathway in LNCaP cancer cells [140]. Thapsigargin also
inhibits tumor angiogenesis, becoming an ideal agent to annihilate all the cell types present within
the cancer microenvironment [141]. One benefit of using Tg compared with most common used
chemotherapeutics is its ability to induce apoptosis on both proliferating but also non-proliferating
cells. Use of Tg as an antineoplastic agent would require specific targeting towards cancer cells by
chemical modification. Coupling to a peptide carrier to produce a water soluble prodrug that targets
specifically metastatic accumulations of androgen independent prostate cells would be an option [142].
In this regard, prostate-specific membrane antigen-specific peptides coupled to analogs of thapsigargin
(i.e., G202) have been tested. Some of these new analogues have shown a solid correlation between
SERCA inhibition and cell death [143] whereas others behave as weak inducers of cell death and barely
act as anti-proliferatives [144]. For example, G202 has been described to produce significant regression
of a variety of human tumor xenografts in mice [145]. This approach is currently being tested as
a clinical trial in patients with advanced solid tumors (ClinicalTrials.gov Identifier: NCT01056029).

3.2.2. PMCA Inhibitors

Recently, PMCA has been identified as putative chemotherapeutic target in advanced stages of
PCa [133]. It has been described that resveratrol derivatives may increase [Ca2+]i by inhibiting PMCA
and by activating calcium release from the ER. These actions have been associated with decreased
PC-3 cell viability [146]. Moreover, compounds based on esterification of resveratrol at the 4’ hydroxyl
with 4 carbon acids have shown to enhance [Ca2+]i levels and cause lower PCa cell survival compared
to unmodified resveratrol [146].

ClinicalTrials.gov
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3.3. Calcium Channels or Transporters-Targeted Therapies

The expression and/or activity of a large number of calcium channels or transporters are altered
in PCas. Compounds or antibodies targeting some of the aforementioned cancer-involved calcium
channels/transporters/pumps have been assessed in pre-clinical studies or even in clinical trials [133].

3.3.1. Inhibitors of Voltage-Gated Ca2+ Channels

Neuroendocrine PCa cells derived from LNCaP cells overexpress CaV3.2 T-type voltage-dependent
calcium channels (TTCCs) [147]. These channels are also expressed by neuroendocrine cells in PCa
tissues obtained from patients after surgery [148]. Recent reports have demonstrated that stimulation
of LNCaP cells with bicalutamide—an antiandrogen compound—or hormone-depleted media evoke
a significant increase in Cav3.2 protein expression and the appearance of functional T-type Ca2+

channels. These channels have been described to induce promotion of chemoresistance to docetaxel,
a chemotherapy compound. Regarding these observations, inhibition of T-type calcium channels
by sodium butyrate caused a significant reduction in LNCaP survival [149]. Other Cav3.2 channel
blockers such as Ni2+ or NNC 55-0396 caused a significant reduction in the viability of LNCaP cells
exposed to bicalutamide. However, co-treatment with docetaxel and T-type Ca2+ channel inhibitors
had no further effect on cell viability [16].

Various research studies have found different effects of ghrelin as a treatment for PCa. It has been
published that ghrelin inhibits proliferation of human prostate carcinoma cells through T-type calcium
channel overexpression [150]. However, no effects of unacetylated ghrelin (UAG) administration on
subcutaneous PC3 xenograft growth or metabolic parameters in a mouse model were found, suggesting
that UAG is not likely to be an effective treatment for PCa [151]. Recent data has shown limited short-term
effects on human PCa xenograft growth by the ghrelin receptor antagonist [D-Lys3]-GHRP-6 [152].
Therefore, further studies are required to elucidate the role of ghrelin and T-type voltage-dependent
calcium channels in PCa therapy.

3.3.2. Transient Receptor Potential Channel Inhibitors

Targeting TRP channels has been suggested as a novel therapeutic strategy for PCa [133]. A TRPM8
channel truncated isoform (4TM-TRPM8) has been identified in PCa. Transcription of TRPM8 and
4TM-TRPM8 has been described to be regulated by short truncated TRPM8 isoforms, known as sM8.
The suppression of sM8 isoforms by RNA silencers was shown to induce ER and mitochondrial
oxidative stress, p21 induction and apoptosis in PCa cells [153].

TRPV6 has been described as an oncochannel and several TRPV6 inhibitors have been suggested
as potential pharmacological therapies in PCa [133]. A peptidic inhibitor of TRPV6 (SOR-C13) has
completed phase I in a clinical trial [154] and has been shown to reduce growth in cell and animal
models of PCa [155–157].

3.4. STIM1 Inhibitors

ML-9, an inhibitor of Akt kinase and STIM1, is emerging as an interesting therapy for PCa. ML-9
induces cell death in PCa cells related to autophagy regulation and enhances the anticancer activity of
docetaxel, suggesting its potential application as an adjuvant to existing anticancer chemotherapies [158].
This report suggests to use the chemical structure of ML-9 as a “template” for the synthesis of improved
structurally related and more selective compounds to use in cancer treatment.

3.5. Purinergic Receptor

Suramin, is an antagonist of P2X purinergic receptors -ion channels permeable to calcium that
open upon binding of ATP- [159]. Delays in disease progression for patients with hormone-refractory
prostate (HPRC) cancer treated with the P2X antagonist support the potential role of suramin as
an anti-neoplasic therapy in PCa [160]. Another study of lung metastases induced by PCa cells showed
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reduction of tumor size, a decrease of non-apoptotic cells, and increased apoptotic cell number by
suramin [161].

4. Conclusions

Dysregulation of calcium homeostasis plays an important role in PCa progression. Several mechanisms
that increase or decrease [Ca2+]i and a diversity of calcium-binding proteins regulate the various phases of PCa
development. Different mechanisms allow PCa cells to mantain certain elevated levels of [Ca2+]i that induce
proliferation, angiogenesis, EMT, migration and bone colonization meanwhile other mechanisms guarantee
evasion of [Ca2+]i overload that could lead to mitochondria-dependent apoptosis. Future calcium-based
therapies must specifically target prostate cancer cells either avoiding calcium entry or potentiating [Ca2+]i

overload that leads to apoptosis without affecting non-tumor cells.
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