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Apoptosis and loss of virus-specific CD8R T-cell memory
Raymond M Welsh1, Kapil Bahl2 and Xiaoting Z Wang3

CD8þ T-cell memory to viruses is stable in the absence but

volatile in the presence of other infections. Apoptotic events that

occur early in acute infections delete pre-existing memory

T cells, leaving the host with reduced memory (except for

cross-reactive responses) to previously encountered viruses.

Apoptotic events also silence the acute immune response,

leaving the host with a residual population of memory T cells.

Persistent infections can induce apoptotic deletions of

memory T cells that are specific to the persisting virus and to

previously encountered pathogens.
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Abbreviations
AICD activation-induced cell death

FasL Fas ligand

IFN interferon

IL interleukin

LCMV lymphocytic choriomeningitis

TCR T-cell receptor

TNF tumor necrosis factor

Introduction
Viral infections are potent stimulators of CD8þ T cells,

which recognize viral peptides in association with Class 1

MHC molecules on virus-infected antigen-presenting

cells (APCs). CD8þ T-cell stimulation is so profound

that the CD8þ/CD4þ T-cell ratio sometimes shifts from

about 1:2 to 3:1 but, thereafter, returns to normal in the

memory state (Figure 1). The proliferating cells are

mostly specific to viral peptides, but their fate and the

fate of bystander CD8þ T cells are highly regulated by

apoptotic events that come in two waves during acute

infections. The first wave is associated with a transient

lymphopenia, occurring before the development of the

splenomegaly and lymphadenopathy characteristic of the

developing T-cell response [1]. The second wave occurs

as the immune response silences and enters the memory

state [2]. Recent work has correlated the degree of

apoptotic events to deletions and preservations of the

memory pool.

Virus-induced lymphopenia and memory
CD8R T-cell loss
Virus-induced lymphopenia has been observed in

many severe acute viral infections in humans, such as

influenza, measles, West Nile, Ebola, Lassa fever, lym-

phocytic choriomeningitis (LCMV) and, most recently,

severe acute respiratory syndrome (SARS) corona viruses

[1,3��,4,5], but common mechanisms have only recently

been proposed. Infection of mice with LCMV and other

viruses, as well as bacteria such as Listeria monocytogenes,
causes a reduction of lymphocytes early in infection

[1,2,6�,7]. Memory CD8þ T cells are particularly affected

and express apoptotic markers, including Annexin V

and TUNEL (terminal deoxynucleotidyl transferase-

mediated dUTP nick-end labelling) stain positivity.

There are probably several mechanisms for this apoptotic

loss of CD8þ T cells, but a common mechanism might be

provided by type 1 interferons (IFNs). CD8þ T-cell

apoptosis was elicited by the IFN-inducer poly I:C,

and the early apoptosis occurring during LCMV infection

of mice correlated with the type 1 IFN response [1].

Notably, mice lacking type 1 IFN receptors resisted the

CD8þ T-cell apoptosis, induced by either poly I:C or

by LCMV. It was not clear whether IFN stimulated

apoptosis directly or indirectly, either by altering the

susceptibility of CD8þ T cells to apoptotic stimuli or

by inducing other cytokines. IFN can, for example,

induce other pro-apoptotic proteins, such as TNF (tumor

necrosis factor) family member TRAIL (TNF-related

apoptosis-inducing ligand) [8], and Jiang et al. discussed

preliminary data indicating that this apoptosis is reduced

in TRAIL-deficient mice [6�]. This early apoptosis does

not seem to be regulated greatly by Fas, FasL, perforin,

Bcl-2, Bcl-XL, or IFN g, and thus, further characterization

of this event is necessary.

The induction of a lymphopenic state by irradiation or

cytotoxic drugs can lead to enhanced immune responses,

by making room in lymphoid organs for T cells to seed

and develop [3��]. Cyclophosphamide, for example,

enhances T-cell responses to herpes simplex virus type

1 infections in mice [9]. It is possible, therefore, that this

virus-induced early loss of CD8þ T cells might facilitate

the development of a more vigorous virus-specific CD8þ

T-cell response. Consistent with this hypothesis, younger

mice have been observed to experience greater initial

lymphopenia [10], yet generate stronger virus-specific

responses than older mice [11,12]. Adoptive transfer
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studies have indicated that the environment of aged mice

inhibits the apoptosis of young T cells [10]. T cells in

aged mice also express higher levels of Bcl-2 and resist

poly I:C-induced and interleukin (IL)-15-induced mem-

ory cell division [13�].

CD8þ T-cell memory to viruses is normally relatively

stable, as there is a continuous IL-15-dependent turnover

of memory CD8þ T cells, which maintains their numbers,

probably by equally balancing division with apoptosis

[14,15]. This has been referred to as ‘basal proliferation’,

in contrast to the ‘acute homeostatic proliferation’ that

occurs when lymphocytes divide to fill up lymphopenic

environments. The stability of memory is disrupted by

infections with unrelated viruses or bacteria, or by expo-

sure to bacterial superantigens, all of which lead to a

reduction in frequencies of pre-existing memory cells

[16,17�,18�,19,20]. We propose two models to explain this

loss of memory. One is a passive competition model,

whereby newly generated memory cells, at termination

of infection, compete with pre-existing memory cells for

survival niches. Such a model appears to be supported by

a study showing that inclusion of an IL-15 gene into

Mycobacterium bovis enhances memory T-cell frequencies

to the Mycobacterium, but decreases previously generated

memory T cells that are specific to L. monocytogenes [21�].
An active model of memory-cell decay proposes that

some mechanism kills off the resident memory cells,

thereby enhancing the survival of the newly emerging

memory cells. Recent studies have demonstrated that

LCMV infection causes substantial reductions in the

frequencies of CD8þ T cells that are specific to a hetero-

logous virus as early as day two post-infection, and that

these frequencies do not recover as the infection resolves

[20]. Thus, the long-term loss in memory might, in large

part, be a consequence of the early lymphopenia and

apoptotic loss in memory CD8þ T cells.

The failure to recover memory after the occurrence of

virus-induced lymphopenia is probably due to the inabil-

ity of CD8þ T cells that are not specific to the virus to

compete with the proliferation of T cells that are specific.

Additionally, it may reflect the poor ability of virus-

specific memory cells to repopulate lymphopenic envir-

onments in general [3��]. Lymphopenic conditions

induce some T cells to proliferate and fill-up available

space; this ‘acute homeostatic proliferation’ is primarily

dependent on IL-7, and somewhat on IL-15 [15]. Type 1

Figure 1
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IFN induces the division of memory phenotype CD8þ T

cells through the action of IL-15 [22]. This division,

however, might not be just a response to IL-15 but,

instead, may be driven by this tendency of T cells to

divide in lymphopenic environments, in this case created

by IFN [1,3��]. The T cells that proliferate in the most

lymphopenic environments seem to be those with the

highest affinity for self-antigens and, thus, may not be the

same T cells that have expanded and entered the memory

pool in response to foreign antigens [23,24]. An analysis

of the repopulation of lymphopenic environments with

adoptively transferred splenocytes, containing clearly

defined virus-specific memory cells demonstrated, in

every incidence, that the bona fide memory cells divided

less frequently and were diluted out by other, presumably

self-reactive T cells [3��]. Memory CD8þ cells express

higher levels of Bcl-2 and resist irradiation-induced apop-

tosis [25], but when time is allowed for the repopulation of

the irradiated environment, other cells proliferate more

than the virus-specific memory cells and dilute that

population proportionally [3��]. Thus, a permanent loss

of memory cells is observed under conditions of lympho-

penia, even when there is not competition by the T cells

responding to viral antigens during an acute infection.

Preservation of memory after infections can occur if the

memory cells cross-react with antigens that are encoded

by the infecting virus [17�] (Figure 1). LCMV and

Pichinde virus (PV) encode epitopes that share six out

of eight amino acids, and T-cell responses to these

epitopes are enriched rather than deleted in mice that

are sequentially infected by these viruses. A similar

phenomenon of deletion of non-cross-reactive but enrich-

ment of cross-reactive T cells is seen with sequential

bacterial infections [26�]. Thus, T-cell cross-reactivity

acts in opposition to the forces driving the deletion in

memory. This leads us to question whether T-cell recep-

tor (TCR) engagement inhibits the apoptotic loss of

memory CD8þ T cells during the lymphopenic phase

of infection. One study examining the proliferation of

LCMV-specific transgenic T cells in LCMV-infected

mice argued that antigen engagement blocks the early

apoptosis, although it was unclear whether there was a

transient apoptotic loss before a rapid antigen-specific

proliferation [6�]. T cells that are specific to the cross-

reactive epitope between LCMV and PV were deleted,

just like those that are specific to other epitopes at

the early stages of infection, and thereafter began to

proliferate [20].

CD8R T-cell apoptosis during silencing of the
immune response
The reduction of T-cell number from the spleen and

lymph nodes as the immune responses silences at the end

of infection is, in part, due to apoptosis [2] and, in part,

due to dissemination of the T cells out of the lymphoid

organs and into the peripheral tissue [27]. The level of

apoptosis in splenocytes was high during LCMV infec-

tion, as judged by an altered mitochondrial membrane

potential (Dcm) [28] and by reactivity with Annexin V,

often on more than 50% of the CD8þ cells [29�]. The

spontaneous apoptosis could not be prevented by trans-

genic expression of Bcl-2 or Bcl-XL [2,30], yet Bcl-2 was

shown to be elevated in memory cells [25]. Silencing was

reduced in mice lacking CD43, as the CD43�/� T cells

demonstrated increased Bcl-2 and decreased apoptosis

[31]. It seems, therefore, that anti-apoptotic Bcl-2 family

members cannot prevent immune silencing, but might

still be helpful for memory-cell survival. Expression of a

Bcl-2 family pro-apoptotic molecule, BNIP3, was found

to be elevated in the apoptotic T cells [32].

An analysis of cell-surface antigen expression, predictive

of survival of spleen CD8þ T cells into the memory

state revealed that IL-7 receptor (R) a-expressing and

IL-7Ra-sorted CD8þ T cells gave rise to memory when

transferred into naı̈ve hosts [33��]. Cells with high IL-

7Ra-expression had higher levels of the anti-apoptotic

molecules Bcl-2 and Bcl-XL than those that did not

express IL-7Ra (Figure 1). Using similar strategies, we

have shown that Annexin-V (�) but not Annexin-V (þ)

T cells gives rise to LCMV-specific memory and that the

expression of IL-7Ra is much higher on Annexin-V (�)

than Annexin-V (þ) cells (XZ Wang, MA Brehm and RM

Welsh, unpublished data). The factor(s) that cause some

cells to express IL-7Ra and others not to remains unclear,

as does the mechanism of apoptosis during immune

silencing conditions. No singular pro-apoptotic event,

such as that mediated by FasL or TNF, has been shown

to mediate this process. Silencing was delayed in mice

lacking perforin or IFNg, but so was clearance of virus

[34,35]. It has been hypothesized that immune silenc-

ing might be a consequence of a pre-determined ‘pro-

grammed contraction’ event [36�].

Silencing of the T-cell response to infection is also

associated with the dissemination of T cells into the

periphery, where memory T cells can reside at high

frequencies [27]. Of note, throughout the infection of

mice with LCMV, a much lower level of T-cell apoptosis

was seen in peripheral tissue, such as the lung, fat and

peritoneal cavity, than in the spleen and lymph nodes

[29�]. T cells from the spleen of LCMV-infected mice

expressed more Fas and Fas ligand (FasL), and were

more susceptible to TCR-mediated activation-induced

cell death (AICD) than those in the periphery, but the

tissue-dependent differences in spontaneous in vivo
apoptosis levels during immune silencing were also seen

in mice deficient in Fas and FasL expression. This

indicates that T cells in the secondary lymphoid organs

are more susceptible to both Fas-dependent and Fas-

independent mechanisms of apoptosis [29�]. Interest-

ingly, IL-7Ra is expressed on a much higher proportion

of peripheral than lymphoid organ T cells (XZ Wang,
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MA Brehm, and RM Welsh, unpublished observations).

Mixture experiments have demonstrated that the CD8þ

T-cell expression of Fas and FasL, and susceptibility to

AICD was dependent on the tissue-specific leukocyte

environment, indicating that peripheral tissues create

environments to preserve the survival of memory cells

[29�]. These tissue-dependent differences may reflect the

fact that many cytokines and cell adhesion molecules can

influence CD8þ T-cell apoptosis and the expression of

pro-apoptotic molecules [29�,37,38].

Antigen-dependent exhaustion of T-cell
responses during acute and persistent
infections
So far, the focus has been on apoptosis and loss of CD8þ

T cells in the absence of available antigen to signal the

TCR. The presence of antigen, however, can drive T cells

into clonal exhaustion, which may be due either to a

complete loss of T cells or to a loss in T-cell function [39].

Inoculation of adult mice with high doses of LCMV can

result in persistent infections with weak T-cell responses

that differ, depending on the epitope. T cells that are

specific for the NP396 epitope are completely lost from

the spleen, presumably by apoptotic mechanisms, but

T cells with other specificities, such as GP33, undergo a

predictable loss of function in the sequence of cytotox-

icity and IL-2 production, TNFa production and then

IFNg production [40�,41�,42,43��] (Figure 2). This dif-

ferential effect between NP396- and GP33-specific

T cells may be explained by overstimulation of the

T cells with NP396, which is derived from the most

highly expressed protein and has a high affinity to the

presenting MHC. Differences in the apoptosis levels of

epitope-specific CD8þ T cells can be seen early during

infection and can be imprinted such that the differences

can be detected even in the memory state after acute

infection, when antigen is mostly cleared. As early as five

days after acute LCMV infection, NP396-specific T cells

had more profound increases in Dcm than GP33-specific

T cells [28], and higher proportions of NP396-specific

than GP33-specific CD8þ T cells bound Annexin V at day

7, 9, 12, 65, and 128 post-infection [29�], suggesting that

the apoptotic properties of these antigen-specific T cells

were forever altered by their initial antigenic exposure.

Kinetic studies have also demonstrated differences in

proliferation rates of various LCMV epitope-specific

T cells, although not necessarily correlating with an

apoptotic phenotype [44]; this does, however, support

the idea that T cells that are specific to different epitopes

might behave in distinct ways.

The clonal elimination under conditions of high antigen

load during persistent infection has long been thought to

be mediated by some form of AICD but has never been

clarified because it occurred in mice defective in AICD

functions. Important new kinetic studies, examining

the frequencies of LCMV NP396-specific T cells by

MHC-tetramers at different time periods after persistent

infection, have indicated that the elimination of these

T cells is substantially delayed, although not prevented,

in FasL- or TNFR1-deficient mice, arguing for an AICD

effect that might entail either of at least two pro-apoptotic

mechanisms [43��] (Figure 2).

Persistent infections, therefore, cause a continual evolu-

tion of the function and numbers of T cells that are specific

Figure 2
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for the infecting virus, but what is the impact of a persis-

tent infection on memory T cells that are not specific to

the persisting virus? New studies have shown that persis-

tent infections of mice with mouse g herpes virus or

LCMV can cause substantial deletions in CD8þ memory

T cells that are specific to influenza, PV, vesicular stoma-

titis, or vaccinia viruses [18�,20]. Adoptive transfer of

CFSE (carboxyfluorescein diacetate succinimidyl ester)-

labeled splenocytes into mice that are persistently

infected as adults with LCMV revealed a very low level

of IL-15-mediated division and a substantial loss in fre-

quency of donor memory T cells, specific to a heterologous

virus. Thus, attrition of memory to unrelated pathogens

can be a continuous process during persistent infections.

Conclusions
This review has highlighted recent work demonstrating

the way that CD8þ T-cell memory is modulated through

apoptotic processes during viral infections. Memory

T-cell loss can be driven non-specifically as a conse-

quence of virus-induced cytokines, or specifically through

excess antigenic stimulation. This volatility of the stab-

ility of CD8þ T-cell memory should be taken into con-

sideration in the design of new vaccines.
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