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Abstract Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulators may attenuate PCSK9-

induced low-density lipoprotein receptor (LDLR) degradation in lysosome and promote the clearance

of circulating low-density lipoprotein cholesterol (LDL-C). A novel series of tetrahydroprotoberberine

derivatives (THPBs) were designed, synthesized, and evaluated as PCSK9 modulators for the treatment

of hyperlipidemia. Among them, eight compounds exhibited excellent activities in downregulating
ant hypercholesterolemia; AUC, area under the plasma concentration�time curve; BBR, berberine; CHD, cor-

maximum concentration; CVDs, cardiovascular diseases; DiI-LDL, low-density lipoprotein, labeled with 1,10-
ocyanine perchlorate; F, oral bioavailability; FDA, food and drug administration; hERG, human ether-à-go-go
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hepatic PCSK9 expression better than berberine in HepG2 cells. In addition, five compounds 15, 18, 22,

(R)-22, and (S)-22 showed better performance in the low-density lipoprotein, labeled with 1,10-dioctade-
cyl-3,3,30,30-tetramethyl-indocarbocyanine perchlorate (DiI-LDL) uptake assay, compared with berberine

at the same concentration. Compound 22, selected for in vivo evaluation, demonstrated significant reduc-

tions of total cholesterol (TC) and LDL-C in hyperlipidemic hamsters with a good pharmacokinetic pro-

file. Further exploring of the lipid-lowering mechanism showed that compound 22 promoted hepatic

LDLR expression in a dose-dependent manner in HepG2 cells. Additional results of human ether-à-

go-go related gene (hERG) inhibition assay indicated the potential druggability for compound 22, which

is a promising lead compound for the development of PCSK9 modulator for the treatment of hyperlip-

idemia.

ª 2019 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cardiovascular diseases (CVDs) are a major cause of death
throughout the world1. Elevation of circulating low-density lipo-
protein cholesterol (LDL-C) leads to an increased incidence of
cardiovascular diseases2. Proprotein convertase subtilisin/kexin
type 9 (PCSK9), which originally found in patients with auto-
somal dominant hypercholesterolemia (ADH), could adjust the
circulating LDL-C levels via inducing low-density lipoprotein
receptor (LDLR) endocytosis and lysosomal degradation in he-
patic cell3,4. Loss-of-function mutations in PCSK9 in humans
perform significantly lower LDL-C levels and CVDs morbidity5,
which indicates that PCSK9 may act as a therapeutic target for
LDL-C-lowering.

Owing to the promise of its therapeutic potential, multiple
PCSK9 monoclonal antibodies (mAbs) have been evaluated in
clinical trials. Among them, two PCSK9 mAbs (alirocumab and
evolocumab), have been approved by food and drug administra-
tion (FDA) for the treatment of coronary heart disease (CHD)6,7.
In addition, a small interfering RNA ALN-PCSSC, which
inhibited the synthesis of PCSK9 also demonstrated lower LDL-C
levels in patients administered in phase 3 clinical trial8. However,
both of these therapeutic drugs need to be administered by in-
jection and costly, which may restrict their clinical promotion.
Therefore, an orally available small molecule targets PCSK9
would be a highly desirable alternative therapeutic agent, based on
its ease of administration and lower cost.

Small molecules target PCSK9 have been identified (Fig. 1).
Compound 1 decreased PCSK9 protein expression in HepG2
cells with the IC50 value of 29.7 nmol/L9. Compound 2 (PF-
06446846) developed by Pfizer reduced secreted PCSK9 level
with the IC50 value of 0.5 mmol/L10e13. Natural products, such
as moracin C (3), adenosine (4), and manglisin E (5), also
exhibited potent down-regulation on PCSK9 mRNA expression in
HepG2 cells, with IC50 values of 16.8, 18.46, and 3.15 mmol/L,
respectively14e16.

Berberine (BBR, 6, Fig. 1), the main bioactive ingredient of
Coptis chinensis, reduced serum total cholesterol (TC) by 29%
and LDL-C by 25% in 32 hypercholesterolemic patients after 3
months of treatment17. It was also identified reducing PCSK9
protein expression in HepG2 cells18, and decreasing PCSK9
mRNA level with the IC50 value of 8.04 mmol/L15. However, there
are some factors that limit its wide prescription, such as its high
oral dose of 1.0e1.5 g/day, poor bioavailability (F<1%) and high
hERG channel inhibitory activity (IC50 Z 3.1 mmol/L)17,19e24.
Therefore, with the rapid rise in the number of patients with
hyperlipidemia worldwide, discovering novel therapeutics to treat
hyperlipidemia with better efficacy and fewer side effects has been
a research focus in academia and industry.

It is known that tetrahydroprotoberberine deviratives (THPBs),
which are the primary components of natural isoquinoline alka-
loids, also exhibit a wide range of bioactivities25e27. Our group is
dedicated to performing chemical modification of THPBs and
constructing a library of small molecules with different
scaffolds28e33. Herein, we described a novel series of indole-
containing THPB derivatives with anti-hyperlipidemia activity.
We screened our in-house THPB library through PCSK9 expres-
sion in HepG2 cells. Fortunately, compound 7 featuring a novel
scaffold, down-regulating PCSK9 expression assay at 5 mmol/L.
In this study, based on the core structure of hit compound 7, a
series of novel indole-containing THPBs as PCSK9 modulators
were designed and synthesized, as well as the detailed
structureeactivity relationship (SAR) analysis, in vitro and in vivo
biological evaluation, and pharmacokinetic studies.

2. Results and discussion

2.1. Chemistry

In order to obtain novel compounds to reduce the PCSK9
expression in HepG2 cells, we screened our in-house THPB li-
brary, and compound 7 showed biological activity (PCSK9 protein
level 0.84 @5 mmol/L). To improve the potency, a series of novel
indole-containing THPBs were designed based on the hit com-
pound 7 (Scheme 1). Firstly, the oxacyclopentene of ring A was
opened, we introduced various alkoxy groups at the 2- and 3-
position on the ring A and maintained the ring D, and novel
compounds 8‒13 were designed. Then, in order to reduce the
potential hERG channel inhibition and improve the bioavailability,
by introducing the methoxyl group at the 12-position of the ring D
and investigating different substituents on the ring A, novel
compounds 14‒26 were designed. In addition, chiral compounds
(R)- and (S)-22 were also synthesized to explore the influence of
the molecular configuration. Finally, introduction of the chlorine
and bromine at the 13-position of the ring D, we obtained com-
pounds 27 and 28.

On the basis of the above design, indole-containing THPBs (7‒
28) were synthesized through the route shown in Scheme 1. The

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Reported PCSK9 modulators.
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procedures of Henry reaction was used to obtain the correspond-
ing nitrostyrene 30. Reduction of the resulting nitrostyrenes with
LiAlH4 produced the phenylethanamine intermediate 31. Then,
phenylethanamine 31 and the substituted indole-3-acetic acid 32
were employed to generate amide 33, which was further cyclized
under the presence of phosphoryl trichloride (POCl3) to give
imine 34 in excellent yields, according to the procedures of
the BischlereNapieralski reaction. Reduction of the resulting
imine 34 with sodium borohydride produced the key amine in-
termediate 35. Cyclization of amine 35 via the PictecteSpengler
reaction with formaldehyde resulted in the target products 7‒28
(Scheme 2).

Additionally, chiral compounds (R)- and (S)-22 were prepared
according to the procedure outlined in Scheme 3. Asymmetric
hydrogenation of imine 35p, catalyzed by a chiral Ru(II) complex
(Noyori’s catalyst)34e36 produced chiral amines (R)-35p, and (S)-
35p, followed by cyclization with formaldehyde to give (R)- and
(S)-22.

2.2. Structureeactivity relationship of indole-containing THPBs

The human hepatoma cell line HepG2 cells were used to inves-
tigate the PCSK9 expression. All indole-containing THPBs were
screened to examine their ability to down-regulate PCSK9
Scheme 1 Design of indole-containing THPBs.
expression in HepG2 cells. Structures of the indole-containing
THPBs (compounds 7‒28) and their regulatory activity on PCSK9
protein expression are shown in Table 1 (data of PCSK9 protein
level is expressed as a mean of the fold of vehicle). Initial
screening was carried out of each compound at a concentration of
5 mmol/L using Western blot assay (Supporting Information
Fig. S1).

The SAR study was first focused on the effect of the side chains
at the 2- and 3-position of the aromatic ring A (Table 1). The
oxacyclopentene was opened, and a methoxyl or substituted-
benzyloxy group was attached at the 2- and 3-position of the
compound 7. The obtained compounds 8 and 13 showed higher
activity on the down-regulation of PCSK9 expression than berberine
and hit compound 7 (0.68 and 0.69 vs. 0.71 and 0.84, respectively).
Compounds 9‒12 bearing 2-F-OBn, 3-F-OBn, 4-F-OBn, or 3-Me-
OBn at the 2-position, respectively, reduced their activities on the
down-regulation of PCSK9 (1.33, 0.82, 0.81, and 0.93).

Next, on the indole ring D of compound 7, the hydrogen atom
at the 12-position was replaced with electron-donating methoxyl
group. Compound 14 exhibited the similar biological activity with
compound 7 (0.86 vs. 0.84). Then, retaining the methoxyl group at
the 2-position, different substituted-benzyloxy group was intro-
duced at the 3-position of the ring A. Compounds 15 and 18
displayed better biological activity than berberine on the down-
regulation of PCSK9 (0.50 and 0.56 vs. 0.71). Replacement the
substituted benzyloxy group to the trifluoroethoxyl group, com-
pound 21 also exhibited good activity in down-regulating PCSK9
expression (0.58). Introduction of different substituted-benzyloxy
group at the 2-position, compounds 22‒26 were obtained. Com-
pound 22 displayed significant down-regulation of PCSK9
expression (0.24), which is much better than berberine. Therefore,
we also synthesized the chiral compounds (R)- and (S)-22, and
further evaluated their biological activities on the down-regulation
of PCSK9. The R-configured enantiomer (R)-22 was more effec-
tive than the S-configured compound (S)-22 (0.21 vs. 0.51).



Scheme 2 Synthesis of compounds 7‒28. Reagents and conditions: (a) CH3NO2, CH3COONH4, AcOH, 80
�C, 4 h; (b) LiAlH4, THF, 0‒65

�C,
4 h; (c) EDCI, Et3N, CH2Cl2, rt, 8 h; (d) POCl3, CH3CN, reflux; (e) NaBH4, methanol, rt, 8 h; (f) HCOOH, HCHO, 90 �C, 4 h.
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Finally, by replacing the hydrogen to the chlorine and bromine at
the 13-position, compounds 27 and 28 reduced their activities on
the down-regulation of PCSK9 (0.86 and 0.97). We concluded that
the methoxyl group at the 12-position played a significant role in
down-regulating PCSK9 expression.

2.3. DiI-LDL uptake assays

Whether down-regulation of PCSK9 expression could promote
LDL-C clearance in hepatic cells was determined by low-density
lipoprotein, labeled with 1,10-dioctadecyl-3,3,30,30-tetramethyl-
indocarbocyanine perchlorate (DiI-LDL) uptake assay as previ-
ously described20. Eight compounds 8, 15, 18, 21, 22, (R)-22, (S)-
22, and 24 which exhibited better activity in decreasing hepatic
cell PCSK9 expression than berberine, were co-incubated with
HepG2 cells for the LDL-uptake assay. The results are summa-
rized in Table 2. Firstly, berberine showed its LDL uptake rates
with 1.38, compared to vehicle (DMSO). Subsequently, the above
eight biological active compounds 8, 15, 18, 21, 22, (R)-22, (S)-
22, and 24 were tested, and among them, five compounds 15, 18,
22, (R)-22 and (S)-22 displayed good LDL uptake rate (1.83, 1.78,
2.37, 2.19, and 1.83, respectively), which is much better than
berberine (LDL uptake rate 1.38). The racemate 22 showed
was slightly more potent than these two enantiomers (R)- and (S)-
22, so the racemate 22 were used in the pharmacokinetic evalu-
ation and in vivo biological assay. All selected compounds
(<20 mmol/L) tested here showed no significant cytotoxicity in
HepG2 cells (Supporting Information Table S1).

2.4. Selectivity evaluation

As a natural product, berberine and its derivatives exhibited
various biological activities, including anti-depressant, anti-dia-
betes, and anti-inflammatory effects. Six compounds (8, 15, 18,
21, 22, and 24) which exhibited better activity in decreasing he-
patic cell PCSK9 expression than berberine, were selected to
evaluate the biological selectivity, such as b1 adrenergic receptor
antagonist activity, dopamine D1 and D2 antagonist activity,
and antagonistic activity on the serotonin 5-HT1B (Table 3).
Among them, compound 22 exhibited good selectivity against



Scheme 3 Synthesis of chiral compounds (R)- and (S)-22. Reagents and conditions: (g) (S,S)-Noyori’s catalyst, HCOONa, AgSbF6, La(OTf)3,

CTAB, H2O, 40
�C, 12 h; (h) (R,R)-Noyori’s catalyst, HCOONa, AgSbF6 , La(OTf)3, CTAB, H2O, 40

�C, 12 h; (i) HCOOH, 40% HCHO, CH3CN,

80 �C, 4 h.
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b1 adrenergic receptor, dopamine D1 and D2 receptor
(IC50 � 100 mmol/L). Compound 22 showed moderate antagonistic
activity on the serotonin 5-HT1B (IC50 Z 13.43 mmol/L). The
selectivity of compound 22 is better than berberine21.

2.5. Preliminary pharmacokinetic (PK) evaluation of compound
22

To explore the further druggability of the new identified indole-
containing THPB derivatives, compound 22 was further evalu-
ated for its pharmacokinetic properties in hamsters after oral
administration and intravenous, respectively. As shown in
Table 4, compound 22 given orally at 20 mg/kg displayed a
half-life (t1/2) of 6.35 h, the maximum plasma concentration
(Cmax) of 169 ng/mL, and an AUC0‒‒N value of 1005 ng/mL$h.
Besides, compound 22 showed an oral bioavailability of
21.9%. Taken together, compared to the poor PK of the natural
product berberine with low oral bioavailability (w0%)22,23,
compound 22 exhibited significant improvements on overall PK
properties.

2.6. Oral efficacy evaluation of compound 22 in hyperlipidemic
hamsters in vivo

In order to verify the hypolipidemic effect of compound 22
in vivo, high-fat diet (HFD)-induced hyperlipidemic hamster
model was employed. Fenofibrate was used as the positive control
during the in vivo studies37. After 21 days treatment, compared to
the HFD control group, HFD hamsters given compound 22
30 mg/kg by oral gavage showed 36.7% reduction in serum TC
(Fig. 2A) and 41.4% reduction in serum LDL-C, respectively
(Fig. 2B), which confirmed the hypolipidemic effect of compound
22 in vivo. The efficacy data showed that fenofibrate (p.o.,
100 mg/kg) decreased TC and LDL-C in 71.3% and 79.4%,
respectively, compared to hamsters in the HFD control group.
Also, serum TC and LDL-C in the HFD control group increased
376% and 751%, respectively, as compared to the normal control
group, which indicated that the high-fat-diet-induced hyper-
lipidemic hamster model was successful.

2.7. Effect of compound 22 on LDLR expression in hepatic cells

Mechanisms’ studies demonstrated that PCSK9 could bind to the
LDL receptor and target it for lysosomal degradation in hepatic
cells3. Lower PCSK9 may promote LDLR expression and increase
LDL-C clearance. Since compound 22 decreases PCSK9 protein
expression in HepG2 cells with an IC50 value of 1.34 mmol/L and
PCSK9 mRNA expression with an IC50 value of 1.10 mmol/L
(Supporting Information Figs. S2 and S3), for the purpose of
exploring the lipid-lowering mechanism of compound 22, we tested
the effect of compound 22 on LDLR expression in HepG2 cells.

HepG2 cells were treated with increasing concentrations of
compound 22 (0.1, 0.5, 1, 2.5, and 5 mmol/L) for 24 h. Results
demonstrated that compound 22 promotes hepatic cell LDLR
expression in a dose-dependent manner with optimal 2.06-fold
at 5 mmol/L compared to DMSO (Fig. 3), consistent with
2.37-fold LDL-uptake rate in DiI-LDL uptake assay (Table 2),
which suggested that the increase of LDL-uptake in HepG2 cells
mainly depended on the promotion of LDLR expression by
compound 22.

2.8. hERG testing of compound 22

Blockade of the human hERG channel was a significant hurdle
encountered in drug discovery. Because compound 22 was effi-
cacious in vivo, it was subjected to hERG testing using a patch-
clamp experiment. The result showed that the IC50 value of
compound 22 on hERG inhibition was 7.99 mmol/L. Compared to
berberine (IC50 Z 3.1 mmol/L)24, compound 22 exhibited lower
inhibitory activity on the hERG channel in vitro.



Table 1 Effects of test compounds on PCSK9 expression in HepG2 cellsa.

Compd. (5 mmol/L) R1 R2 R3 R4 PCSK9 protein level (compared

to vehicle, mean � SEM )

7 eOCH2Oe H H 0.84�0.02*

8 OCH3 2-F-OBn H H 0.68�0.06*

9 2-F-OBn OCH3 H H 1.33�0.06*

10 3-F-OBn OCH3 H H 0.82�0.09

11 4-F-OBn OCH3 H H 0.81�0.07

12 3-Me-OBn OCH3 H H 0.93�0.03

13 4-Me-OBn OCH3 H H 0.69�0.17

14 -OCH2O- OCH3 H 0.86�0.06

15 OCH3 OBn OCH3 H 0.50�0.04**

16 OCH3 2-F-OBn OCH3 H 1.02�0.15

17 OCH3 3-F-OBn OCH3 H 0.84�0.08

18 OCH3 4-F-OBn OCH3 H 0.56�0.09*

19 OCH3 3-OMe-OBn OCH3 H 1.04�0.16

20 OCH3 4-Me-OBn OCH3 H 0.92�0.09

21 OCH3 OCH2CF3 OCH3 H 0.58�0.07*

22 OBn OCH3 OCH3 H 0.24�0.02***

(R)-22 OBn OCH3 OCH3 H 0.21�0.01***

(S)-22 OBn OCH3 OCH3 H 0.51�0.03**

23 2-F-OBn OCH3 OCH3 H 0.87�0.06

24 3-F-OBn OCH3 OCH3 H 0.48�0.02**

25 3-Me-OBn OCH3 OCH3 H 0.94�0.03

26 4-Me-OBn OCH3 OCH3 H 0.95�0.08

27 OBn OCH3 H Cl 0.86�0.09

28 OBn OCH3 H Br 0.97�0.11

Berberine e 0.71�0.05*

Vehicle e 1.00�0.03

‒Not applicable.
aEffects of test compounds on PCSK9 expression in HepG2 cells. Test compounds (5 mmol/L) were co-incubated with HepG2 cells for 24 h. Then

the cells were collected and lysed in RIPA buffer containing protease inhibitor cocktail. Western blot was utilized to measure PCSK9 expression in

HepG2 cells. The abundance of PCSK9 was quantified using imageJ software with normalization by signals of b-actin. Data are presented as

mean � SEM of three independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; as compared to the vehicle group.
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3. Conclusions

In this study, a novel series of indole-containing THPBs were
designed, synthesized, and evaluated as PCSK9 modulators
for the treatment of hyperlipidemia. SAR exploration led to
the identification of a highly potent PCSK9 modulator 22
(IC50 Z 1.34 mmol/L), which promoted 2.37-fold (5 mmol/L)
LDL uptake in HepG2 cells. Notably, as a lead compound,
compound 22 showed excellent in vivo hypolipidemic potency
and a good pharmacokinetic profile, which is much better than
berberine. To conclude, results we have earned suggest that
compound 22 worths further investigation as an anti-hyperlipidemic
agent.

4. Experimental

4.1. General metods of chemistry

Chemicals and solvents were purchased from commercial sources
(Alfa, Acros, SigmaeAldrich, and Shanghai Chemical Reagent
Company) and used without further purification. Analytical thin
layer chromatography (TLC) was HSGF 254 (0.15e0.2 mm
thickness, YantaiHuiyou Company, China). Column chromatog-
raphy was performed with CombiFlash Companion system (Tel-
edyne Isco, Inc. Lincoln, NE, USA). Nuclear magnetic resonance
spectra was recorded on a 400 MHz instrument (TMS as IS).
Chemical shifts were reported in parts per million (ppm). Proton
coupling patterns were described as singlet (s), doublet (d), triplet
(t), quartet (q), multiplet (m), and broad (br). Low- and high-
resolution mass spectra (MS and HR-MS) were given with elec-
trospray ionization (ESI) produced by Q-TOF mass spectrometer.
All target compounds were confirmed with over 95% purity
(Supporting Information Table S2), which were determined by
Agilent-1100 HPLC with binary pump, photodiode array detector
(DAD), using Agilent Extend-C18 column (15 cm � 0.46 cm,
5 mm), CH3OH/H2O [0.1% triethylamine was added in
CH3OH Z 70/30 (v/v)] or CH3OH/H2O [0.1% triethylamine was
added in CH3OH Z 60/40 (v/v)] at 1.0 mL/min, and calculating
the peak areas at 280 nm. Berberine was purchased from meilun
biotechnology (Dalian, China).



Table 2 Effects of test compounds on the regulation of LDL

uptake by HepG2 cellsa.

Compd. (5 mmol/L) DiI-LDL uptake rate

(compared to vehicle, mean�SEM )

8 1.04�0.04

15 1.83�0.04**

18 1.78�0.06**

21 1.45�0.04**

22 2.37�0.07***

(R)-22 2.19�0.07***

(S)-22 1.83�0.03**

24 1.62�0.05**

Berberine 1.38�0.03*

Vehicle 1.00�0.02

aEffects of test compounds on the regulation of LDL uptake by

HepG2 cells. HepG2 cells were treated with test compounds

(5 mmol/L) for 24 h. Then the culture medium was changed to

DMEM supplemented with 2% LPDS and 20 mg/mL DiI-LDL for

another 4 h incubation. DiI-LDL uptaken by HepG2 cells was

extracted by isopropanol and measured by microplate reader. Re-

sults are shown as mean � SEM of three independent experiments.
*P < 0.05; **P < 0.01; ***P < 0.001; as compared to the vehicle

group.
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4.2. General synthetic procedures for the target compounds 7‒
28 (compound 7 as example)

4.2.1. (E)-5-(2-Nitrovinyl)benzo[d][1,3]dioxole (30a)
To a solution of benzo[d][1,3]dioxole-5-carbaldehyde (29a,
20 mmol) and ammonium acetate (3.08 g, 40 mmol) in nitro-
methane (20 mL) was added acetic acid (10 mL), and the resulting
mixture was heated to 80 �C for 4 h. Then the mixture was
concentrated, and the concentrate was added saturated NaHCO3 to
Table 3 Selectivity of six compounds on the typical biological targ

Compd. IC50 (mmol/L)

b1 D1

8 >100 5.56�0.08

15 >100 1.61�0.13

18 w100 1.71�0.10

21 w100 2.35�0.07

22 >100 w100

24 >100 >100

Berberine e 15.5b

‒Not applicable.
aValues are the average of 3 independent experiments. b1, beta-1 adrenerg

dopamine D2 antagonist activity; 5-HT1B, serotonin 5-HT1B receptor antag
bRef. 21.

Table 4 Pharmacokinetic parameters of compound 22 in hamstersa.

Compd. Admin. Cmax (ng/mL) AUC0eN (ng/mL$h)

22 p.o. 169 1005

i.v. e 2088

eNot determined.
aValues are the average of three runs. Cmax, maximum concentration;

residence time; t1/2, half-life; CL, clearance; F, oral bioavailability. Dose:
obtained yellow solid, which was washed with isopropanol to get
the intermediate (E)-5-(2-nitrovinyl)benzo[d][1,3]dioxole (30a)
(3.67 g, 95%) as a yellow solid. 1H NMR (400 MHz, CDCl3)
d 7.96 (d, J Z 13.5 Hz, 1H), 7.51 (d, J Z 13.5 Hz, 1H), 7.12 (d,
J Z 7.7 Hz, 1H), 7.04 (s, 1H), 6.91 (d, J Z 7.9 Hz, 1H), 6.10 (s,
2H). ESI-MS m/z: 194 [MþH]þ.

4.2.2. 2-(Benzo[d][1,3]dioxol-5-yl)ethanamine (31a)
Lithium aluminium hydride (2.16 g, 57 mmol) was slowly added
into dry tetrahydrofuran (50 mL) to form suspensions. A solution of
30a (3.67 g, 19 mmol) in tetrahydrofuran (50 mL) was added
dropwise to suspensions at 0 �C, and the mixture was stirred for
4 h at 65 �C. The reaction mixture was cooled to room temperature
(RT) and diluted with CH2Cl2 (150 mL), and then the reaction
mixture was quenched with appropriate ice‒water and filtered. The
filtrate was evaporated under reduced pressure to get the product
(31a) (2.19 g, 71%) as a pale yellow oil. 1H NMR (400 MHz,
CDCl3) d 6.76e6.71 (m, 1H), 6.69 (d, J Z 4.5 Hz, 1H), 6.63 (dd,
JZ 7.9, 1.5 Hz, 1H), 5.91 (s, 2H), 2.90 (t, JZ 6.8 Hz, 2H), 2.65 (t,
J Z 6.8 Hz, 2H), 1.40e1.13 (m, 2H). ESI-MS m/z: 166 [MþH]þ.

4.2.3. N-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)-2-(1H-indol-3-yl)
acetamide (33a)
2-(1H-Indol-3-yl)acetic acid (32a, 3.5 g, 19.95 mmol), 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide hydrochloride (2.8 g,
19.95 mmol), 1-hydroxybenzotriazole (3.23 g, 23.94 mmol), and
triethylamine (2.01 g, 19.95 mmol) were dissolved in 50 mL of
dichloromethane, and the mixture was stirred for 1 h at room
temperature. Then a solution of 2-(benzo[d][1,3]dioxol-5-yl)
ethanamine (31a) (13.3 mmol) in dichloromethane (20 mL) was
added into the mixture and stirred for 8 h, water was added, the
mixture was extracted with ethyl acetate, and the organic extracts
were washed with brine, dried over Na2SO4, and concentrated.
ets of berberinea.
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MRT (h) t1/2 (h) CL (mL/min/kg) F (%)

10.3 6.35 e 21.9

4.13 3.61 84.1

AUC, area under the plasma concentration�time curve; MRT, mean

p.o. at 20 mg/kg. Dose: i.v. at 10 mg/kg.



Figure 2 Hypolipidemic effect of compound 22 and fenofibrate in the hyperlipidemic hamsters. Hamsters involved in the experiment were

divided into normal control group (nZ 7) and HFD group (nZ 21), and then the HFD group was switched into a high-fat diet (0.5% cholesterol)

to induce hyperlipidemia. One week later, hamsters in the HFD group were divided into HFD control group and test groups (n Z 7 per group).

Test groups were given compound 22 at a daily dose of 30 mg/kg or fenofibrate at a daily dose of 100 mg/kg by oral gavage for 21 days. Blood

samples of hamsters were collected at the end of experiment course. Serum TC levels (A) and LDL-C levels (B) of hamsters were measured by

commercially available kits. Data are presented as mean � SEM (##P < 0.01 as compared to the normal control group. *P < 0.05; **P < 0.01;
***P < 0.001; as compared to the HFD control group).

Figure 3 Compound 22 promotes HepG2 cell LDLR expression in

a dose-dependent manner. Total protein of HepG2 cells treated with

increasing concentrations of compound 22 (0.1, 0.5, 1, 2.5, and

5 mmol/L) for 24 h was isolated by RIPA buffer. Western blot was

utilized to measure LDLR expression in HepG2 cells. The protein

abundance of LDLR was quantified using imageJ software with

normalization by signals of b-actin. Results are shown as

mean � SEM of three independent experiments. *P < 0.05;
**P < 0.01; as compared to the DMSO group.
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The residue was purified by flash chromatography to give 33a
(3.39 g, 79%) as a white solid. 1H NMR (400 MHz, CDCl3) d 8.51
(s, 1H), 7.49 (d, J Z 7.9 Hz, 1H), 7.41 (d, J Z 8.2 Hz, 1H),
7.28e7.19 (m, 1H), 7.17e7.10 (m, 1H), 7.06 (d, J Z 2.1 Hz, 1H),
6.51 (d, J Z 7.9 Hz, 1H), 6.42 (d, J Z 1.6 Hz, 1H), 6.26 (dd,
J Z 7.9, 1.7 Hz, 1H), 5.88 (s, 2H), 5.76 (s, 1H), 3.71 (s, 2H), 3.36
(q, J Z 6.7 Hz, 2H), 2.56 (t, J Z 6.8 Hz, 2H). ESI-MS m/z: 323
[MþH]þ.

4.2.4. 3-((7,8-Dihydronaphtho[2,3-d][1,3]dioxol-5-yl)methyl)-
1H-indole (35a)
N-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)-2-(1H-indol-3-yl)acetamide
(33a) (3.39 g, 10.5 mmol) was dissolved in 20 mL of acetonitrile,
and POCl3 (5.9 mL, 63.3 mmol) was added. The solution was
heated to reflux under argon for 1 h. The solvents were evaporated
under reduced pressure. The pH of the mixture was adjusted to
alkalinity with the addition of saturated NaHCO3. The mixture was
extracted with dichloromethane. The combined organic phase was
evaporated under reduced pressure to get the crude product (34a)
which was used in the next step without further purification. ESI-
MS m/z: 305 [MþH]þ. The intermediate 34a was dissolved in
50 mL of methanol, and NaBH4 (3.97 g, 105 mmol) was added in
batches at 0 �C. The mixture was stirred for 2 h at room tem-
perature. The reaction mixture was quenched with ammonium
chloride and extracted with ethyl acetate. The organic layer was
washed with brine, and the combined organic phase was evapo-
rated under reduced pressure to get the crude product, which was
purified by flash chromatography on silica gel to get intermediate
35a (1.19 g, 3.89 mmol, 37% over two steps). 1H NMR (400 MHz,
CDCl3) d 8.58 (s, 1H), 7.59 (d, J Z 7.8 Hz, 1H), 7.34 (d,
J Z 8.1 Hz, 1H), 7.18 (dd, J Z 11.1, 4.0 Hz, 1H), 7.15e7.08 (m,
2H), 6.76 (s, 1H), 6.55 (s, 1H), 5.92 (d, J Z 0.9 Hz, 2H), 4.32 (dd,
J Z 9.5, 3.8 Hz, 1H), 3.38 (dd, J Z 14.8, 3.8 Hz, 2H), 3.27 (s,
1H), 3.13 (dd, J Z 14.8, 9.6 Hz, 2H), 2.87e2.75 (m, 2H),
2.74e2.63 (m, 1H). ESI-MS m/z: 307 [MþH]þ.
4.2.5. (5,6,14,14a-Tetrahydro-[1,3]dioxolo[4,5-g]indolo[30,20:4,5]-
pyrido[2,1-a]isoquino-lin-9(8H)-yl)methanol (7)
The intermediate 35a (0.5 g, 1.63 mmol), 0.5 mL of formaldehyde,
and 0.1 mL of formic acid were dissolved in 30 mL of acetonitrile.
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The mixture was stirred for 4 h at 90 �C. Then the mixture was
evaporated under reduced pressure to get the residue. With water
added, the mixture was extracted with ethyl acetate, and the organic
extracts were washed with brine, dried over Na2SO4, and concen-
trated. Then chromatographed on silica gel to give the target
compound 7 (0.2 g). Yellow solid, m.p.Z 258‒260 �C; Yield: 35%.
1H NMR (400 MHz, DMSO-d6) d 7.45 (dd, J Z 14.2, 7.8 Hz, 2H),
7.15e7.06 (m, 1H), 7.05e6.99 (m, 2H), 6.69 (s, 1H), 6.25
(t, J Z 7.1 Hz, 1H), 5.96 (dd, J Z 5.3, 0.9 Hz, 2H), 5.48e5.36
(m, 2H), 4.19 (d, JZ 15.1 Hz, 1H), 3.69 (d, JZ 15.1 Hz, 1H), 3.58
(dd, J Z 10.4, 3.3 Hz, 1H), 3.37 (dd, J Z 15.2, 2.7 Hz, 1H),
3.15e3.06 (m, 1H), 2.93 (m, 1H), 2.74e2.56 (m, 2H), 2.49e2.39
(m, 1H); 13C NMR (100 MHz, DMSO-d6) d 145.74, 145.45,
136.01, 133.11, 131.42, 127.49, 126.85, 120.63, 119.02, 117.61,
109.73, 108.05, 107.67, 106.03, 100.56, 65.29, 59.52, 51.13, 50.87,
29.41, 29.20; ESI-MS m/z: 349 [MþH]þ. ESI-HR-MS Calcd. for
C21H21N2O3

þ [MþH]þ 349.1547, Found 349.1553. HPLC analysis:
MeOH/H2O Z 70:30 (v/v), 7.12 min, 98.44% purity.

4.2.6. (2-((2-Fluorobenzyl)oxy)-3-methoxy-5,6,14,14a-tetrahyd-
roindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol (8)
Compound 8 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 180‒183 �C; Yield: 40%. 1H
NMR (400 MHz, DMSO-d6) d 7.60 (dd, J Z 8.3, 6.8 Hz, 1H),
7.52e7.37 (m, 3H), 7.33e7.20 (m, 2H), 7.08 (dt, J Z 29.0,
7.3 Hz, 3H), 6.74 (s, 1H), 6.27 (s, 1H), 5.43 (d, J Z 7.2 Hz, 2H),
5.14 (q, J Z 11.7 Hz, 2H), 4.20 (d, J Z 12.1 Hz, 1H), 3.75 (s,
3H), 3.73e3.65 (m, 1H), 3.59 (m, 1H), 3.42 (d, JZ 13.9 Hz, 1H),
3.15 (d, J Z 7.8 Hz, 1H), 3.03e2.86 (m, 1H), 2.69 (d,
J Z 15.0 Hz, 2H), 2.45e2.26 (m, 1H); 13C NMR (100 MHz,
DMSO-d6) d 160.45 (d, JC-F Z 246.1 Hz), 147.64, 145.89, 136.01,
131.05 (d, JC-F Z 4.0 Hz), 130.34 (d, JC-F Z 8.2 Hz), 126.75,
124.48 (d, JC-F Z 3.4 Hz), 124.16, 124.01, 120.67, 119.06,
117.57, 115.32 (d, JC-F Z 21.1 Hz), 111.90, 111.75, 109.76,
107.64, 65.27, 64.44 (d, JC-F Z 3.3 Hz), 59.23, 55.46, 51.08,
51.04, 28.90, 28.86; ESI-MS m/z: 459 [MþH]þ; ESI-HR-MS
Calcd. for C28H28FN2O3

þ [MþH]þ 459.2078, Found 459.2090.
MeOH/H2O Z 70:30 (v/v), 15.04 min, >99% purity.

4.2.7. (3-((2-Fluorobenzyl)oxy)-2-methoxy-5,6,14,14a-tetrahyd-
roindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(9)
Compound 9 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 167‒169 �C; Yield: 38%. 1H
NMR (400 MHz, DMSO-d6) d 7.57 (td, J Z 7.5, 1.4 Hz, 1H),
7.52e7.40 (m, 3H), 7.32e7.21 (m, 2H), 7.13e7.07 (m, 1H), 7.03
(dd, J Z 10.4, 3.4 Hz, 2H), 6.86 (s, 1H), 6.26 (t, J Z 7.1 Hz, 1H),
5.52e5.35 (m, 2H), 5.12e5.06 (m, 2H), 4.20 (d, J Z 15.2 Hz,
1H), 3.79 (s, 3H), 3.70 (d, J Z 15.1 Hz, 1H), 3.61 (dd, J Z 10.3,
3.2 Hz, 1H), 3.46 (dd, J Z 15.0, 2.7 Hz, 1H), 3.20e3.05 (m, 1H),
2.95 (m, 1H), 2.73e2.59 (m, 2H), 2.44 (d, J Z 13.1 Hz, 1H); 13C
NMR (100 MHz, DMSO-d6) d 160.40 (d, J Z 246.0 Hz), 147.57,
146.06, 136.02, 133.19, 131.02, 130.82 (d, JC-F Z 4.1 Hz), 130.36
(d, JC-F Z 8.1 Hz), 126.87, 126.43, 124.55 (d, JC-F Z 3.4 Hz),
124.10 (d, JC-F Z 14.6 Hz), 120.62, 119.02, 117.68, 115.37 (d, JC-
F Z 21.0 Hz), 113.43, 110.03, 109.76, 107.77, 65.30, 64.15 (d, JC-
F Z 3.4 Hz), 59.33, 55.87, 51.24, 51.08, 29.09, 28.97; ESI-MS
m/z: 459 [MþH]þ; ESI-HR-MS Calcd. for C28H28FN2O3

[MþH]þ 459.2078, Found 459.2090. MeOH/H2O Z 70:30 (v/v),
12.75 min, 98.83% purity.
4.2.8. (3-((3-Fluorobenzyl)oxy)-2-methoxy-5,6,14,14a-tetrahyd-
roindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(10)
Compound 10 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 149‒151 �C; Yield: 43%. 1H
NMR (400 MHz, DMSO-d6) d 7.52e7.42 (m, 3H), 7.35e7.23 (m,
2H), 7.17 (td, J Z 8.6, 2.2 Hz, 1H), 7.11 (t, J Z 7.5 Hz, 1H), 7.02
(dd, J Z 8.8, 6.2 Hz, 2H), 6.81 (s, 1H), 6.26 (t, J Z 7.0 Hz, 1H),
5.50e5.37 (m, 2H), 5.14e5.03 (m, 2H), 4.20 (d, J Z 15.1 Hz,
1H), 3.81 (s, 3H), 3.69 (d, J Z 15.1 Hz, 1H), 3.61 (dd, J Z 10.3,
3.0 Hz, 1H), 3.46 (dd, J Z 15.0, 2.3 Hz, 1H), 3.19e3.07 (m, 1H),
3.00e2.90 (m, 1H), 2.64 (dd, J Z 11.0, 7.7 Hz, 2H), 2.44 (d,
J Z 13.0 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) d 162.20 (d,
JC-F Z 243.4 Hz), 147.61, 145.99, 140.35 (d, JC-F Z 7.5 Hz),
136.02, 133.17, 131.00, 130.45 (d, JC-F Z 8.4 Hz), 126.86,
126.38, 123.54, 120.62, 119.01, 117.66, 114.52 (d, JC-
F Z 20.9 Hz), 114.18 (d, JC-F Z 21.8 Hz), 113.57, 110.06, 109.75,
107.76, 69.13, 65.30, 59.32, 55.94, 51.23, 51.06, 29.08, 28.97;
ESI-MS m/z: 459 [MþH]þ; ESI-HR-MS Calcd. for C28H28FN2O3

þ

[MþH]þ 459.2078, Found 459.2081. MeOH/H2O Z 70:30 (v/v),
13.63 min, 96.21% purity.

4.2.9. (3-((4-Fluorobenzyl)oxy)-2-methoxy-5,6,14,14a-tetrahyd-
roindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol (11)
Compound 11 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 149‒151 �C; Yield: 43%. 1H
NMR (400 MHz, DMSO-d6) d 7.58‒7.41 (m, 4H), 7.23 (t,
J Z 8.9 Hz, 2H), 7.10 (t, J Z 7.4 Hz, 1H), 7.06‒6.96 (m, 2H),
6.81 (s, 1H), 6.26 (t, J Z 7.0 Hz, 1H), 5.43 (d, J Z 6.7 Hz, 2H),
5.04 (s, 2H), 4.20 (d, J Z 15.1 Hz, 1H), 3.80 (s, 3H), 3.69 (d,
J Z 15.1 Hz, 1H), 3.64‒3.57 (m, 1H), 3.52‒3.43 (m, 1H), 3.19‒
3.08 (m, 1H), 2.94 (m, 1H), 2.68‒2.60 (m, 2H), 2.44 (d,
J Z 12.7 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) d 161.77 (d,
JC-F Z 243.5 Hz), 147.59, 146.12, 136.02, 133.58, 133.55,
133.18, 130.83, 130.03, 129.94, 126.87, 126.35, 119.01, 117.67,
115.33, 115.12, 113.49, 109.98, 109.76, 107.77, 69.22, 65.30,
59.33, 55.89, 51.24, 51.08, 29.09, 28.98; ESI-MS m/z: 459
[MþH]þ; ESI-HR-MS Calcd. for C28H28FN2O3

þ [MþH]þ

459.2078, Found 459.2090. MeOH/H2O Z 70:30 (v/v),
12.73 min, 95.53% purity.

4.2.10. (2-Methoxy-3-((3-methylbenzyl)oxy)-5,6,14,14a-tetrahy-
droindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(12)
Compound 12 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 152‒154 �C; Yield: 41%.1H
NMR (400 MHz, DMSO-d6) d 7.48 (dd, J Z 7.8, 2.8 Hz, 2H),
7.27 (p, J Z 7.5 Hz, 3H), 7.15 (d, J Z 7.2 Hz, 1H), 7.11 (t,
J Z 7.3 Hz, 1H), 7.07e6.99 (m, 2H), 6.26 (t, J Z 7.0 Hz, 1H),
5.43 (d, J Z 7.7 Hz, 2H), 5.01 (s, 2H), 4.20 (d, J Z 15.1 Hz, 1H),
3.80 (s, 3H), 3.70 (d, J Z 15.5 Hz, 1H), 3.61 (d, J Z 7.0 Hz, 1H),
3.46 (d, J Z 14.5 Hz, 1H), 3.14 (d, J Z 6.5 Hz, 1H), 3.02e2.87
(m, 1H), 2.65 (d, J Z 13.2 Hz, 2H), 2.45 (d, J Z 12.7 Hz, 1H);
13C NMR (100 MHz, DMSO-d6) d 147.59, 146.32, 137.52,
137.21, 136.03, 133.17, 130.67, 128.45, 128.40, 128.32, 126.85,
126.32, 124.94, 120.64, 119.02, 117.68, 113.37, 109.97, 109.76,
107.76, 70.01, 65.30, 59.34, 55.89, 51.23, 51.08, 29.05, 28.98,
21.04; ESI-MS m/z: 455 [MþH]þ; ESI-HR-MS Calcd. for
C29H31N2O3

þ [MþH]þ 455.2329, Found 455.2330. MeOH/
H2O Z 70:30 (v/v), 20.71 min, 98.07% purity.
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4.2.11. (2-Methoxy-3-((4-methylbenzyl)oxy)-5,6,14,14a-tetrahy-
droindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(13)
Compound 13 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 158‒160 �C; Yield: 45%. 1H
NMR (400 MHz, DMSO-d6) d 7.47 (dd, JZ 7.8, 3.3 Hz, 2H), 7.34
(d, JZ 8.0 Hz, 2H), 7.21 (d, JZ 7.8 Hz, 2H), 7.10 (t, JZ 7.1 Hz,
1H), 7.02 (dd, JZ 13.6, 5.8Hz, 2H), 6.80 (s, 1H), 6.26 (t, JZ 7.1Hz,
1H), 5.43 (d, J Z 6.6 Hz, 2H), 5.09e4.96 (m, 2H), 4.20 (d,
JZ 15.2Hz, 1H), 3.79 (s, 3H), 3.69 (d, JZ 15.0Hz, 1H), 3.65e3.57
(m, 1H), 3.46 (dd, J Z 15.0, 2.6 Hz, 1H), 3.18e3.08 (m, 1H),
3.00e2.85 (m, 1H), 2.70e2.59 (m, 2H), 2.44 (d, JZ 12.9 Hz, 1H),
2.32 (s, 3H); 13C NMR (100 MHz, DMSO-d6) d 147.58, 146.29,
137.02, 136.02, 134.28, 133.18, 130.62, 128.95, 127.90, 126.87,
126.34, 120.62, 119.01, 117.67, 113.37, 109.99, 109.76, 107.78,
69.80, 65.30, 59.34, 55.90, 51.24, 51.11, 29.09, 28.99, 20.82; ESI-
MS m/z: 455 [MþH]þ; ESI-HR-MS Calcd. for C29H31N2O3

þ

[MþH]þ 455.2329, Found 455.2342. MeOH/H2O Z 70:30 (v/v),
19.28 min, >99% purity.

4.2.12. (12-Methoxy-5,6,14,14a-tetrahydro-[1,3]dioxolo[4,5-g]
indolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol (14)
Compound 14 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 169‒171 �C; Yield: 50%. 1H
NMR (400MHz, DMSO-d6) d 7.36 (d, JZ 8.8Hz, 1H), 7.01 (s, 1H),
6.97 (d, JZ 2.4 Hz, 1H), 6.73 (dd, JZ 8.8, 2.4Hz, 1H), 6.69 (s, 1H),
6.19 (t, J Z 7.0 Hz, 1H), 5.96 (d, J Z 1.6 Hz, 2H), 5.40e5.33 (m,
2H), 4.16 (d, JZ 15.2 Hz, 1H), 3.76 (s, 3H), 3.66 (d, J Z 14.1 Hz,
1H), 3.57 (d, J Z 6.5 Hz, 1H), 3.36 (d, J Z 15.6 Hz, 1H), 3.12 (d,
J Z 6.0 Hz, 1H), 3.02e2.86 (m, 1H), 2.66 (d, J Z 15.8 Hz, 2H),
2.47e2.35 (m, 1H); 13C NMR (100 MHz, DMSO-d6) d 153.52,
145.73, 145.44, 133.59, 131.38, 131.09, 127.41, 127.21, 110.33,
110.01, 108.01, 107.43, 105.97, 100.54, 100.08, 65.37, 59.54, 55.31,
51.16, 50.86, 29.31, 29.23; ESI-MS m/z: 379 [MþH]þ; ESI-HR-MS
Calcd. for C22H23N2O4

þ [MþH]þ 379.1652, Found 379.1661.
MeOH/H2O Z 70:30 (v/v), 5.63 min, 96.36% purity.

4.2.13. (2-(Benzyloxy)-3,12-dimethoxy-5,6,14,14a-tetrahydroin-
dolo[30,20:4,5]pyrido[2,1 a]isoquinolin-9(8H)-yl)methanol (15)
Compound 15 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 182‒183 �C; Yield: 47%. 1H
NMR (400 MHz, DMSO-d6) d 7.52e7.47 (m, 2H), 7.45e7.40 (m,
2H), 7.38e7.32 (m, 2H), 7.05 (s, 1H), 6.94 (d, JZ 2.4 Hz, 1H), 6.74
(dd, J Z 8.7, 2.4 Hz, 2H), 6.21 (t, J Z 7.1 Hz, 1H), 5.42e5.32 (m,
2H), 5.16e5.03 (q, JZ 11.8Hz, 2H), 4.16 (d, JZ 15.1Hz, 1H), 3.79
(s, 3H), 3.76 (s, 3H), 3.64 (d, JZ 14.9 Hz, 1H), 3.55 (dd, JZ 12.8,
5.0 Hz, 1H), 3.32 (m, 1H), 3.18e3.05 (m, 1H), 2.95 (m, 1H),
2.71e2.57 (m, 2H), 2.40e2.25 (m, 1H); 13C NMR (100 MHz,
DMSO-d6) d 153.57, 147.62, 146.07, 137.47, 133.77, 131.10,
130.17, 128.38, 127.95, 127.77, 127.23, 126.92, 111.89, 110.44,
110.10, 107.54, 99.87, 70.37, 65.39, 59.33, 55.52, 55.34, 54.94,
51.31, 51.20, 29.18, 29.00; ESI-MS m/z: 471 [MþH]þ; ESI-HR-MS
Calcd. for C29H31N2O4

þ [MþH]þ 471.2278, Found 471.2286.
MeOH/H2O Z 70:30 (v/v), 10.10 min, 97.37% purity.

4.2.14. (2-((2-Fluorobenzyl)oxy)-3,12-dimethoxy-5,6,14,14a-tet-
rahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(16)
Compound 16 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 182‒183 �C; Yield: 47%. 1H
NMR (400 MHz, DMSO-d6) d 7.60 (t, J Z 7.2 Hz, 1H), 7.44 (dd,
JZ 13.3, 6.2 Hz, 1H), 7.37 (d, JZ 8.8 Hz, 1H), 7.27 (dd, JZ 12.7,
6.0 Hz, 2H), 7.09 (s, 1H), 6.96 (d, J Z 1.9 Hz, 1H), 6.86e6.66 (m,
2H), 6.22 (t, J Z 7.0 Hz, 1H), 5.36 (t, J Z 9.6 Hz, 2H), 5.14 (q,
J Z 11.6 Hz, 2H), 4.16 (d, J Z 15.1 Hz, 1H), 3.78 (s, 3H), 3.74 (s,
3H), 3.65 (d, J Z 15.0 Hz, 1H), 3.57 (d, J Z 7.8 Hz, 1H), 3.40 (s,
1H), 3.20e3.07 (m, 1H), 2.97 (dd, JZ 18.8, 7.2 Hz, 1H), 2.65 (dd,
J Z 21.8, 13.3 Hz, 2H), 2.43e2.31 (m, 1H); 13C NMR (100 MHz,
DMSO-d6) d 160.48 (d, JC-F Z 246.1 Hz), 153.56, 147.63, 145.92,
133.76, 131.11, 131.10, 131.07, 130.24, 127.29, 127.23, 124.50 (d,
JC-FZ 3.4 Hz), 124.16 (d, JC-FZ 14.6 Hz), 115.44, 115.23, 111.94,
110.42, 110.09, 107.54, 99.88, 65.39, 64.60 (d, JC-F Z 3.3 Hz),
59.30, 55.48, 55.34, 51.31, 51.15, 29.16, 29.03. ESI-MS m/z: 489
[MþH]þ; ESI-HR-MS Calcd. for C29H30FN2O4

þ [MþH]þ

489.2194, Found 489.2193. MeOH/H2O Z 70:30 (v/v), 11.45 min,
95.77% purity.

4.2.15. (2-((3-Fluorobenzyl)oxy)-3,12-dimethoxy-5,6,14,14a-tet-
rahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(17)
Compound 17 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 176‒178 �C; Yield: 41%. 1H
NMR (400 MHz, DMSO-d6) d 7.45 (m, 1H), 7.39e7.27 (m, 3H),
7.18 (td, J Z 8.4, 2.3 Hz, 1H), 7.05 (s, 1H), 6.93 (d, J Z 2.4 Hz,
1H), 6.80e6.64 (m, 2H), 6.21 (t, J Z 7.1 Hz, 1H), 5.44e5.31 (m,
2H), 5.20e5.05 (m, 2H), 4.16 (d, J Z 15.1 Hz, 1H), 3.79 (s, 3H),
3.77 (s, 3H), 3.64 (d, J Z 15.0 Hz, 1H), 3.54 (dd, J Z 10.1,
3.0 Hz, 1H), 3.31 (d, J Z 2.6 Hz, 1H), 3.21‒3.07 (m, 1H),
3.00e2.89 (m, 1H), 2.81e2.57 (m, 2H), 2.36e2.28 (m, 1H); 13C
NMR (100 MHz, DMSO-d6) d 162.21 (d, JC-F Z 243.4 Hz),
153.56, 147.63, 145.72, 140.48 (d, JC-F Z 7.4 Hz), 133.76,
131.08, 130.42 (d, JC-F Z 8.2 Hz), 130.15, 128.17 (d, JC-
F Z 42.0 Hz), 127.19, 127.16, 123.72 (d, JC-F Z 2.7 Hz), 114.60,
114.38, 112.00 (d, JC-F Z 16.3 Hz), 110.45, 110.13, 107.47,
99.74, 69.44, 65.38, 59.31, 55.54, 55.31, 51.30, 51.20, 29.16,
28.99; ESI-MS m/z: 489 [MþH]þ; ESI-HR-MS Calcd. for
C29H30FN2O4

þ [MþH]þ 489.2184, Found 489.2181. MeOH/
H2O Z 70:30 (v/v), 10.63 min, >99% purity.

4.2.16. (2-((4-Fluorobenzyl)oxy)-3,12-dimethoxy-5,6,14,14a-tet-
rahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(18)
Compound 18 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 151‒153 �C; Yield: 40%. 1H
NMR (400 MHz, DMSO-d6) d 7.53 (dd, J Z 8.5, 5.7 Hz, 2H),
7.37 (d, J Z 8.8 Hz, 1H), 7.24 (t, J Z 8.9 Hz, 2H), 7.04 (s, 1H),
6.94 (d, J Z 2.2 Hz, 1H), 6.74 (dd, J Z 7.8, 3.1 Hz, 2H), 6.23 (t,
J Z 6.7 Hz, 1H), 5.37 (d, J Z 7.5 Hz, 2H), 5.09 (q, J Z 11.7 Hz,
2H), 4.17 (d, J Z 14.8 Hz, 1H), 3.78 (s, 3H), 3.76 (s, 3H), 3.61
(dd, J Z 26.4, 16.6 Hz, 1H), 3.13 (d, J Z 8.0 Hz, 1H), 2.99e2.93
(m, 1H), 2.69e2.63 (m, 2H), 2.35 (t, J Z 11.7 Hz, 1H); 13C NMR
(100 MHz, DMSO-d6) d 161.78 (d, JC-F Z 243.4 Hz), 153.57,
147.67, 145.92, 133.70, 133.67, 131.09, 130.19, 130.10, 127.17,
127.06, 115.28, 115.07, 112.07, 111.88, 110.47, 110.14, 107.48,
99.80, 69.70, 65.39, 59.33, 55.51, 55.33, 51.28, 51.16, 29.16,
29.00; ESI-MS m/z: 489 [MþH]þ; ESI-HR-MS Calcd. for
C29H30FN2O4

þ [MþH]þ 489.2184, Found 489.2185. MeOH/
H2O Z 70:30 (v/v), 10.30 min, >99% purity.

4.2.17. (3,12-Dimethoxy-2-((3-methoxybenzyl)oxy)-5,6,14,14a-
tetrahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)
methanol (19)
Compound 19 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 85‒86 �C; Yield: 43%. 1H
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NMR (400 MHz, DMSO-d6) d 7.51e7.20 (m, 2H), 7.21e7.00 (m,
3H), 7.01e6.85 (m, 2H), 6.83e6.66 (m, 2H), 6.20 (t, J Z 6.9 Hz,
1H), 5.37 (d, J Z 7.6 Hz, 2H), 5.09 (q, J Z 12.1 Hz, 2H), 4.16 (d,
J Z 14.9 Hz, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.77 (s, 3H), 3.64 (d,
J Z 14.8 Hz, 1H), 3.54 (d, J Z 8.2 Hz, 1H), 3.35 (d, J Z 2.9 Hz,
1H), 3.13 (d, J Z 9.5 Hz, 1H), 3.03‒2.84 (m, 1H), 2.64 (m, 2H),
2.33 (t, J Z 12.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6)
d 159.32, 153.56, 147.62, 145.99, 139.07, 133.77, 131.10,
130.15, 129.48, 127.22, 126.94, 120.01, 113.36, 113.23, 111.94,
111.90, 110.43, 110.07, 107.50, 99.90, 70.19, 65.38, 59.33, 55.54,
55.37, 55.08, 51.31, 51.20, 29.16, 28.99; ESI-MS m/z: 501
[MþH]þ; ESI-HR-MS Calcd. for C30H33N2O5

þ [MþH]þ

501.2384, Found 501.2395. MeOH/H2O Z 70:30 (v/v), 9.60 min,
95.32% purity.

4.2.18. (3,12-Dimethoxy-2-((4-methylbenzyl)oxy)-5,6,14,14a-te-
trahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(20)
Compound 20 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 205‒207 �C; Yield: 45%. 1H
NMR (400 MHz, DMSO-d6) d 7.37 (dd, J Z 8.4, 3.0 Hz, 3H),
7.22 (d, J Z 7.8 Hz, 2H), 7.06 (s, 1H), 6.95 (d, J Z 2.4 Hz, 1H),
6.73 (dd, J Z 9.2, 2.8 Hz, 2H), 6.21 (t, J Z 7.1 Hz, 1H), 5.37
(d, J Z 6.6 Hz, 2H), 5.05 (q, J Z 11.6 Hz, 2H), 4.16 (d,
JZ 15.1 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.64 (d, JZ 15.1 Hz,
1H), 3.55 (dd, J Z 10.5, 2.9 Hz, 1H), 3.38 (d, J Z 2.9 Hz, 1H),
3.17e3.06 (m, 1H), 3.02e2.86 (m, 1H), 2.73e2.56 (m, 2H),
2.36 (d, J Z 12.8 Hz, 1H), 2.32 (s, 3H); 13C NMR (100 MHz,
DMSO-d6) d 153.55, 147.58, 146.13, 137.00, 134.37, 133.77,
131.10, 130.15, 128.90, 128.12, 127.23, 126.81, 111.86,
111.77, 110.43, 110.08, 107.54, 99.91, 70.22, 65.38, 59.35,
55.50, 55.37, 51.32, 51.20, 29.16, 29.00, 20.84. ESI-MS
m/z: 501 [MþH]þ; ESI-HR-MS Calcd. for C30H33N2O4

þ

[MþH]þ 485.2435, Found 485.2432. MeOH/H2O Z 70:30 (v/v),
16.71 min, >99% purity.

4.2.19. (3,12-Dimethoxy-2-(2,2,2-trifluoroethoxy)-5,6,14,14a-
tetrahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)
methanol (21)
Compound 21 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 180‒182 �C; Yield: 41%.1H
NMR (400 MHz, DMSO-d6) d 7.36 (d, J Z 8.8 Hz, 1H), 7.13 (s,
1H), 6.96 (d, J Z 2.4 Hz, 1H), 6.80 (s, 1H), 6.73 (dd, J Z 8.8,
2.4 Hz, 1H), 6.21 (t, J Z 7.0 Hz, 1H), 5.37 (d, J Z 6.4 Hz, 2H),
4.93‒4.59 (m, 2H), 4.17 (d, J Z 15.1 Hz, 1H), 3.78 (s, 3H), 3.77
(s, 3H), 3.66 (d, J Z 15.0 Hz, 1H), 3.56 (dd, J Z 10.2, 2.8 Hz,
1H), 3.44 (dd, J Z 15.0, 2.8 Hz, 1H), 3.19‒3.10 (m, 1H), 3.05‒
2.90 (m, 1H), 2.72‒2.60 (m, 2H), 2.47‒2.35 (m, 1H); 13C NMR
(100 MHz, DMSO-d6) d 153.56, 147.55, 144.68, 133.70, 131.09,
130.39, 128.95, 127.19, 124.14 (d, JC-F Z 278.1 Hz), 113.02,
112.31, 110.42, 110.12, 107.48, 99.86, 66.10 (d, JC-F Z 33.8 Hz),
65.38, 59.25, 55.62, 55.35, 51.28, 51.06, 29.10, 29.06; ESI-MS
m/z: 463 [MþH]þ; ESI-HR-MS Calcd. for C24H26F3N2O4

þ

[MþH]þ 463.1839, Found 463.1842. MeOH/H2O Z 70:30 (v/v),
5.61 min, 95.21% purity.

4.2.20. (3-(Benzyloxy)-2,12-dimethoxy-5,6,14,14a-tetrahydro-
indolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol (22)
Compound 22 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 145‒146 �C; Yield: 43%. 1H
NMR (400 MHz, DMSO-d6) d 7.49e7.44 (m, 2H), 7.41 (m, 2H),
7.38e7.32 (m, 1H), 7.06e6.95 (m, 2H), 6.82 (s, 1H), 6.73 (dd,
J Z 8.8, 2.4 Hz, 1H), 6.20 (t, J Z 7.1 Hz, 1H), 5.43e5.36 (m,
2H), 5.06 (s, 2H), 4.17 (d, J Z 15.2 Hz, 1H), 3.81 (s, 3H), 3.77
(s, 3H), 3.66 (d, J Z 15.1 Hz, 1H), 3.59 (dd, J Z 10.5, 3.0 Hz,
1H), 3.43 (dd, J Z 15.0, 2.7 Hz, 1H), 3.19‒3.04 (m, 1H), 2.94
(m, 1H), 2.70‒2.58 (m, 2H), 2.47‒2.37 (m, 1H); 13C NMR
(100 MHz, DMSO-d6) d 153.54, 147.57, 146.26, 137.32, 133.74,
131.08, 130.74, 128.40, 127.80, 127.78, 127.24, 126.38, 113.40,
110.38, 110.10, 110.05, 107.56, 100.01, 69.92, 65.38, 59.39,
55.95, 55.37, 51.33, 51.13, 29.16, 28.99; ESI-MS m/z: 471
[MþH]þ; ESI-HR-MS Calcd. for C29H31N2O4 [MþH]þ

471.2278, Found 471.2288. MeOH/H2O Z 70:30 (v/v), 9.86 min,
96.68% purity.

4.2.21. (R)-(3-(Benzyloxy)-2,12-dimethoxy-5,6,14,14a-tetrahyd-
roindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
((R)-22)
Compound 35p was prepared in a similar manner as described
for compound 7. 6-(Benzyloxy)-7-methoxy-1-((5-methoxy-
1H-indol-3-yl)methyl)-3,4-dihydroisoquinoline (35p, 2 mmol)
dissolved in 10 mL of water, and (S,S)-Noyori’s catalyst
(0.04 mmol), AgSbF6 (0.06 mmol), La(OTf)3 (0.6 mmol), CTAB
(2 mmol) and HCOONa (3 mmol) were added. The solution was
heated to 40 �C under for 12 h. The reaction mixture was
extracted with ethyl acetate. The organic layer was washed with
saturated brine, and the combined organic phase was evaporated
under reduced pressure to get the crude product, which was pu-
rified by flash chromatography on silica gel to get (R)-35p (441 g,
1.03 mmol, 51%). (R)-35p (428.5 mg, 1 mmol) was dissolved in
20 mL of acetonitrile, then excess of formaldehyde and 0.5 mL of
formic acid were added into solution. The mixture was stirred for
2 h at 80 �C. The pH of the mixture was adjusted to alkalinity
with the addition of saturated NaHCO3. The organic layer was
separated and washed with water. The combined organic phase
was evaporated under reduced pressure and then chromato-
graphed on silica gel to give the target product (R)-22 (197 mg,
41%). Yellow solid, m.p. Z 144‒145 �C. 1H NMR (400 MHz,
DMSO-d6) d 7.46 (d, J Z 7.7 Hz, 2H), 7.40 (dd, J Z 14.8,
7.1 Hz, 2H), 7.34 (dd, J Z 8.4, 4.8 Hz, 1H), 7.02e6.96 (m, 2H),
6.82 (s, 1H), 6.73 (dd, J Z 8.8, 1.6 Hz, 1H), 6.22 (t, J Z 6.9 Hz,
1H), 5.37 (d, JZ 6.5 Hz, 2H), 5.06 (s, 2H), 4.17 (d, JZ 15.1 Hz,
1H), 3.81 (s, 3H), 3.77 (s, 3H), 3.62 (dd, J Z 29.8, 12.5 Hz, 2H),
3.44 (d, J Z 14.9 Hz, 1H), 3.16e3.08 (m, 1H), 2.94 (t,
J Z 12.0 Hz, 1H), 2.61 (dd, J Z 24.1, 15.4 Hz, 2H), 2.47e2.38
(m, 1H); 13C NMR (100 MHz, DMSO-d6) d 153.55, 147.57,
146.26, 137.32, 133.74, 131.08, 130.73, 128.41, 127.80, 127.24,
126.38, 113.37, 110.39, 110.11, 110.04, 107.57, 100.00, 69.91,
65.38, 59.41, 55.95, 55.37, 51.33, 51.14, 29.18, 29.00; ESI-MS
m/z: 471 [MþH]þ. MeOH/H2O Z 70:30 (v/v), 10.03 min,
95.06% purity.

4.2.22. (S)-(3-(Benzyloxy)-2,12-dimethoxy-5,6,14,14a-tetrahydro-
indolo[30,20:4,5]Pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol ((S)-
22)
This compound was prepared by replacement of (S,S)-Noyori’s
catalyst with (R,R)-Noyori’s catalyst using a similar synthetic
procedure of (R)-22. Yellow solid, m.p. Z 146‒147 �C. 1H
NMR (400 MHz, DMSO-d6) d 7.46 (d, J Z 7.0 Hz, 2H), 7.41
(dd, J Z 10.0, 4.7 Hz, 2H), 7.35 (dd, J Z 8.0, 5.1 Hz, 1H), 6.99
(dd, J Z 7.1, 3.2 Hz, 2H), 6.81 (s, 1H), 6.73 (dd, J Z 8.8,
2.4 Hz, 1H), 6.21 (t, J Z 7.0 Hz, 1H), 5.37 (d, J Z 6.6 Hz, 2H),
5.06 (s, 2H), 4.17 (d, J Z 15.1 Hz, 1H), 3.81 (s, 3H), 3.77 (s,
3H), 3.70e3.55 (m, 2H), 3.49e3.39 (m, 1H), 3.18e3.10 (m,
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1H), 3.02e2.87 (m, 1H), 2.72e2.55 (m, 2H), 2.47e2.38 (m,
1H); 13C NMR (100 MHz, DMSO-d6) d 153.55, 147.57, 146.26,
137.32, 133.74, 131.08, 130.72, 128.41, 127.80, 127.24, 126.38,
113.37, 110.39, 110.11, 110.03, 107.57, 100.00, 69.91, 65.38,
59.40, 55.94, 55.37, 51.33, 51.14, 29.17, 28.99; ESI-MS m/z:
471 [MþH]þ. MeOH/H2O Z 70:30 (v/v), 9.87 min, 95.07%
purity.

4.2.23. (3-((2-Fluorobenzyl)oxy)-2,12-dimethoxy-5,6,14,14a-
tetrahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)
methanol (23)
Compound 23 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 105‒106 �C; Yield: 38%. 1H
NMR (400 MHz, DMSO-d6) d 7.57 (td, J Z 7.5, 1.4 Hz, 1H),
7.49e7.40 (m, 1H), 7.36 (d, J Z 8.8 Hz, 1H), 7.30e7.23 (m, 2H),
6.99 (dd, J Z 9.3, 3.1 Hz, 2H), 6.86 (s, 1H), 6.73 (dd, J Z 8.8,
2.4 Hz, 1H), 6.21 (t, J Z 7.1 Hz, 1H), 5.44e5.32 (m, 2H),
5.20e5.01 (m, 2H), 4.17 (d, J Z 15.1 Hz, 1H), 3.79 (s, 3H), 3.77
(s, 3H), 3.66 (d, J Z 15.0 Hz, 1H), 3.59 (dd, J Z 10.3, 3.0 Hz,
1H), 3.43 (dd, J Z 14.9, 2.8 Hz, 1H), 3.20e3.09 (m, 1H),
3.02e2.89 (m, 1H), 2.73e2.57 (m, 2H), 2.47e2.35 (m, 1H); 13C
NMR (100 MHz, DMSO-d6) d 160.41 (d, J Z 245.9 Hz), 153.56,
147.56, 146.07, 133.75, 131.09, 131.04, 130.83 (d, JC-
F Z 4.1 Hz), 130.36 (d, JC-F Z 8.2 Hz), 127.25, 126.46, 124.55
(d, JC-F Z 3.4 Hz), 124.10 (d, JC-F Z 14.7 Hz), 115.37 (d, JC-
F Z 21.0 Hz), 113.42, 110.40, 110.12, 110.06, 107.57, 100.00,
65.39, 64.14 (d, JC-F Z 3.6 Hz), 59.41, 55.91, 55.37, 51.34, 51.13,
29.18, 28.97; ESI-MS m/z: 489 [MþH]þ; ESI-HR-MS Calcd. for
C29H30FN2O4

þ [MþH]þ 489.2184, Found 489.2170. MeOH/
H2O Z 70:30 (v/v), 10.88 min, 95.00% purity.

4.2.24. (3-((3-Fluorobenzyl)oxy)-2,12-dimethoxy-5,6,14,14a
tetrahydroindolo[30,20:4,5] pyrido[2,1-a]isoquinolin-9(8H)-yl)
methanol (24)
Compound 24 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 98‒100 �C; Yield: 33%. 1H
NMR (400 MHz, DMSO-d6) d 7.50e7.39 (m, 1H), 7.38e7.25
(m, 3H), 7.17 (td, J Z 8.6, 1.9 Hz, 1H), 7.00 (dd, J Z 12.8,
3.5 Hz, 2H), 6.81 (s, 1H), 6.73 (dd, J Z 8.8, 2.5 Hz, 1H), 6.21
(t, J Z 7.1 Hz, 1H), 5.43e5.29 (m, 2H), 5.09 (s, 2H), 4.16 (d,
J Z 15.1 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 3.66
(d, J Z 15.0 Hz, 1H), 3.59 (dd, J Z 10.5, 3.3 Hz, 1H), 3.43 (dd,
J Z 15.0, 2.6 Hz, 1H), 3.21e3.05 (m, 1H), 3.18e3.07 (m, 1H),
3.00e2.87 (m, 1H), 2.71e2.57 (m, 2H), 2.48e2.36 (m, 1H); 13C
NMR (100 MHz, DMSO-d6) d 162.20 (d, JC-F Z 243.4 Hz),
153.55, 147.60, 146.00, 140.35 (d, JC-F Z 7.4 Hz), 133.74,
131.05 (d, JC-F Z 7.9 Hz), 130.46 (d, JC-F Z 8.2 Hz), 128.11 (d,
JC-F Z 61.6 Hz), 127.25, 126.41, 123.54 (d, JC-F Z 2.7 Hz),
114.53 (d, JC-F Z 20.9 Hz), 114.20 (d, JC-FZ21.8 Hz), 113.54,
110.40, 110.12, 110.09, 107.56, 100.00, 69.11, 65.39, 59.40,
55.98, 55.37, 51.33, 51.11, 29.16, 28.98; ESI-MS m/z: 489
[MþH]þ; ESI-HR-MS Calcd. for C29H30FN2O4

þ [MþH]þ

489.2184, Found 489.2174. MeOH/H2O Z 70:30 (v/v),
10.72 min, 96.62% purity.

4.2.25. (2,12-Dimethoxy-3-((3-methylbenzyl)oxy)-5,6,14,14a-
tetrahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)
methanol (25)
Compound 25 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 96‒98 �C; Yield: 46%. 1H
NMR (400 MHz, DMSO-d6) d 7.37 (d, J Z 8.8 Hz, 1H),
7.31e7.21 (m, 3H), 7.15 (d, J Z 7.3 Hz, 1H), 7.01e6.97 (m, 2H),
6.81 (s, 1H), 6.73 (dd, J Z 8.8, 2.4 Hz, 1H), 6.26 (t, J Z 6.9 Hz,
1H), 5.46e5.31 (m, 2H), 5.12e4.92 (m, 2H), 4.18 (d,
J Z 15.2 Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.70‒3.55 (m, 2H),
3.44 (d, J Z 14.2 Hz, 1H), 3.13 (d, J Z 7.5 Hz, 1H), 3.02‒2.85
(m, 1H), 2.65 (d, J Z 14.2 Hz, 2H), 2.47e2.39 (m, 1H), 2.33 (s,
3H); 13C NMR (100 MHz, DMSO-d6) d 153.55, 147.57, 146.33,
137.53, 137.21, 133.74, 131.10, 130.63, 128.46, 128.42, 128.33,
127.22, 126.32, 124.96, 113.34, 110.42, 110.13, 109.99, 107.53,
100.00, 69.99, 65.37, 59.41, 55.93, 55.38, 51.32, 51.13, 29.14,
28.99, 21.05; ESI-MS m/z: 485 [MþH]þ; ESI-HR-MS Calcd. for
C30H33N2O4

þ [MþH]þ 485.2435, Found 485.2424. MeOH/
H2O Z 70:30 (v/v), 15.58 min, 95.08% purity.

4.2.26. (2,12-Dimethoxy-3-((4-methylbenzyl)oxy)-5,6,14,14a-tet-
rahydroindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(26)
Compound 26 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 103‒105 �C; Yield: 43%. 1H
NMR (400 MHz, DMSO-d6) d 7.36 (dd, J Z 17.5, 8.5 Hz, 3H),
7.26e7.13 (m, 2H), 7.07e6.95 (m, 2H), 6.80 (s, 1H), 6.73 (dd,
J Z 8.8, 2.5 Hz, 1H), 6.21 (t, J Z 7.0 Hz, 1H), 5.36 (dd,
J Z 12.3, 10.8 Hz, 2H), 5.00 (s, 2H), 4.17 (d, J Z 15.1 Hz, 1H),
3.80 (s, 3H), 3.77 (s, 3H), 3.67 (d, J Z 14.5 Hz, 1H), 3.59 (d,
J Z 9.8 Hz, 1H), 3.47e3.39 (m, 1H), 3.13 (d, J Z 6.5 Hz, 1H),
2.94 (t, J Z 11.5 Hz, 1H), 2.64 (d, J Z 13.1 Hz, 2H), 2.47e2.37
(m, 1H), 2.32 (s, 3H); 13C NMR (100 MHz, DMSO-d6) d 153.5,
147.57, 146.31, 137.02, 134.26, 131.09, 128.94, 127.90, 127.22,
126.32, 113.36, 110.39, 110.13, 110.03, 107.54, 100.01, 69.79,
65.38, 59.41, 55.94, 55.37, 51.31, 51.13, 29.13, 28.94. ESI-MS
m/z: 485 [MþH]þ; ESI-HR-MS Calcd. for C30H33N2O4

þ

[MþH]þ 485.2435, Found 485.2431. MeOH/H2O Z 70:30 (v/v),
14.63 min, 97.92% purity.

4.2.27. (3-(Benzyloxy)-13-chloro-2-methoxy-5,6,14,14a-tetrahy-
droindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol (27)
Compound 27 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 150‒152 �C; Yield: 42%. 1H
NMR (400 MHz, DMSO-d6) d 7.49e7.44 (m, 3H), 7.40 (t,
J Z 7.3 Hz, 2H), 7.35 (d, J Z 7.1 Hz, 1H), 7.10e7.00 (m, 2H),
6.95 (s, 1H), 6.82 (s, 1H), 6.39 (t, J Z 7.1 Hz, 1H), 5.44 (d,
J Z 7.0 Hz, 2H), 5.06 (s, 2H), 4.20 (d, J Z 15.4 Hz, 1H), 3.78 (s,
3H), 3.75‒3.68 (m, 2H), 3.63 (d, J Z 10.0 Hz, 1H), 3.13 (dd,
JZ 6.6, 3.7 Hz, 1H), 2.98e2.86 (m, 1H), 2.76e2.58 (m, 3H); 13C
NMR (100 MHz, DMSO-d6) d 147.55, 146.35, 137.31, 137.21,
134.68, 130.58, 128.40, 127.80, 127.76, 126.42, 124.13, 123.94,
121.39, 119.46, 113.54, 110.06, 109.04, 107.27, 69.94, 65.55,
59.09, 55.99, 51.01, 50.61, 30.87, 28.91; ESI-MS m/z:475
[MþH]þ; ESI-HR-MS Calcd. for C28H28ClN2O3

þ [MþH]þ

475.1783, Found 475.1794. MeOH/H2O Z 60:40 (v/v), 6.31 min,
96.58% purity.

4.2.28. (3-(Benzyloxy)-13-bromo-2-methoxy-5,6,14,14a-tetrahy-
droindolo[30,20:4,5]pyrido[2,1-a]isoquinolin-9(8H)-yl)methanol
(28)
Compound 28 was prepared in a similar manner as described for
compound 7. Yellow solid, m.p. Z 163‒165 �C; Yield: 45%. 1H
NMR (400 MHz, DMSO-d6) d 7.51 (d, J Z 8.1 Hz, 1H),
7.49e7.38 (m, 4H), 7.38e7.30 (m, 1H), 7.19 (d, J Z 7.6 Hz, 1H),
7.00 (t, J Z 7.9 Hz, 1H), 6.94 (s, 1H), 6.83 (s, 1H), 6.40 (t,
J Z 6.9 Hz, 1H), 5.43 (d, J Z 6.5 Hz, 2H), 5.06 (s, 2H), 4.19 (d,
JZ 15.3 Hz, 1H), 3.82 (s, 1H), 3.78 (s, 3H), 3.70 (d, JZ 15.3 Hz,
1H), 3.61 (dd, J Z 10.3, 2.7 Hz, 1H), 3.13 (dd, J Z 6.4, 3.5 Hz,
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1H), 3.00‒2.85 (m, 1H), 2.78‒2.57 (m, 3H); 13C NMR (100 MHz,
DMSO-d6) d 147.53, 146.35 137.31, 137.08, 134.89, 130.62,
128.42, 127.81, 127.77, 126.42, 125.41, 122.75, 121.77, 113.53,
112.40, 110.01, 109.51, 107.89, 69.94, 65.50, 59.00, 55.95, 51.03,
50.59, 31.06, 28.90; ESI-MS m/z: 519 [MþH]þ; ESI-HR-MS
Calcd. for C28H28BrN2O3

þ [MþH]þ 519.1278, Found 519.1281.
MeOH/H2O Z 60:40 (v/v), 6.26 min, 96.18% purity.

4.3. Pharmacology

4.3.1. Cell culture
The human hepatoma cell line HepG2 (ATCC� HB-8065�,
Rockville, USA) cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM, HyClone, cat. SH30243.01, Logan,
USA) supplemented with 10% (v/v) fetal bovine serum (FBS,
Gibco, cat. 10099141, Carlsbad, USA) at 37 �C in a 5% CO2

incubator. For the analysis of PCSK9 and LDLR expression or
DiI-LDL uptake assay, the medium was replaced with DMEM
supplemented with 2% (v/v) lipoprotein-deficient serum (LPDS)
after cells were grown to confluence.

4.3.2. Western blot analysis of PCSK9 and LDLR in HepG2
cells
HepG2 cells plated in 12-well plate were treated with various test
compounds or berberine (Meilun Biotechnology, cat. MB6000,
Dalian, China) in the presence of 2% LPDS for 24 h. Then the cells
were lysed in RIPA buffer (Beyotime Biotechnology, cat. P0013B,
Shanghai, China) containing protease inhibitor cocktail (Merck
Millipore, cat. 539134, Darmstadt, Germany). Total protein in cell
lysates equivalent to 15 mg was separated by gel electrophoresis
using 8% SDS-PAGE and then transferred to a PVDFmembrane for
protein blotting. Non-specific binding sites were blocked in 5%
Blotting Grade Blocker Non-Fat DryMilk (Bio-Rad, cat. 170-6404,
Hercules, USA) for 2 h. The membranes were incubated with an-
tibodies specific for PCSK9 (Abcam, cat. ab181142, Cambridge,
UK; 1:2000), LDLR (Proteintech, cat. 10785-1-AP, Wuhan, China;
1:2500) and b-actin (CST, cat. #3700, Danvers, MA, USA; 1:1000),
respectively, at 4 �C overnight. After incubation with the primary
antibodies, the membranes were washed in TBST (Tris-buffered
saline, 0.1% Tween 20) 3 times and incubated with the secondary
antibodies at room temperature for another 2 h. All bands were
visualized with an ECL kit (Bio-Rad, cat. 170-5061, Hercules,
USA) and chemiluminescence was detected on a ChemiDoc XRS
(Bio-Rad). ImageJ (NIH, 1.50i, Rockville, MD, USA) was used for
the quantification of band intensities.

4.3.3. DiI-LDL uptake assay
HepG2 cells plated in 24-well plate were used to implement DiI-
LDL uptake assay20. In general, after incubation with test com-
pounds or berberine in the presence of 2% LPDS for 24 h, cell
culture medium was changed to DMEM supplemented with 2%
LPDS and 20 mg/mL DiI-LDL. Following another 4 h co-
incubation with DiI-LDL, HepG2 cells were washed with PBS
containing 0.4% albumin 2 times, and then PBS (phosphate
buffered saline) 3 times. For the fluorescence quantification,
400 mL of isopropanol was added into each well of the 24-well
plate, and the plate was gently shaken on a shaker for 20 min at
room temperature. Then 200 mL of isopropanol in each well was
used for the analysis with a SpectraMax M5e Microplate Reader
(Molecular Devices, San Jose, USA; excitation wavelength of
520 nm, emission wavelength of 570 nm). The remaining cells
were lysed in NaOH (0.5 mol/L) for protein determination. DiI-
LDL was prepared as previously described20.

4.3.4. Calcium mobilization assay
HEK293 cells stably expressing b1-AR/Ga16, D1/Ga16 or D2/Ga16
were seeded onto 96-well plates and incubated for 24 h. Cells
were loaded with 2 mmol/L Fluo-4 AM in Hanks balanced
salt solution (HBSS, containing KCl 5.4 mmol/L, Na2HPO4

0.3 mmol/L, KH2PO4 0.4 mmol/L, NaHCO3 4.2 mmol/L, CaCl2
1.3 mmol/L, MgCl2 0.5 mmol/L, Mg2SO4 0.6 mmol/L, NaCl
137 mmol/L, BSA 5 g/L, glucose 5.6 mmol/L, sulfinpyrazone
250 mmol/L, pH 7.4) at 37 �C for 45 min. The excess dye was
removed and 50 mL HBSS containing test compounds were added.
After incubation at room temperature for 10 min, 25 mL HBSS
containing the respective agonists were dispensed into the well
using a FlexStation III microplate reader (Molecular Devices, San
Jose, CA, USA) and intracellular calcium change was recorded
with an excitation wavelength of 485 nm and emission wavelength
of 525 nm. The half maximal inhibitory concentrations (IC50) of
compounds were determined with GraphPad Prism software by
constructing their doseeresponse curves.

4.3.5. Whole-cell binding assay
CHOeK1 cells stably expressing 5-HT1B were seeded at a density
of 3 � 104 cells/well into 96-well culture plates and incubated
overnight at 37 �C in 5% CO2, and radioligand binding
assay was carried out after seeding for 24 h. For homogeneous
binding, the cells were incubated in binding buffer with constant
concentration of 3H-GR125743 (1 nmol/L) or 3H-Mesulergine
(1 nmol/L) and different concentrations of unlabeled compounds
(1.28 nmol/Le100 mmol/L) at 4 �C overnight. Cells were washed
three times with ice-cold PBS and lysed by 50 mL lysis buffer
(PBS supplemented with 20 mmol/L TriseHCl, 1% Triton X-100,
pH 7.4). The plates were subsequently counted for radioactivity
(counts per minute, CPM) in a scintillation counter (MicroBeta2

Plate Counter, PerkinElmer, Waltham, MA, USA) using a scin-
tillation cocktail (PerkinElmer, cat. 1200-439, Waltham, MA,
USA).

4.3.6. Pharmacokinetic profiles in male hamsters
Compound 22 was subjected to PK studies on male hamsters
(n Z 3, each group). Hamsters in oral administration group were
given 20 mg/kg test compound (0.5% carboxymethylcellulose
sodium) by oral gavage. Hamsters in intravenous administration
group were given 10 mg/kg test compound (5% DMSO, 10%
cremophor EL in 85% saline) by intravenous administration.
Blood samples were collected at 0, 0.5, 1, 2, 4, 6, 8, 10, 12, and
24 h after oral or intravenous administration. Serum samples
were isolated by centrifuging for 10 min at 4000�g. The test
compound concentrations in serum were measured by LC/MS/
MS.

4.3.7. In vivo cholesterol-lowering assay
Male Syrian hamsters with body weights of 100e120 g were
purchased from Beijing Vital River Laboratory Animal Technol-
ogy and housed under controlled temperature (22�2 �C) and
lighting (12 h light/dark cycle). All hamsters had free access to
food and water. After 7 days of acclimatization, hamsters were
divided into normal control group (n Z 7) and HFD group
(n Z 21). Then the HFD group was switched into a high-fat diet
(0.5% cholesterol; Research Diets, Inc. New Brunswick, NJ, USA)
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to induce hyperlipidemia. One week later, hamsters of the HFD
group were divided into HFD control group and test groups
randomly (n Z 7 per group). Test groups were given a daily dose
test compound 22 30 mg/kg or fenofibrate 100 mg/kg by oral
gavage for 21 days. The control groups were given a vehicle (0.5%
carboxymethylcellulose sodium).

At the end of the animal experiment, blood samples were
collected from all the hamsters under anesthesia after 15 h of
fasting (5 p.m.e8 a.m.). Serum was isolated by centrifuging for
10 min at 4000�g, and TC and LDL-C levels were measured
using commercially available kits purchased from Maccura
Biotechnology (Guangzhou, China).

The study was conducted in accordance with guidelines and
ethics of Institutional Animal Care and Use Committee (IACUC),
Shanghai Institute of Materia Medica, Chinese Academy of Sci-
ences and the Ethics Committee of Shanghai Xuhui Central
Hospital (China).

4.3.8. hERG testing using FluxOR� thallium assay
Step 1: Growing cells. CHO-hERG-ZG cells are grown in
75 cm2 flask with complete medium with 100 mg/mL G418 and
100 mg/mL hygromycin B until 80%e90% confluency. Wash cells
with PBS once. Incubate cells with 1 mL 0.25% trypsin until all
cells are rounded and can be easily dislodged from the surface.
Add 10 mL complete medium to stop trypsin activity. Disassociate
cells by thoroughly and repetitively pipetting. Transfer them to
50 mL Falcon tube and spin down at 1000 rpm (Labofuge 400
Centrifuge, Thermo Fisher, Germany) for 5 min. Aspirate medium
and resuspend cells using a small volume of complete medium,
like 0.5 mL. Count cell density.

Step 2: Cell seeding. CHO-hERG-ZG cells are plated into
96-well plates and after plating, tap plates on sides to separate
cells and let plates sit in the dark at RT for 30 min before in-
cubation at 37 �C for 16‒18 h. Cells will reach 80% confluence.
After overnight incubation, the media of cells are changed in
loading buffer (old media is tapped out) and incubated in the
dark at RT for 90 min. Remove the loading buffer and replace
with assay buffer. Compounds were added to the cell plate. The
cell plate is incubated with compound 22 for 20 min in the dark
at RT. Load the cell plates on Functional Drug Screening Sys-
tem (FDSS). Fluorescent signals will be recorded every 2 s till
10 s. At 10 s, stimulus buffer will be added to cells. Then
fluorescent signals will be recorded every second till 180 s on
FDSS.

4.3.9. Real-time PCR
HepG2 cells were treated with the test compound in the presence
of 2% LPDS for 24 h. The total RNA was isolated by Trizol
(Invitrogen, cat. 10296010, Leawood, KA, USA) and reverse-
transcribed to cDNA by reverse transcriptase (Promega, cat.
M1705, Madison, USA). The expression of PCSK9 mRNA was
assessed by real-time PCR using specific primers and SYBR�
Green Supermix (Bio-Rad, cat. 1725124, Hercules, CA, USA).
Primer sequences of PCSK9 gene are 50-CCAAGCCTCTTCT-
TACTTCACC-30 and 50-GCATCGTTCTGCCATCACT-30.

4.3.10. Statistical analysis
Data were analyzed with GraphPad Prism software. Results are
presented as mean � SEM. Nonlinear regression analysis was
used to generate the doseeresponse curve and calculate a con-
centration of 50% inhibition (IC50) value. Differences between
treatment groups were assessed by Student’s t-test or one-way
analysis of variance (ANOVA). P < 0.05 was considered statis-
tically significant.
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