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Wearable sensors enable the real-time and non-invasive monitoring of biomechanical,

physiological, or biochemical parameters pertinent to the performance of athletes. Sports

medicine researchers compile datasets involving a multitude of parameters that can

often be time consuming to analyze in order to create value in an expeditious and

accurate manner. Machine learning and artificial intelligence models may aid in the clinical

decision-making process for sports scientists, team physicians, and athletic trainers in

translating the data acquired from wearable sensors to accurately and efficiently make

decisions regarding the health, safety, and performance of athletes. This narrative review

discusses the application of commercial sensors utilized by sports teams today and

the emergence of descriptive analytics to monitor the internal and external workload,

hydration status, sleep, cardiovascular health, and return-to-sport status of athletes.

This review is written for those who are interested in the application of wearable sensor

data and data science to enhance performance and reduce injury burden in athletes of

all ages.

Keywords: wearable sensors, artificial intelligence, machine learning, sports medicine, return-to-play, sports

cardiology, workload optimization

INTRODUCTION

Sports scientists continually seek newer technologies, data platforms, and therapies to help athletes
perform at their highest level while reducing the risk of injury over an arduous season. Sports
teams have recently utilized wearable sensors such as the Catapult OptimEye S5 (Wellman et al.,
2016; Li et al., 2020), Zebra RFID tag (Zebra and The NFL, 2019), and Zephyr BioHarness (Nazari
et al., 2018) to provide a quantifiable measure of the exertional output of the athlete, described as
“workload.” The collection of such data has allowed some professional teams to show a relationship
between workload and injury rates (Li et al., 2020). The creation of open-source repositories of
wearable data will facilitate collaborations between academics and sports teams to develop injury
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assessment and workload models to maximize health and
performance (Vamathevan et al., 2019). There remains a need
to better understand how biomechanical, physiological, and
biochemical data relates to injury risk and what technology
and predictive models can measure and translate the data into
clinically-relevant assessments. The technology does exist, but
its understanding and use in injury-prevention has not been
extensively studied in the sports medicine community.

The application of machine learning (ML) has emerged in
sports such as in Major League Baseball (MLB); where publicly
available tools such as Statcast track player performance data
and provides insight into future production based on changes
in batting average, on base percentage, runs batted in (RBIs),
and other performance-related metrics. Furthermore, in the
National Basketball Association (NBA), teams have utilized
ML models to increase season ticket retention rates between
seasons (Goh, 2019). The application of these models in sports
medicine remains limited, prompting further research (Claudino
et al., 2019). Predictive models have the potential to act as an
automated data analyst capable of providing insight into the
athlete’s condition. The performance of predictive models in the
literature thus far has been poor due, in part, to their small sample
sizes with low injury rates, but also because our incomplete
understanding of the determinants of injury and how these
variables behave in a dynamic system of athlete performance
(Seow et al., 2020).

This review discusses our understanding of how wearable
technology and analytics are being used to measure select
biomechanical and physiologic parameters in the athlete and
the predictive modeling techniques described in the literature
to reduce injury burden (Figure 1). In addition, given the
unique circumstances of the COVID-19 pandemic, this review
discusses a possible role of wearable technology in guiding the
training of athletes as they return from the COVID-19 lockdown.
Definitions of key terms presented in this review are introduced
(Table 1).

FIVE PARAMETERS MEASURED BY
WEARABLE SENSORS TO MINIMIZE
INJURY RISK IN ATHLETES

The field of sports medicine has seen a rapid increase in the use
of wearables over the last decade, much of it precipitated via
advancements in data analytics, sensor fabrication technologies,
and sports science (Seshadri et al., 2017, 2019a,b,c). Wearable
sensors come in various forms ranging from wrist-monitors,
epidermal patches, GPS and RFID sensors, chest/leg straps, and

Abbreviations: ML, Machine Learning; RTP, Return to Play; GPS, Global

Positioning System; RFID, Radio-Frequency Identification; HR, Heart Rate;

HRV, Heart Rate Variability; SmO2, Muscle Oxygen Saturation; RR, Respiration

Rate; sRPE, Session Rating of Perceived Exertion; ACWR, Acute to Chronic

Workload Ratio; ACL, Anterior Cruciate Ligament; RFECV, Recursive Feature

Elimination with Cross Validation; LASSO, Least Absolute Shrinkage and

Selection Operator; HCM, Hypertrophic Cardiomyopathy; oHCM, Obstructive

Hypertrophic Cardiomyopathy; AF, Atrial Fibrillation; ECG, Electrocardiogram;

AHS, Apple Heart Study; KB, KardiaBand; TJS, Tommy John Surgery; COVID-19,

Coronavirus Disease 2019; ACI, Acute Cardiac Injury.

smart clothing, all of which measure many biomechanical or
physiological variables, such as heart rhythm, heart rate (HR),
heart rate variability (HRV), muscle oxygen saturation (SmO2),
respiration rate (RR), and tri-axial acceleration (Bourdon
et al., 2017) (Table 2). This review discusses the applications
of wearable technology and analytics in optimizing athlete
performance by monitoring athlete subjective exertional fatigue,
movement profiles, hydration status, sleep, cardiac health, and
monitoring SmO2 in a return-to-play (RTP) format following a
traumatic injury (Table 3).

Example 1—Monitoring Subjective Rating
of Perceived Exertion and Movement
Profiles
Injury models began as linear paradigms, implying that events
follow each other sequentially from a beginning to an end
point (Meeuwisse, 1994). The nature of injury in sport is
more complex, as injury exposure may occur with different
intrinsic and extrinsic risk factors (Bahr and Krosshaug, 2005)
or as a result of multiple participations without permanent
removal from participation (Meeuwisse et al., 2007). If no injury
occurs to the susceptible athlete, adaptation or maladaptation
occurs through repeat participation. If injury occurs, it is either
followed by recovery or removal from participation (Windt and
Gabbett, 2017) (Supplementary Figure 1). Stern et al. paralleled
athletes and their resistance to injury to a dynamic system like
hurricanes; injury prediction methodology must more frequently
and broadly sample parameters that factor into their injury
determinants (Stern et al., 2020). Despite acknowledging many
variables are at play, the center of most injury prediction models
has been the assessment of an athlete’s perceived exertional
output and movement parameters such a distance, velocity,
and acceleration.

Parameters measured by wearable sensors can be used to
calculate an athlete’s external or internal workload during a
training session (Seshadri et al., 2019c) (Figure 2). External
workload is an objective measure of the demand on the
athlete’s body through measurements of movement measured by
accelerometery or GPS (Seshadri et al., 2019c). Internal workload
is defined as any physiological, psychological, or biochemical
change in the body in response to external workload and includes
metrics such as HR, muscle oxygen saturation (SmO2), and
subjective rating of perceived exertion (sRPE) (Bourdon et al.,
2017; Seshadri et al., 2019c). Developing effective methods to
characterize workload profiles can inform an athlete’s acute-to-
chronic workload ratio (ACWR), an indication of how hard
an athlete is training and their readiness to take on higher
athletic demands (Blanch and Gabbett, 2016; Bowen et al.,
2017; Murray et al., 2017). Furthermore, integrating internal
and external workloads may provide a quantitative measure of
an athlete’s state of fatigue (e.g., sum of their internal, task,
and environmental constraints) (Figure 3). Much of the current
literature employing the ACWR has simplified the internal and
external workload of the athlete to a function of sRPE and
movement profiles, respectively.
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FIGURE 1 | Goal of this review is to provide opportunities for engineers, clinicians, and data scientists to leverage advances in each of the six thrusts toward reducing

injury burden. The integration of accurate data from wearable sensor technology into predictive models toward monitoring athlete safety and performance is a needed

and growing field of study.

“Load management” is the balancing of an athlete’s recovery
with their external (e.g., movement profile) and internal
loading (e.g., perceived exertion, cardiovascular adaptation)
to prevent abnormal training responses, such as overuse
injuries. Overuse injuries occur due to repetitive submaximal
loading of the musculoskeletal system due to insufficient
rest, thereby preventing structural adaptation to take place
(DiFiori et al., 2014; Jayanthi et al., 2015, 2020; LaPrade
et al., 2016). Previous work has demonstrated an exponential

relationship (∼r2 = 0.53) between the ACWR using sRPE and
movement parameters to assess workload and the probability
of suffering an over-use injury (Hulin et al., 2014, 2016).
This relationship was first explored in a study of cricket
fast bowlers (Hulin et al., 2014). Load was monitored by
calculating the sRPE, a psychophysical measure as a surrogate
for the body’s internal load, and counting balls bowled, an
external measure that quantified motion and mechanical stress
(Hulin et al., 2014). When the ACWR of the bowlers was
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TABLE 1 | Definition of key terms presented or indirectly highlighted in this review as it pertains to the use of predictive analytics and wearable sensors to

reduce injury burden.

Key terms Definition

Acute workload Workload of an athlete over a short duration (typically one-session to 1-week). This value contains both training- and match-load information

over the set time period and is analogous to “fatigue.”

Area under the curve Measure of how well a parameter or model can distinguish between two diagnostic groups (injured/healthy).

Biomechanical sensor Sensor which measures the movement (e.g., distance traveled, velocity, and acceleration) or forces exerted on the musculoskeletal system

(e.g., force on tibia, foot, ACL).

Biochemical sensor Sensor which measures biomarkers from bodily fluids such as eccrine or apocrine sweat.

Chronic workload Workload of an athlete over a 3-weeks or longer duration. Chronic workload provides a clear indication of what an athlete has done leading up

to the present training or match day and provides an indication of an athlete’s capacity (also analogous to an athlete’s “fitness” level).

Diagnostic tests Protocol a physician follows to diagnose an ailment (e.g., Lachman or Pivot-Shift tests performed by an orthopedic surgeon before swelling

and effusion sets in to aid in the diagnosis of a torn ACL to triage which athletes need MRI).

Acute-to-chronic

workload ratio

Ratio of the acute workload to the chronic workload. The ratio provides an indication of the training an athlete has performed relative to their

capacity. This data can then be fed into models to assess the likelihood the athlete may suffer an injury manifesting from repeated-overuse

(or underuse).

External workload Measure of the physical work done during training and/or competition.

Gold standard Standard of care treatment (current and preferred method of treating an ailment).

Internal workload Individual physiological, psychological, or biomechanical response to an external load.

Load management The process of quantifying and monitoring the exertional output of the athlete to mitigate overuse injuries and to improve overall health over a

long-term period.

Negative predictive

value

Percentage of athletes with a negative test who do not have an ailment Calculated as: (True Negative) /(False Negative + True Negative).

Physiological sensor Sensor which measures metrics deemed critical to the internal workload of the athlete (e.g., heart rate, heart rate variability, muscle

oxygen saturation).

Positive predictive value Probability that athletes with a positive screening test truly have a condition (e.g., efficacy of a wearable device and its analytical platform to

accurately diagnose an arrhythmia), Calculated as: (True positive)/(True Positive + False Positive).

Predictive analytics Algorithms used to forecast the likelihood of a situation based on baseline data sets.

Return to participation Process of deciding when an injured or ill athlete may safely return to training.

Return to play Process of deciding when an injured or ill athlete may safely return to competition when the risk for re-injury is minimized.

Return to sport Process of deciding when an injured or ill athlete may safely return to practice when the risk for re-injury is minimized.

Session rate of

perceived exertion

Scale from 1 to 10 wherein the athlete subjectively rates the difficulty of each session. The product of the session difficulty and the session

duration (in minutes) provides the “internal load” for that session.

Sensitivity Ability of a test or model to correctly classify an individual as “diseased.” Calculated as: (True positive) /(True positive + False Negative).

Specificity Ability of a test to correctly classify an individual as “disease- free.” Calculated as: (True Negative) /(True Negative + False Positive).

Sports scientist Individual responsible for developing predictive analytical models and translating data from wearable sensors to derive value for the athlete,

team physician, and athletic trainer.

Validity Accuracy of a model; measure of the sensitivity and specificity of the model.

Wearable sensor Device unencumbered by wires capable of detecting and translating biomechanical, physiological, and biochemical parameters to assess

human health in a real-time manner.

TABLE 2 | Comparative analysis of wearable sensor modalities utilized in sports today.

Technology Capabilities Pros Cons Leagues

Surface EMG Identifies muscle recruitment,

potential weaknesses

Small processing unit,

wireless; live data

Low Signal to Noise Ratio MLB, NBA, MLS

GPS, RFID tracking,

and Accelerometers

Distance, velocity,

acceleration, deceleration,

side-side movement, work

output, sleep (actigraphy)

Easy to incorporate into

football pads; vast amount of

data points

No biometric data (HR, RR,

EMG); price point; Limited per

position (linemen or

goaltenders). Must wear sport

top as well as pod

NFL, NBA, MLS, European

Football, NCAA Football,

NCAA Basketball

ECG/PPG sensors Heart rate, HRV, Respiration

rate, stress levels, TRIMP,

Muscle oxygen saturation

Accurate, cost effective, ease

of use

Price point and accuracy of

certain devices in question

NFL, NCAA, European

Football, NBA, US Soccer,

NFL

<0.99, the resulting chance of injury over the next week
was 4%. Alternatively, when the ACWR of the bowlers was
>1.5, the risk of injury over the next week was 2–4 times

greater. The authors concluded that loading spikes above an
athlete’s standard workload increased the risk of injury. The
results demonstrated the utility of the ACWR to monitor
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TABLE 3 | Applications in sports medicine where the translation of wearable sensor data can be used to train predictive models toward monitoring the health and safety

of athletes.

Application Clinical ailment Data from sensors Wearable SENSORS utilized in sports

performance

Workload management – Over-use resulting in soft-tissue injury – Distance

– Velocity

– Tri-axial acceleration

– Muscle Oxygen Saturation

– Catapult OptimEye S5 (Li et al., 2020)

– Zebra RFID (Zebra and The NFL, 2019)

– Moxy Monitor (Crum et al., 2017)

Dehydration and

soft-tissue injury

prevention

– Soft-tissue injuries

– Hypernatremia

– Muscle strain

– Fatigue

– Analyte Concentration

– Sweat Rate

– Whole-Body Sweat Loss

As of July 2020, there lacks current

wearable sensor technology to monitor

biochemical markers.

Sleep monitoring – Fatigue

– Athletic performance

– Decreased reaction time

– Executive functioning

– Learning

– Heart Rate

– Sleep quality

– Tri-axial acceleration

– Body Temperature

– WHOOP Band (Sekiguchi et al., 2019)

– FitBit Flex; Charge2

Cardiac health – Atrial fibrillation

– Hypertrophic Cardiomyopathy

– Heart Rate

– ECG signal

– Blood Volume

– Apple Watch 4/5 (Seshadri Dhruv et al.,

2020)

– Wavelet Health Wristband (Dur et al.,

2018)

Return-to-play – ACL Tears

– COVID-19

– Distance

– Velocity

– Tri-axial acceleration

– SmO2

– Respiration Rate

– Resting heart rate

– Catapult OptimEye S5 (Li et al., 2020)

– Zebra RFID Chip (Zebra and The NFL,

2019)

– Moxy Monitor (Crum et al., 2017)

– WHOOP Band (Sekiguchi et al., 2019)

SOC, Standard of Care; AF, Atrial Fibrillation; HCM, Hypertrophic Cardiomyopathy.

FIGURE 2 | Fitness-fatigue relationship based on measuring physiological and biomechanical parameters from wearable sensors. Internal and external workload of

the athlete can be determined to quantify the exertional output of the athlete to assess whether the athlete is training at an optimal level, undertraining, overtraining, or

is at a considerable risk for injury.
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FIGURE 3 | Athlete monitoring cycle. (A) Athlete performance index is the ratio of the internal and external workload of the athlete and encompasses how the athlete

prepared, coped, and expended during a workout or match. (B) Relationship between the internal and external workload. (C) Relationship between the perceptual

well-being of the athlete and overall workload. (D) Relationship between athlete readiness and perceptual well-being. Adapted and modified from Gabbett et al. (2017).

athlete workload utilizing a simplified model of internal and
external workload.

Today, the ACWR is a popular and commonly researched
metric for injury risk stratification. A systematic review by
Andrade et al. used 20 studies, totaling 2,375 injuries from
1,234 athletes in various sports, to investigate an association
between ACWR and the risk of injuries resulting in loss of
playing time in elite team sport athletes (Andrade et al., 2020).
While the methodological approaches to calculating ACWR in
the examined studies were heterogenous, the study justified the
adoption of the ACWR, as the majority of studies suggested that
athletes were at a greater risk of time-loss injuries with an elevated
ACWR compared to a moderate or low ACWR using sRPE
as a measure of internal workload and movement-parameters
(or repetitive sport-specific activities in the case of the bowlers)
as a measure of external workload. Of note, the review used
a study sample of elite athletes that was composed entirely of
male athletes (Andrade et al., 2020). Female athletes have an
increased likelihood of select soft-tissue injuries (e.g., ACL tears)
manifesting from repeated overuse (Webster and Hewett, 2018)
so there remains a need to adapt current ACWR analytics to
youth, collegiate, and elite female athletes (Arazi et al., 2020).

While stratifying injury risk based on a simplified model
of internal and external workload using the ACWR model is

deemed the “gold-standard” in sports performance today and
has been validated by the International Olympic Committee
(IOC) (Schwellnus et al., 2016; Soligard et al., 2016), it has
not been universally accepted by sport scientists. Impellizzeri
et al. created a statistical argument to call for the dismissal of
the ACWR as a framework for “predicting injury” (Impellizzeri
et al., 2020). Using sRPE data from a professional Italian Serie
A football team, Impellizzeri et al. highlighted that the lack of
predictive value of the ACWR stemmed from its tendency to
conflate statistical significance and odds ratios. Performing such
analysis with objective rather than subjective data is necessary
to remove potential data bias provided by the athlete and
confound results disseminating from the algorithm. Bornn et al.
developed a simulation using daily training loads from Serie
A (Italian Soccer) and National Football League (NFL) players.
The authors simulated 1,000 player-seasons where the probability
of injury depended only on player workload in the session of
injury. Although the model was designed so the ACWR would
not have an influence on injury risk, the simulation found
a statistically significant relationship between injury risk and
ACWR (where ratios were flagged if they fell outside of 0.8–
1.3). These results imply the relationship between ACWR and
injury is a confounded one; an athlete’s training schedule may
result in the significance found by studies correlating ACWR
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FIGURE 4 | Integrated model proposed by our team at Case Western Reserve University and University Hospitals Cleveland Medical Center in 2019 to quantify the

athlete’s performance and health index. The data acquired from wearable sensors can be inputted into machine learning models to optimize athlete performance,

assess the likelihood of suffering a non-contact injury, inform hydration status to alleviate soft-tissue injuries, or assess the cardio-respiratory function and capacity of

an athlete. Adapted and modified from Seshadri et al. (2019c).

with injury risk (Bornn et al., 2019). Whether or not there is
merit to the use of ACWR, there remains a need to improve and
develop new multivariate models to more accurately establish
a relationship between athlete workloads and overuse injuries
(Bornn et al., 2019; Impellizzeri et al., 2020). While many
studies regarding workload measure ACWR, the authors of
this review recommend against the use of any one variable
to stratify injury risk, including the ACWR. Application of
a sport- and context-specific model is necessary and lacking
to ensure a high positive predictive value as it relates to
monitoring the health, performance, and wellness of athletes.
An illustration of this theoretical model demonstrating the
integration of all relevant physiologic metrics in determining
athlete workload is shown (Figure 4). That being said, some
studies have found associations of movement profile parameters
with injury risk and have applied ML models to aid in
injury prediction based on these parameters. Selected studies
are discussed below focusing on youth, collegiate, and elite-
level athletes.

Injuries related to overuse are of particular concern for
a significant portion of the 3.5 million youth athletes (<18
years of age) injured in the U.S. annually (Ryan et al., 2019).
Youth athletes remain the most under-studied population cohort
relative to those within professional and intercollegiate sports
(Jayanthi et al., 2013, 2015; DiFiori et al., 2014). There is
clinical utility to assess the risk of soft-tissue injuries in youth
athletes from repeated overuse by leveraging ML models to
monitor the internal and external workload from wearable
sensor data. Bowen et al. explored the association between
workload and injury risk in youth elite male soccer players
(age 17.3 +/- 0.9) who performed all training sessions and
matches for two seasons with GPS/accelerometer units (Viper
V.2, StatSports, Ireland). The sensor measured total distance,
high-speed distance, and accelerations, and a binary logistic
regression model was employed to compare workloads between
injured and non-injured players (Bowen et al., 2017). Non-
contact injury risk was greatest (RR = 5.11) when a very high
number of accelerations were accumulated in 3 weeks (>9,254).
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Additionally, when greater high-speed distances (3,502–5,123m
above 20 km/h) were experienced in the setting of low chronic
high-speed distance training over 4 weeks, a significant increase
in injury risk was observed (RR = 2.55). These findings suggest
that elite youth athletes may see a reduction in non-contact
injuries by monitoring external workloads using GPS movement
profiles to limit consistent and persistent acceleration efforts and
by prescribing high-speed running distances in varying amounts
over a set time period (e.g., 4 weeks). The application of ML to
ascertain associations between workload and other variables with
injury risk in youth athletes motivates research to address the
“pandemic” involving early sports specialization.

At the collegiate level, Sampson et al. used GPS data from
52 NCAA football athletes and found that relative non-contact
injury risks were 3x greater with an elevated ACWR compared
to moderate and low ACWR (Sampson et al., 2018). Injury risk
was similar across all positions. Substantially increased injury risk
with a low chronic workload emphasizes the need for proper
load management, especially in athletes with multiple game
or training absences. Wellman et al. utilized the Catapult SPI
HBU GPS sensor to monitor and compare movement profiles
(distance, velocity, and acceleration) among various position
groups in Division I American Football players to study the
physical demands during competitive play (Wellman et al.,
2016). Data showed that wide receivers and defensive backs
had more high-intensity acceleration bursts and traveled greater
distances compared to other positions. The findings suggested
that predictive analytics using a one blanket detection method
could vary in effectiveness from position to position, even within
the same sport. Additionally, load experienced by linemen, a
position which also involves heavy exertion with less running and
high-intensity acceleration, may not be accurately represented by
GPS. GPS data from linemen, and any athletic position where
players experience high stress loads constrained to a small space,
will be limited to recording positional data without accounting
for the mechanical load experienced by musculoskeletal tissue
(Edwards et al., 2018). These results highlight the need for
sport, and even position-specific metrics that optimize injury risk
stratification models (Gastin et al., 2014; Chambers et al., 2015;
Wundersitz et al., 2015). Like linemen, an accurate workload
assessment of the athlete would require a combined use of both
internal and external workload. Such work in the sports medicine
field has yet to be published and could greatly enhance the
translational utility of such devices.

On the professional level, members of this team studied the
effects of player workload measured by the Catapult OptimEye
S5 and its proprietary algorithm using tri-axial acceleration
on soft tissue injuries in a single NFL team over two seasons
(Li et al., 2020). Defining acute and chronic workloads as
1 and 4 weeks prior to injury, the authors found that an
athlete with an ACWR above 1.6 was 1.5 times more likely to
sustain a myotendinous or ligamentous injury. Injured players
saw a 111% increase in workload during the week of injury
while uninjured players were found to have a 73% increase in
workload. Like the collegiate study, this study further emphasizes
the workload-injury risk association using athlete movement
profiles. To take a step further, multiple studies have investigated

ML techniques to detect professional athletes at high-risk of
injury using workload as the main injury determinant. These
prediction models, motivated by the data suggesting a workload-
injury risk association, apply data processing techniques and ML
to estimate injury probability (Seow et al., 2020). Colby et al.,
investigated lower body non-contact injuries in professional
Australian football athletes and measured sRPE and GPS-derived
total distance, sprinting distance, and maximal velocity over
three seasons and found that minimal athlete exposures to
high velocity efforts (85% maximal velocity) over the previous
8 weeks were associated with significantly greater injury risk
than athletes with a greater number of high velocity efforts
(Colby et al., 2014). Injury risk increased additionally for athletes
with many repeated exposures to high velocity sessions. The
study suggested exposure to >85% of an athlete’s maximum
velocity over 5–8 sessions (training or competition) over a 4
–weeks block minimized the predicted probability for injury,
with the greatest predictive accuracy using a Poisson log-link
regression model (AUC range = 0.60–0.64) (Colby et al., 2014).
In another study, Rossi et al. attempted to build an effective
injury forecaster for an elite-level Italian soccer club, using 10Hz
GPS devices integrated with a 100Hz 3D accelerometer, a 3D
gyroscope, and a 3D digital compass (STATSports Viper) paired
with ML platforms (Rossi et al., 2018). The forecaster employed
a Recursive Feature Elimination with Cross-Validation (RFECV)
to determine which subset of features was most effective at
predicting injury, and a decision tree binary classifier method
to predict either injury (1) or no injury (0) for a given athlete’s
incumbent training session. The model was built with a set of
training data containing 55 different features from 952 different
examples (e.g., training sessions with a known output as “injured”
or “not-injured”). The predictive model accounted for various
features, including data from the GPS sensors, metabolic data
(e.g., metabolic distance, high metabolic load distance, and
high metabolic load distance per minute), previous workload
history, ACWR, and mean to standard deviation workload ratio
(monotony). The study concluded that the decision tree-model
was more effective – with 80% sensitivity and 50% specificity
in cases of injury – than state-of-the-art controls, such as
ACWR modeling – with 91% sensitivity and 4% specificity – at
identifying athletes who were at risk for injury (AUC = 0.76)
(Rossi et al., 2018). Lastly, Carey et al. investigated the occurrence
of hamstring injuries in professional Australian football athletes
using GPS movement data over two seasons (Carey et al.,
2018). Injury predictions were generated during the third season
and employed various prediction models (regularized logistic
regression, generalized estimating equations, random forests, and
support vector machines) to determine which technique had
the best performance. Interestingly, the best performing model
was the multivariate logistic regression model (AUC = 0.76),
and models for total non-contact injuries with resultant time
loss from competitive play had a predictive performance only
marginally better than chance (AUC < 0.65). One may conclude
that models of the relationships between GPS workload and
non-contact injuries showed limited ability to predict future
injuries; however, given the low injury rate per session (0.4%
for hamstring to 3% for all non-contact) and the large number
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of possible risk factors, a probabilistic approach to injury risk
models using workload should be employed and may result in
better prediction power in future studies. The results of this
study suggest that specific injury types as outcome variables
may reveal better prediction power that general non-contact
models and that increasing the quantity of data will likely
yield better predictive performance. Importantly, movement-
profile driven workload calculations as a daily decision tool
has limited ability to predict injury; over longer periods of
time, the predictive performance of using a probabilistic model
(logistic or Poisson regression) may provide a better assessment
of injury likelihood. At present, the performance of injury
prediction models with sRPE and movement profiles as the
primary injury determinants are poor, with a median AUC of the
best performing models being 0.75 (Hulin et al., 2016). This is
likely attributable to small samples sizes, and, more importantly,
an incomplete understanding of the relevant injury-determinant
factors used in the models for workload. However, knowing
there are associations with movement profile variables (ACWR,
consistent acceleration efforts, etc.) and injury risk, future studies
may seek to investigate larger and heterogeneous cohorts of
athletes and perform prospective randomized studies.

Example 2—Monitoring Athlete Hydration
Status
Monitoring sweat rate and electrolyte levels has applications
in monitoring the performance of athletes. Alterations in the
electrolyte composition in sweat and sweat rate can act as
indicators for hydration levels and provide insight into the
athlete’s physiologic state. It is well-established that sweat rate is
proportional to exercise intensity (Baker, 2017). This relationship
is also uniquely substantiated in youth athletes, where youth
American football players have been shown to sweat at two times
the rate during competitive games than during practice (Baker,
2017). Baker and colleagues used epidermal sweat patches to
quantify sweat and electrolyte losses of athletes during training
(Baker et al., 2009, 2016; Baker, 2017). Several studies have
identified sweat and blood lactate to be a potential marker for
physiologic stress during exercise, capable of tracking exercise
intensity by marking transitions in physical stress from aerobic
to anaerobic exercise (Graham et al., 1987; Jia et al., 2013).
Once a certain lactate threshold is reached, exercise capacity
is greatly reduced, and the athlete is subject to exhaustion
(Graham et al., 1987; Katz and Sahlin, 1988). Sweat glucose
levels have also been shown to model blood glucose levels, a
prime factor in exertional capacity (Count et al., 2019). A drop
in blood pH levels may indicate insufficient supply of glucose
or impaired lactate clearance, therefore monitoring decreases
in sweat pH can also assist in an assessment of the patient’s
metabolic state (Yokus et al., 2020). All in all, these studies suggest
that an athlete’s physiologic capacity and efficiency under physical
stress can be measured with sweat analyte composition, which
provides us with another tool to better understand an athlete’s
internal workload.

Training datasets need to be created from clinical trials that
track a large array of physiologically relevant features (e.g., whole

body sweat loss, changes in ion concentrations from eccrine
sweat) to label cases when an athlete experiences dehydration (1)
or did not experience dehydration in the training session (0). At
present, the focus of the current literature is on the development
and validation of novel wearable systems and producing a durable
device that can provide real-time multi-parameter analysis of
sweat during exercise. The authors anticipate that over the next
several years, large prospective observational studies will be
conducted using both novel and commercially-available devices
on athletes such as the Gatorade Gx Sweat Patch, which can
measure sweat rate and sodium chloride concentration. In these
future studies, a form of dimensionality reduction, paired with a
predictive classifier such as a LASSO technique could help assess
the complex relationships between physiological determinants
of hydration status. Deep neural networks, which focus on
analyzing complex patterns in data structures, also offer promise
as an automated hydration status analyst. If a model is able to
predict future cases of dehydration with relative accuracy, further
research efforts can be implemented to predict the incidence
of soft-tissue injury from deviations in key eccrine sweat ion
concentrations (Table 4).

Example 3—Monitoring Sleep in Athletes
The effects of sleep quality on athletic performance and injury
rates is a burgeoning area at the intersection of psychiatric
and sports medicine research. Athletes tend to sleep less and
have poorer quality of sleep than non-athletes (Fietze et al.,
2009; Sargent et al., 2014), which may be due in part to their
unique scheduling constraints from training schedules, travel to
competitions, and pre-competition anxiety (Sargent et al., 2014;
Juliff et al., 2015). The effects of sleep deprivation include a
multitude of physical and mental manifestations resulting in
poor athletic performance (Simpson et al., 2017). In elite youth
athletes, those who consistently slept more than 8 h during
weekdays reduced their odds of injury by 61% (OR: 0.39; 95% CI,
0.16–0.99) (von Rosen et al., 2017). Additionally, prior research
on NCAA Division I and III cross-country runners found the
strongest predictor of athletes sustaining a new injury was poor
sleep quality, alongside the existence of a pre-season injury
or large mileage increase (Hayes et al., 2019). These findings
demonstrate enormous clinical utility and performance-based
incentive for the sports physician and athletic trainer to optimize
sleep in the athlete.

Sleep-wake cycles are largely self-reported (Fox et al., 2020).
Wearable devices that provide objective data toward accurately
measuring sleep duration and quality are needed (Colbert et al.,
2011; Peake et al., 2018). Wearable actigraphy devices are
wristbands that monitor a combination of variables such as
movement, HR, and HRV as indicators of sleep-wake cycles.
While actigraphy devices are the most widely used sleep sensors
(Van de Water et al., 2011), their reliance on motion to assess
sleep tends to overestimate sleep and underestimate wakefulness
across the sleep period (i.e., high sensitivity and low specificity
for sensing sleep) (de Zambotti et al., 2015). A review by Scott
et al. compared the accuracy of wearable actigraphy devices
to polysomnography and found that the Pearson correlations
ranged from r = 0.01 to r = 0.73 (Scott et al., 2020). A
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TABLE 4 | Machine learning models currently utilized in sports medicine toward monitoring the health and safety of the athlete.

Model classification Model description Application in sports medicine

Decision Tree Classifier (DTC) Decision Tree models are used in both regression and

classification.

Classify whether athletes will or will not sustain an injury in their

training session (Rossi et al., 2018)

Dimensionality reduction Dimensionality reduction is a technique used in supervised ML

models that indexes the importance of feature subsets by

calculating each’s features correlation with the outcomes provided

in training data. It can be used to eliminate indeterminate features.

Identify important features in a study analyzing 63 parameters,

determining only three were needed to form a predictive model

(Yokus et al., 2020)

Least Absolute Shrinkage and

Selection Operator (LASSO)

The LASSO method provides identification of non-linear

parametric models by selecting a subset of features that are most

associated with the response variable. The algorithm

accomplishes this by minimizing the residual sum of squares

leading to the determination of correlation coefficients. Variables

with the highest correlation coefficients to specific outcomes will

be used to estimate the structure of a non-linear polynomial

predictive model (Bumgarner et al., 2018)

*Assess relationships between physiological determinants of

hydration status by stratifying changes in eccrine sweat ion

concentrations with changes in external workload profiles

Logistic regression Model the probability of a certain class or event existing such as

pass/fail, win/lose, alive/dead, or healthy/sick

Assess the relationship between SRPE/movement profiles and

soft-tissue injury (Carey et al., 2018)

Multi-layer perceptron (“neural

network”)

A Multi-Layer Perception can be either a classification or

regression model. Features are transformed throughout a series of

hidden layers. The first layer are the inputs, or features given in the

dataset, in our case, from the athlete. An MLP with one hidden

layer can estimate any continuous bound function, while an MLP

with two hidden layers can estimate any function, within a small

error provided enough quality training data.

*Assess relationships between physiological determinants of

hydration status by stratifying changes in eccrine sweat ion

concentrations with changes in external workload profiles

Support Vector Machine

(SVM)

A support vector machine is a binary classifier that graphs labeled

data points in a two-dimensional plane. The algorithm then looks

to separate the two labels with an optimized hyperplane. When

new, unlabeled data is presented, each point is classified by which

side of the classifying line it lies on.

*Forecast the workload profiles of an athlete based on position

group, body mass index (BMI), or previous workload data to help

mitigate soft-tissue injury or illness

The authors have provided applications or have hypothesized (the latter denoted by an *) the application of the described model for sports medicine as it relates to monitoring the

performance and safety of the athlete.

criticism of any device that detects behaviors of interest is they
generally become validated in laboratory settings with a limited
number of activities of interest (Intille et al., 2012; Welch et al.,
2013). This led to work by Ellis et al., where a multi-level
classifier using random forest and Hidden Markov model was
employed to identify activities performed by the wearer with
no prior knowledge about their habits. They were successful in
generating an activity classifier that reached 85.6% accuracy (Ellis
et al., 2014). Inclusion of ML algorithms with sensor hardware
are therefore an encouraging next step in the development of
more accurate actigraphy sensors. While published literature has
predominately investigated the efficacy of wearable devices for
sleep detection, there remains a need to track changes in athletic
performance and its implications on injury risk following an
athlete’s use of wearable sleep sensors. Randomized controlled
trials using wearable sensors should be employed to bridge this
gap to objectively monitor an athlete’s sleep duration and quality
to provide sports practitioners another variable toward reducing
injury burden.

Example 4—Monitoring Cardiac Health in
Athletes
It is critical to distinguish between physiological and
pathological adaptation of the heart to exercise (Baggish
et al., 2017). A number of physiological, morphological, and

functional adaptations occur in the heart secondary to regular,
strenuous exercise which may be difficult to distinguish from
pathological processes. While exercise is beneficial for most
cardiac conditions, athletes with underlying heart conditions
paradoxically carry an increased risk of sudden cardiac death
(SCD) during strenuous exercise when compared to their
sedentary counterparts (touchCARDIO, 2020). Pre-participation
screening strategies to identify sub-clinical cardiac conditions
(Maron Barry et al., 2014) remains highly controversial, with no
agreed upon strategy. The combined use of ML with wearable
technology has the potential to help screen and monitor cardiac
physiology and pathology in the recreational and elite athlete as
it applies to both performance and athlete safety.

Hypertrophic cardiomyopathy (HCM), an inheritable
condition characterized by myocardial hypertrophy without
systemic etiology, increases the risk of heart failure, stroke,
and SCD (Captur et al., 2020). HCM is reported in pathologic
registries as one of the most common causes of SCD in youth
athletes (Rasmusen and Schmied, 2020), and HCM has been
shown to be the most common cardiomyopathy in elite soccer
players (Malhotra et al., 2018). Estimates of the prevalence of
HCM in the United States predict only 16% of cases are clinically
diagnosed (Maron et al., 2016), demonstrating the need for
improved detection of HCM. This could potentially be provided
with ML and wearable sensor technology using predictive

Frontiers in Sports and Active Living | www.frontiersin.org 10 January 2021 | Volume 2 | Article 630576

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Seshadri et al. Wearables, Analytics, and Injury Burden

TABLE 5 | Digital health devices (e.g., wearable and hand-held) currently studied by sports cardiologists to monitor the cardiovascular health and wellness of athletes.

Feature AW 4/5 Qardiocore Alivecor KardiaMobile

(1L/6L) or KardiaBand

Hexoskin Zio patch Holter monitor

Wearable device Yes Yes Yes (KardiaBand) Yes Yes No

Auto alarm Yes No Yes No No No

1-lead ECG Yes Yes Yes Yes Yes Yes

6-lead ECG No No Yes No No Yes

Mobile application Yes No Yes Yes No No

Continuous monitoring No Yes No Yes Yes Yes

Real time analysis Yes No Yes No No No

Employs ML Yes No Yes No No No

Accuracy of ML (%) 95.8% (TP) (Turagam et al.,

2015)

97.7% (TN) (Turagam et al.,

2015)

– 96.6% (TP) (Aagaard et al.,

2019)

94.1% (TP) (Aagaard et al.,

2019)

– – –

Information gathered from company websites, social media sites, and press releases. “N/A” implies that accuracy of device has yet to be validated in peer-reviewed studies against a

12-lead ECG to monitor atrial fibrillation.

1L/6L, 1-Lead or 6-lead; TP, True-Positive; TN, True-Negative; AW, Apple Watch.

analytics in undiagnosed athletes of all ages and ability. Green
et al. theorized that patients with obstructive HCM (oHCM)
could be distinguished from controls using a combination
of machine learning and the photoplethysmography (PPG)
capabilities of a commercial biosensor (the Wavelet Health
wristband) (Green et al., 2019). By detecting blood volume
changes at the skin surface, the optical sensor continuously
recorded pulse wave traces of 19 oHCM patients (57.5 years
± 14.3, 47% female, interventricular septal thickness 1.64 ±

0.2 cm) and 64 healthy controls (28 years ± 7.4, 38% female,
interventricular septal thickness 0.83 ± 0.13 cm). A set of 38
pulse wave morphometric features were found to significantly
differ between groups which were used to develop an automated
machine learning classifier for distinguishing between them.
The model achieved a C-statistic for oHCM detection of 0.99
(95% CI: 0.99–1.0), a sensitivity of 95%, and a specificity of 98%.
The model was able to correctly classify 18/19 oHCM patients
and 63/64 healthy volunteers with 98% accuracy (Green et al.,
2019). These results imply wearable biosensors accompanied
by predictive analytics could assist in accurately monitoring
cardiac physiology and potentially identifying cardiac structural
pathology in athletes.

The integration of ML algorithms into FDA-approved
wearable ECG devices (including the Apple Watch 4, AliveCor
KardiaBand, and AliveCor Kardia Mobile) has emerged as a non-
invasive method to detect and monitor cardiac rhythm (Table 5).
Monitoring of cardiac arrhythmias such as atrial fibrillation (AF)
has additionally been shown to be crucial in monitoring the
cardiac health of both retired and current athletes (Turagam
et al., 2015; Estes and Madias, 2017). A recent study showed that
retired NFL athletes (age 56 ± 12 years, 47% African American,
n= 460) had a 5.5 times higher likelihood of developing AF than
individuals from the general public with similar demographics
(age 53.9± 8.6 years, 53% African Americans, n= 925) (Aagaard
et al., 2019). Most of the former players were unaware of their
AF diagnosis prior to the study, thereby demonstrating the

importance of long-term medical follow-up to abnormal heart
rhythm in such higher risk populations (Aagaard et al., 2019).

The Apple Heart Study (AHS) evaluated the accuracy of
generated tachograms (derived from the Apple Watches 1–3) in
detecting new AF cases (Turakhia et al., 2018). While results of
the AHS havemany limitations, the study successfully usedML to
detect AF and provided initial evidence demonstrating the utility
of wearable sensors to monitor AF. Apple Watch technology also
allowed for the ability to successfully enroll and monitor patients
virtually for a site-less study (Turakhia et al., 2018). Future studies
should aim to investigate the relevance of the junction between
ML algorithms and wearable ECG sensors from trials without the
limitations of the AHS. Ultimately, these devices may allow for
the continued monitoring of heart rhythm in athletes of all ages
and ability.

In a study evaluating the accuracy of the AliveCor Kardia
Band (KB), Bumgarner et al. examined whether the KB could
differentiate sinus rhythm (SR) from AF compared to physician-
interpreted 12-lead ECGs and KB recordings wherein the
electrophysiologist was blinded to KB recordings(Bumgarner
et al., 2018). One hundred consecutive patients (age: 68 ± 11
years) with AF presenting for cardioversion (CV) were enrolled.
Patients underwent pre-CV ECG along with a KB recording. If
CV was performed, a post-CV ECG was obtained along with a
KB recording. Overall, compared to the ECG, the KB interpreted
AF with 93% sensitivity, 84% specificity and a κ coefficient equal
to 0.77. Physician-interpretation of KB recordings demonstrated
99% sensitivity, 83% specificity and a κ coefficient equal to 0.83.
In short, the team concluded that the KB ML algorithm for
AF detection, supported by physician review, can accurately
differentiate AF from SR (Bumgarner et al., 2018). Future studies
that utilize wearables to identify cardiac pathology should employ
ML algorithms that can discriminate likely normal cardiac
adaptations in athletes such as those described by Gray et al.
(touchCARDIO, 2020), thereby reducing their false positive
rate. Recent work in cardiac screening in Pacific-12 Conference
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FIGURE 5 | Example detailing the application of wearable sensor technology and machine learning algorithms employed in a Return-to-Play rehabilitation program

following ACL reconstruction. (A) Wearable sensors collect continuous muscle oxygen saturation and heart rate data during a moderate-intensity quadriceps-focused

exercise at a 12- weeks (T1) post-ACL reconstruction conditioning assessment during an athlete’s RTP rehabilitation program, (B) machine learning algorithms

process data collected from wearable sensors and determine a clinical outcome “forecast” based on learned population data, (C) coaching staff and trainers can

track the athlete’s readiness to return to competition over time and compare to other athletes, focusing the decision on the basis of analytics rather than intuition or

subjective assessments.

institutions Division I collegiate athletes from 2009 to 2017
prior to the start of a season found that the use of an ECG
compared to history and physical examination improved the
cost-efficiency per diagnosis 5-fold (Harmon et al., 2020). The
use of an accurate wearable ECG monitor may further drop the
cost of diagnosis by enabling remote monitoring capabilities and
expediting treatment.

Example 5—Monitoring the Rehabilitation
of Athletes Following ACL Reconstruction
Return-to-Play (RTP) protocols form the cornerstone of
the rehabilitation and recovery period following a major
musculoskeletal injury (Shrier, 2015; Shrier et al., 2015; Blanch
and Gabbett, 2016; Musahl et al., 2018). Many common
injuries such as an ACL tear (Musahl and Karlsson, 2019),
hip arthroscopy (Ishøi et al., 2018; O’Connor et al., 2018), or
Tommy John Surgery (TJS) (Jack et al., 2018) have a protocol
that involves a period of rest followed by physical therapy until
an athlete is able to resume sport-specific training and eventual
competitive play. These injuries carry a known substantial
burden on professional athletes (Dodson et al., 2016; Secrist et al.,
2016), and ACL tears affect more than 200,000 people in the
United States each year with direct and indirect costs >$7 billion
annually (Musahl and Karlsson, 2019). Our discussion in this
section will focus solely on providing insight into how wearable

data and ML models can complement RTP protocols for an ACL
tear following reconstructive surgery (Figure 5).

Rehabilitation from ACL reconstructive surgery currently
includes a general consensus of 9 months before returning
to sport, and extensive physical therapy beginning 1–4 weeks
post-operation (Zaffagnini et al., 2015). Most sports medicine
professionals use other physical assessments of the athlete to
determine readiness to resume competitive play, yet re-injury
rates remain high, suggesting that there remains a gap between
the athletes’ perceived vs. actual sports readiness. Dodson et al.
evaluated the effectiveness of RTP practices following ACL tears
from 2010 to 2013 in the NFL, which determined that 18.9% of
players returning from injury experienced re-injury to the graft or
contralateral leg (Dodson et al., 2016). These results suggest that
rehabilitation practitioners could do a better job rehabilitating
athletes, and there is an opportunity to complement current
RTP protocols with more robust quantitative assessments of
athlete readiness and better individualize the athlete’s day of
return to competition (Wiggins et al., 2016; Paterno et al., 2017;
Losciale et al., 2018). One area to improve is highlighted by
the association of re-injury with reduced quadriceps strength
and power following ACL rehabilitation (Mueller et al., 2014).
Despite aggressive rehabilitation programs directed at improving
quadriceps function, a universally effective approach to reverse
this weakness has not been fully elucidated. Furthermore, many
ACL recovery programs use surrogate measures for quadriceps
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recovery including circumferential bulk measurements, closed
and open kinetic chain testing, functional jump tests, and sport-
specific testing; however, their validity in assessing appropriate
time to return-to-sport with proven re-injury protection benefits
is, at present, limited. We believe that wearable technology could
play a role by being able to (1) collect data at a higher sampling
frequency, (2) measure more clinically important markers of
quadriceps recovery, and (3) estimate readiness to RTP.

Recent research has suggested RTP metrics must be expanded
from performance (e.g., maximum running speed) prior to
injury (Whiteley et al., 2020). Wearable devices measuring
biochemical markers of muscle metabolism, oxygenation, and
blood flow could therefore provide important insight into the
rehabilitating quadriceps muscle. Specifically, a wearable near-
infrared spectroscopy (NIRS) sensor such as the Moxy Monitor
(Moxy Monitor, 2020) has the ability to measure SmO2 levels.
This sensor can assess muscle oxygen utilization behavior in
a continuous fashion during aerobic and anaerobic training
conditions, providing a more comprehensive assessment of
muscle recovery and function than any single clinical test. With
SmO2 data collected during standardized exercise programs
and new long-term clinical data on performance and re-
injury after return-to-sport, ML algorithms can determine the
SmO2 trend characteristics that are associated with optimal
readiness to return-to-sport. Combining this metric with other
metrics, including velocity, acceleration, HR, etc. during the
rehabilitation program would add further sophistication to the
model (Figure 5). However, we are beginning to understand that
injury “prediction” requires more than a concentration on the
risk factors associated with injury occurrence. Future models
should seek to better understand how these variables influence
each other in a dynamic system that is constantly changing to
its environment. In an RTP setting; however, the stresses to
the “athlete system” are prescribed and controlled by design,
making it different from the competing athlete. The focus is to
optimize functional parameters prior to re-engaging the athlete
in competitive play. In this setting, investigating parameters (e.g.,
SmO2) that restore the athlete to their pre-injury performance
level may prove to be effective in re-injury prevention. Little
is understood about which functional parameters are the
most important to monitor during rehabilitation and future
clinical trials may seek to better understand these to prevent
inappropriate clearance to return to competition.

CURRENT AND EMERGING FOCAL POINT:
MONITORING THE RETURN-TO-PLAY
STATUS OF ATHLETES FOLLOWING
COVID-19

As athletes begin to RTP following public health policy
recommendations surrounding COVID-19, clinicians will be
charged with determining when athletes are medically cleared,
whether or not they have been infected. The lockdown
period has been uniquely problematic for athletes due to
the closure of training facilities worldwide. As athletes RTP
following the COVID-19 lockdown, monitoring their internal

and external workload is imperative toward assessing their
biomechanical and cardiovascular adaptations with increased
exercise intensities (Figure 6). The heterogeneity of training
intensities and durations suggests that athletes will either
undertrain, over-train, or train at an optimal workload relative to
their training intensities during the pre-lockdown period. Based
on trends in the literature (Gabbett, 2010; Blanch and Gabbett,
2016; Bowen et al., 2020; Myers et al., 2020), we hypothesize that
the incidence of injury will be primarily bimodal, particularly
evident in the athletes that over- and undertrain relative to
pre-lockdown intensities. The undertraining cohort will suffer
injuries (oblique, groin, and hamstring strains) manifesting from
the lack of progression in chronic workload. The overtraining
cohort will suffer injuries manifesting from muscular and
neuromuscular fatigue, which has been known to increase the
incidence of ACL tears in youth athletes (Fidai et al., 2018) or
Achilles ruptures in professional NFL athletes (Myer et al., 2011).
We hypothesize that the cohort who optimizes their overall
fitness-fatigue relationship will reduce their risk of soft tissue
injury as described in our prior models.

With the advent of the COVID-19 pandemic, it is important
to acknowledge that∼22% of patients hospitalized with COVID-
19 show signs of acute cardiac injury (ACI) in comparison to
1% of patients in non-COVID-19 viral infections. Wearable
devices have shown to be useful in monitoring patients at risk
for developing long-term sequelae of COVID-19 (Mishra et al.,
2020; Seshadri et al., 2020). ACI can be detected using ECG
readings, in conjunction with troponin levels and abnormalities
on TTE (Driggin et al., 2020). An RTP algorithm recommended
by Phelan et al. advises close cardiac monitoring of competitive
athletes and highly active people (Phelan et al., 2020). Wearable
devices, while only one piece of the diagnostic puzzle, may
therefore be employed in the sports cardiologist’s toolkit in the
close monitoring of the returning athlete’s workload measures
and signs of cardiac pathology (Seshadri et al., 2020).

CONCLUSIONS

The collection, agglomeration, and implementation of baseline
datasets into analytic models based on data acquired from
wearable sensors provide a vast toolkit for team physicians,
athletic trainers, and sports scientists to make real-time decisions
relevant to the health and wellness of athletes. Utilizing such
baseline datasets coupled with analytical models now permits
sports scientists, data scientists, and medical team personnel to
work together to develop efficacious models to track the long-
term health of athletes. The application of analytics in sports
medicine when leveraging data from wearable technology will
have—and is having—the greatest clinical impact when it comes
to monitoring and forecasting the workload and cardiovascular
health of the athlete, monitoring the sleep quality of the athlete,
assessing the hydration status of the athlete to prevent hydration-
related injuries, and complementing current RTP protocols.
Future research involving the application of wearable sensors
toward achieving high fidelity performance optimization models
should focus on assessing the relationship between external and
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FIGURE 6 | Role of wearable technology in a COVID-19 Return-to-Play algorithm for athletes of all ages. Continuous data collection using wearable technology can

assist in maintaining and resuming training workloads following lockdown or athletes recovering from COVID-19.

internal workload, thermoregulatory response, and biomarker
concentrations (e.g., lactate, cortisol, creatine kinase) during
dynamic exercise.

Can we assess the likelihood of injury using the intersection of
wearable technology and ML? Currently, the answer still remains
no. Current studies show that injury prediction is limited due to
lack of accurate multivariate probabilistic models which are likely
derived from an incomplete understanding of the determinants
of injury and how they behave in a complex system. Rather
than focusing on risk factors and associations, we are beginning
to understand that athletes are dynamic systems that require
a systems-based approach to understanding athlete states (in-
competition, rehabilitating, etc.) and the network of variables
that contribute to performance and injury risk such as sRPE,
movement parameters, sleep quality, sweat rate, cardiac function,
etc. In all cases, the implementation of these models using
wearable sensor data stands to complement, rather than replace,
the current decision-making and expertise of athletic trainers and
team physicians.
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