
RESEARCH ARTICLE

Investigation of horizontal gene transfer of

pathogenicity islands in Escherichia coli using

next-generation sequencing

Maxim Messerer, Wolfgang Fischer, Sören Schubert*
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Abstract

Horizontal gene transfer (HGT) contributes to the evolution of bacteria. All extraintestinal

pathogenic Escherichia coli (ExPEC) harbour pathogenicity islands (PAIs), however rela-

tively little is known about the acquisition of these PAIs. Due to these islands, ExPEC have

properties to colonize and invade its hosts efficiently. Even though these PAIs are known to

be acquired by HGT, only very few PAIs do carry mobilization and transfer genes required

for the transmission by HGT. In this study, we apply for the first time next-generation se-

quencing (NGS) and in silico analyses in combination with in vitro experiments to decipher

the mechanisms of PAI acquisition in ExPEC. For this, we investigated three neighbouring

E. coli PAIs, namely the high-pathogenicity island (HPI), the pks and the serU island. As

these PAIs contain no mobilization and transfer genes, they are immobile and dependent on

transfer vehicles. By whole genome sequencing of the entire E. coli reference (ECOR) col-

lection and by applying a phylogenetic approach we could unambiguously demonstrate that

these PAIs are transmitted not only vertically, but also horizontally. Furthermore, we could

prove in silico that distinct groups of PAIs were transferred "en bloc" in conjunction with the

neighbouring chromosomal backbone. We traced this PAI transfer in vitro using an F’ plas-

mid. Different lengths of transferred DNA were exactly detectable in the sequenced trans-

conjugants indicating NGS as a powerful tool for determination of PAI transfer.

Introduction

Evolution of bacteria occurs mainly in two major ways, vertical and horizontal. While the ver-

tical transfer is rather slow and inconsistent, the horizontal transfer affects larger parts of the

genome and has a greater influence on the evolution of bacteria, especially on the gain of path-

ogenic properties. Horizontal gene transfer (HGT) can take place by transduction, transforma-

tion and conjugation. Plasmids and also larger parts of the genome, like genomic islands, can

be conjugated from one bacterium to another [1]. Pathogenicity islands (PAIs) are a subgroup

of genomic islands. PAIs encode several virulence factors such as adhesins, toxins, capsules

and siderophore systems and play a major role in the evolution of pathogenic bacteria such as

extraintestinal pathogenic Escherichia coli (ExPEC). ExPECs are responsible for pyelonephritis,

cystitis, septicaemia and newborn meningitis [2].
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The species E. coli is subdivided into four major phylogenetic groups (A, B1, B2 and D).

ExPECs belong mostly to groups B2 and D [2]. The E. coli reference (ECOR) collection con-

sisting of 72 strains has been shown to represent the genetic diversity of this species. This col-

lection of commensal and pathogenic strains from all phylogenetic groups of E. coli was

composed in the early 1980s [3].

ExPECs harbour different PAIs, some of which are larger than 100 kb in size [4]. These

islands have distinct structural features, e.g. they (i) are integrated at a tRNA gene, (ii) carry a

gene for a phage-type integrase and (iii) display a GC-content distinct from that of the chro-

mosomal backbone.

We focused on the high-pathogenicity island (HPI), the pks and the serU island. These PAIs

contribute significantly to the ExPEC virulence [5–7], are next to each other on the chromo-

some and are not self-transmissible. Therefore, these PAIs are very suitable to investigate large

scale HGT within the species E. coli.
The HPI is a widespread PAI among Enterobacteriaceae and has already been successfully

used to demonstrate HGT [5]. This archetypal PAI encodes the synthesis of the siderophore

yersiniabactin, representing a highly efficient iron-scavenging molecule. The sequence of the

HPI is conserved among different bacterial species, with two distinct types of the island exist-

ing in ExPECs: approximately one percent of HPI-positive E. coli strains harbour an ICE-type

(integrative conjugative element) island, which is completely self-transmissible. About 99% of

E. coli strains carry a non self-transmissible island with a deletion of about 30 kb, encompass-

ing the mobilization and transfer genes [5].

The two other PAIs, the serU island and the pks island, carry neither mobilization nor trans-

fer genes [6;7]. The hybrid non-ribosomal peptide-polyketide colibactin encoded by the pks
island induces double-strand DNA breaks and cell cycle arrest in eukaryotic cells [8]. The viru-

lence factor TcpC encoded by the serU island interferes with the innate immune response by

interrupting the NF-κB signalling pathway [9]. These two islands are only found in strains of

the phylogenetic group B2.

For this study, we sequenced for the first time in large scale the whole genomes of the

ECOR collection and some additional strains with next-generation sequencing (NGS). We

used two approaches to investigate how HGT contributes to the evolution of PAIs. First, we

examined the linked transfer of the described islands and its impact on evolution within the

ECOR collection. With NGS, it was possible to compare the phylogeny of the whole PAIs and

their neighbouring genomic regions in large scale. Second, we proved the co-transfer of these

PAIs with an F’ plasmid-mediated conjugation. It was possible to regard potential crossing-

over regions for the F’ plasmid, to see whether the DNA was conjugated in one or more pieces

and to get an overview about the sizes of the transferred DNA.

Materials and methods

Bacterial strains, plasmid and primers

The entire 72 strains of the ECOR collection were used as a major set for the NGS approach

and the subsequent in silico investigation of the phylogeny of E. coli. Further E. coli strains

characterized previously were included in the sequencing project to complement the set of E.

coli isolates: the strains S107 and S108 from the Le Gall collection [10] reveal a distinct serU
island [7], the UPEC strain NU14 [11] was successfully used as donor strain in transfer ex-

periments [5]. Finally, we included the archetypal UPEC strain 536 [12]—harboring all three

analyzed PAIs—as a reference sequence for the phylogenetic analyses and as donor for the

transfer experiments. The K-12 E. coli strain MG1655 (strR, phylogenetic group A, no β-hemo-

lysis) [13] was used as recipient strain, as well as its nalidixic acid resistant mutant, which we
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constructed for this study. The F’ plasmid (tetR) used in this study was isolated from laboratory

E. coli strain XL1-Blue MRF’ (Stratagene; Santa Clara, CA, USA). The primers used in this

study are given in Table 1.

Whole genome sequencing and phylogenetic analysis

The genomic DNA was isolated using the "High Pure PCR Template Preparation Kit" (Roche

Diagnostics; Unterhaching, Germany) as indicated by manufacturer’s protocol. The sequenc-

ing was performed at the Institute Pasteur, Paris (GENOPOLE—Transcriptomics & Epige-

nomics platform). To construct the libraries, the "TruSeq Kit" (Illumina; San Diego, CA, USA)

was used according to manufacturer’s instructions. The read type of the HiSeq 2000 (Illumina;

San Diego, CA, USA) was single-end 100 nucleotides.

The parameters used for each approach with the NGS data are given in S2 Table.

The raw reads were imported as Illumina data to CLC Genomics Workbench 6.5 (CLC bio;

Aarhus, Denmark). After trimming of the sequences, we performed de novo assemblies and

alignments.

The phylogenetic trees (Maximum Likelihood (ML) with bootstrap and with Bayesian

branch support) were constructed using the online tool PhyML 3.0 [14]. The CLC software

was also used for the in silico MLST applying the Neighbour Joining (NJ) algorithm [15] and

to create phylogenetic trees. The trees using ML with Bayesian inference and the analysis of

the E. coli core genome are present in the manuscript. The trees using NJ and ML with boot-

strap are attached to the supplemental section. The selected bootstrap cut-off is 75.

The statistical analysis was performed with the CLC software using the "Create Pairwise

Comparison" tool. In order to calculate the DNA homology we used the parameter "percent

identity" and to determine the number of Single Nucleotide Polymorphisms (SNPs) the

parameter "differences". The software was also used to differentiate between donors and recipi-

ents DNA in the genomes of transconjugants of in vitro transfer experiments.

Table 1. Primers.

Primer name Primer sequence

ChuA.1 5’-GACGAACCAACGGTCAGGAT-3’

ChuA.2 5’-TGCCGCCAGTACCAAAGACA-3’

YjaA.1 5’-TGAAGTGTCAGGAGACGCTG-3’

YjaA.2 5’-ATGGAGAATGCGTTCCTCAAC-3’

TspE4C2.1 5’-GAGTAATGTCGGGGCATTCA-3’

TspE4C2.2 5’-CGCGCCAACAAAGTATTACG-3’

fyuA.1080.for 5’-CTACGACATGCCGACAATGCC-3’

fyuA.1709.rev 5’-TGCTTCCCGCGCCATAACGTG-3’

clbA.IHE.for 5’-TAACTTCCTTCACTATCTCA-3’

clbA.IHE. rev 5’-GAGAGGCTAATGCGAGAAAT-3’

tcpC.for 5’-GGCAACAATATGTATAATATCCT-3’

tcpC.rev 5'-GCCCAGTCTATTTCTGCTAAAGA-3'

HPI-fyuA-2947.rev 5`-CAACTGCTTCCGTTATAGTGAC-3

HPI-fyuA-2132.for 5`-AAATTGCGATTAGGACAAATAG-3

p34S-Cm2.484.rev 5´-TCACCGTAACACGCCACATCTT-3´

The Primers which were used in this study are listed. They were used to determine the phylogenetic group (ChuA, YjaA, TspE4C2), to check the presence

of the PAIs (fyuA, clbA, tcpC) and the insertion of a chloramphenicol resistance cassette (HPI-fyuA, p34S-Cm2).

https://doi.org/10.1371/journal.pone.0179880.t001
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The draft genomes were annotated by the PGAP tool from NCBI. The de novo assemblies

are deposited to NCBI GenBank and the NGS raw reads to NCBI SRA database. The accession

numbers are listed in S1 Table.

Beside the PAIs and the neighbouring chromosome, housekeeping gene fragments and the

E. coli core genome were investigated to definitively determine the phylogenetic groups. We

used the Pasteur scheme which includes six housekeeping genes (trpA, trpB, pabB, putP, icd
and polB) and has been used for several phylogenetic studies before [16;17].The core genome

was analyzed using the tool Parsnp [18]. The closed genome of E. coli K-12 strain MG1655 was

set as reference. The visualization of the core genome was performed by CLC Genomics

Workbench.

Conjugation and transfer of PAIs

For transfer experiments of the PAIs we used E. coli strains NU14 and 536 (phylogenetic

group B2, β-hemolysis positive) as donors according to previous protocols [5]. As recipients,

the E. coli strain MG1655 (phylogenetic group A, β-hemolysis negative) and its nalidixic acid

(nal) resistance mutant were used. Dilutions were plated on LB plates containing chloram-

phenicol (cm) and streptomycin (str) or nalidixic acid to screen for transconjugants. Further-

more, the transconjugants were tested by PCR for the presence of the respective islands as well

as the respective phylogenetic group. The β-hemolysis activity was checked on Columbia

blood agar plates. The conjugation efficiency (colony forming units (cfu) per ml) was calcu-

lated as a ratio between the number of transconjugants and donors [19]. To calculate the effi-

ciency for the transmission of the F’ plasmid, we selected tetracycline- (tet) and str-resistant

clones. All conjugations were done at least in triplicates for the estimation of efficiency.

conjugation efficiency ¼
transconjugants

donors
cfu=ml

Results

Simple analysis of draft genomes generated by large scale sequencing

The aim of this study was to decipher large scale horizontal gene transfer (HGT) in Escherichia
coli affecting its genome. To analyse this, we determined for the first time the draft genomes of

all the 72 strains of the E. coli reference (ECOR) collection as well as some additional isolates

using next-generation sequencing (NGS). The raw data obtained by NGS consisted of a mean

number of 9,105,077 reads per genome. A 99.84% of the sequenced nucleotides revealed

unambiguous bases and the Phred quality score was 40 on average indicating high quality data

[20]. Coverage of the genomes as well as N50 values are given in S1 Table. The de novo assem-

bly using the CLC software resulted in about 150 contigs larger than 1 kb with maximum

lengths of 145 to 430 kb. To prove the applicability of a phylogenetic approach using draft

genomes, we deliberately resigned from performing any additional re-sequencing and gap clo-

sure procedures. In order to trace the horizontal transfer and evolution of PAIs, the focus of

the present work was on the three neighbouring PAIs, namely the HPI, pks and serU island as

well as the adjacent genomic regions [5;8;9].

With the generated NGS data we performed three approaches. Firstly, the investigation

using an in silico Multi Locus Sequence Typing (MLST) based on different fragments of house-

keeping genes in comparison with the E. coli core genome. Secondly, the analysis of the three

mentioned neighbouring PAIs and their transmission in silico. Thirdly, the transfer of these

three PAIs in vitro followed by an in silico study of the resulting transconjugants.

Horizontal gene transfer in Escherichia coli investigated by next-generation sequencing
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Investigation of an MLST approach and the core genome to confirm the

phylogeny of the E. coli species

In order to confirm the ECOR phylogeny and to distinguish between vertical and horizontal

PAI transfer in E. coli we applied an in silico MLST approach and analyzed the species core

genome. Several MLST schemes have been described so far to delineate the E. coli phylogeny

including the Achtman and the Pasteur scheme [21;22]. These schemes rely on the sequence

variation of distinct fragments of E. coli housekeeping genes with sequence length of about 500

bp to distinguish different phylogenetic groups. The NGS data enabled the comparison of the

nucleotide sequences of the gene fragments of the known Pasteur MLST scheme and the E. coli
core genome to classify the strains. As we investigated the possibility to work with draft

genomes without re-sequencing, the tool Parsnp was suitable to analyse the E. coli core genome

using incomplete genomes.

The fragments of these six housekeeping genes from the Pasteur scheme led to

concatenated sequences with a total length of 3,045 bp [16]. To generate an MLST-based tree,

we compared the concatenated sequences from all strains using Maximum Likelihood (ML)

[14] and the Neighbour-Joining (NJ) algorithm [15]. The constructed phylogenetic tree (Figs 1

and S1) termed "MLST tree" matched highly with previously published data [22–24].

Next, we analyzed the E. coli core genome using the tool Parsnp [18] (Fig 2). As reference

we set the closed genome of E. coli K12-strain (phylogenetic group A). The total coverage

among all sequences representing the core genome was 40.9%. This is in total agreement with

Fig 1. Radial tree of the six housekeeping gene fragments. The radial tree of the six housekeeping gene

fragments (trpA, trpB, pabB, putP, icd and polB) from the ECOR collection and strains S107, S108 and 536

performed by PhyML using the Maximum Likelihood algorithm with Bayesian branch support. The scale bar

represents the number of SNPs per nucleotide. The node colour represents the distribution of the PAIs. The

node shapes show the phylogenetic group according to the triplex PCR [2].

https://doi.org/10.1371/journal.pone.0179880.g001
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published data [25;26]. The phylogenetic groups revealed by the analysis of the core genome

reflected mostly the groups shown by the "MLST tree". The strains were assigned to the mayor

groups A, B1, D and B2 and also to the minor groups E and F [21;22], which are highlighted.

The ECOR strain phylogeny is summarized in S3 Table.

Specific subtypes of the different PAIs are correlated to specific groups

After the investigation of the E. coli phylogeny we examined the HGT of immobile PAIs in sil-
ico. The NGS data enabled a large scale analysis of the HPI, pks and serU island and their

neighbouring chromosomal regions. The genome region under investigation covering all

islands and backbone sequences in between encompassed about 126 kb. The draft genome

sequences provided sufficient sequence information to analyse this DNA region in all strains.

First, we constructed three phylogenetic trees (NJ, ML with bootstrap and Bayesian infer-

ence) comparing the entire HPI (31.5 kb) of all positive strains in order to determine the phy-

logenetic history of this island (Figs 3 and S2). Interestingly, in all trees we could observe

distinct clonal groups of the HPI related to the number and distribution of the neighbouring

PAIs. Clonal groups encompassing strains with a distinct number of PAIs were named "PAI-

groups". Strains of PAI-group 1 carried only the HPI. PAI-group 2a strains included the HPI

and the pks island, PAI-group 2b strains harboured the HPI and the serU island. In members

Fig 2. Radial tree of the E. coli core genome. The radial tree of the core genome was generated by Parsnp.

Strain MG1655 was set as reference. The total coverage among all sequences was 40.9%. The phylogenetic

groups are highlighted. The scale bar represents the number of SNPs per nucleotide. The node colour

represents the distribution of the PAIs. The node shapes show the phylogenetic group according to the triplex

PCR [2].

https://doi.org/10.1371/journal.pone.0179880.g002
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of PAI-group 3, all three islands were present. Notably, looking at the phylogram of the HPI

(Figs 3 and S2), the formation of PAI-groups 2a and 2b was apparently not due to the deletion

of single PAIs from PAI-group 3, as the members of the three different PAI-groups did not

share the same clonal group of the HPI. Members of PAI-group 1 revealed different distinct

HPI clonal groups as shown in the phylogenetic tree (Fig 3). This heterogeneity suggested that

the HPI is the eldest of the three PAIs. Analyses for sequence homology of the entire HPI fur-

ther corroborated the existence of these clonal groups. The analyses revealed that within the

PAI-groups 2a, 2b and 3, the average homology was very high with values between 99.98% and

99.99% (4.5, 7 and 2.4 SNPs, respectively) (Fig 3). In contrast, the homology between different

PAI-groups was considerably lower with sequence identities between 99.54% and 99.63%

(116.8 to 144.2 SNPs). This indicated that these clonal groups of the HPI had a different phylo-

genetic history.

Next, the serU island (27 kb) and pks island (54.5 kb) were each investigated regarding their

relationship. The analysis of their genome sequences revealed that the respective serU islands

(Figs 4 and S3) and pks islands (Figs 5 and S4) differed significantly according to the affiliation

to the distinct PAI-groups. Each PAI-group consisted of a specific clonal group regarding the

respective island. The sequence homology of serU islands of strains within PAI-group 2b was

99.93% (18 SNPs). A similar homology was found within PAI-group 3 with 99.94% (16.6 SNPs).

However, comparing these two clonal groups, the lower homology of 99.27% (197.3 SNPs) cor-

roborated a different evolution. Regarding the nucleotide sequences of the pks islands within

PAI-groups 2a, the homology was 99.99% (5.7 SNPs). Within PAI-group 3, a sequence identity

of 99.97% (18.3 SNPs) was found. Between these two PAI-groups, the homology was also 99.97%

(16 SNPs). Comparing the two different islands, the pks islands were in general more similar than

the serU islands (Figs 4 and 5). This indicated that the pks island is probably the most recently

acquired of the investigated PAIs.

Fig 3. The phylogenetic tree of the entire HPI. All strains are at least HPI-positive. The text and dot colour

represents the PAI-group and the dot shape the phylogenetic group. Except strain ECOR65 (asterisk) from

PAI-group 2a, all members of PAI-groups 2a (blue), 2b (green) and 3 (red) showed a HPI subtype specific for

their group. The utilized algorithm was Maximum Likelihood with Bayesian branch support performed by

PhyML. The scale bar represents the percentage of SNPs per nucleotide. The length of the HPI sequence is

about 31.5 kb. The average homology and SNPs within the PAI-groups: 2a 99.99% (4.5), 2b 99.98% (7), 3

99.99% (2.4). The average homology and SNPs between the PAI-groups: 2b-2a 99.63% (116.8), 2b-3

99.54% (144.2), 2a-3 99.59% (129.9). The average homology and SNPs between ECOR65 and the PAI-

groups: EC65-2a 99.66% (107.3), EC65-2b 99.67% (104.5), EC65-3 99.53% (149.3).

https://doi.org/10.1371/journal.pone.0179880.g003
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Moreover, we investigated the E. coli backbone genome between the islands to gain insight

into the diversity of these sequences. If the PAIs were transferred together "en bloc", the back-

bone should cluster and congregate like the PAI subtypes. We named these sequences "inter-

PAI regions" which exist between the serU island and the HPI (region A, 1 kb) and between

the HPI and the pks island (region B, 12.5 kb) (Fig 6). We constructed phylogenetic trees (NJ,

ML with bootstrap and Bayesian inference) out of these sequences which are shown in Figs 7

and S5 and Figs 8 and S6. These trees resembled that of the HPI-based tree identifying the

same PAI-group and indicated that the respective backbone regions were transmitted together

Fig 4. The phylogenetic tree of the entire serU island. All strains are at least HPI- and serU island-positive.

The text and dot colour represents the PAI-group and the dot shape the phylogenetic group. The members of

PAI-groups 2b (green) and 3 (red) showed a serU island subtype specific for their group. The algorithm which

was used by PhyML was Maximum Likelihood with Bayesian branch support. The scale bar represents the

percentage of SNPs per nucleotide. The size of the serU island is about 27 kb. The average homology and

number of SNPs were similar within the PAI-groups for 2b and 3 with 99.93% (18.0) and 99.94% (16.6),

respectively. Between these two PAI-groups, the homology was 99.27% with 197.3 SNPs on average.

https://doi.org/10.1371/journal.pone.0179880.g004

Fig 5. The phylogenetic tree of the entire pks island. All strains are at least HPI- and pks island-positive.

The text and dot colour represents the PAI-group and the dot shape the phylogenetic group. Except strain

ECOR65 (asterisk) from PAI-group 2a, all members of PAI-groups 2a (blue) and 3 (red) showed a pks island

subtype specific for their group. The algorithm we used was Maximum Likelihood with Bayesian branch

support performed by PhyML. The scale bar represents the number of SNPs per nucleotide. The sequence

length of the pks island is about 54.5 kb. Within PAI-group 2a the homology and the number of SNPS on

average are 99.99% and 5.7 respectively, within PAI-group 3 99.97% and 18.3. The average homology and

SNPs between ECOR65 and the PAI-groups: EC65-2a 99.89% (61.8), EC65-3 99.89% (59.3).

https://doi.org/10.1371/journal.pone.0179880.g005
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"en bloc" with the islands. The analyses of sequence homologies corroborated this hypothesis

(Figs 7 and 8). The sequences of region A were almost identical within the PAI-groups 2a, 2b

and 3 with sequence identities from 99.97% to 100%, whereas those between the PAI-groups

were definitely lower (99.60% to 99.78%). Additionally, the sequences of region B within

respective PAI-groups exhibited very high homologies (99.98% to 99.99%). These sequence

homologies were less pronounced between the three PAI-groups (99.28% to 99.87%).

As third level of evidence, we wanted to ensure that the PAIs were transferred via HGT

and not vertically through cell division. For this purpose we compared the phylogenetic tree of

the core genome (Fig 2) with that of the PAIs (Figs 3–5). If the sequences of the core genome

cluster together, the strains originated from the same ancestor. In contrast, a sequence variety

indicates a different origin and supports the idea of a transmission of the PAIs via HGT. The

fact that strains with the same PAI distribution did not seem to be clonal regarding their

core genome sequences (Fig 2) proved that the transmission of the PAIs was not vertical, but

horizontal.

Analysis of the outlier strain ECOR65 which showed a distinct

phylogenetic pattern

By analysing the ECOR collection in silico, we found one strain, namely ECOR65, which did

not fit into the proposed scheme. ECOR65 harboured the PAIs HPI and pks island and was

Fig 6. The arrangement of the PAIs on the chromosome. Each island is inserted in a tRNA (serU island:

serU tRNA; HPI: asnT tRNA; pks island: asnW tRNA). The size is given in kilobases (kb). The regions

between the PAIs are called inter-PAI regions (between the serU island and the HPI (region A): about 1 kb;

between the HPI and the pks island (region B): about 12 kb).

https://doi.org/10.1371/journal.pone.0179880.g006

Fig 7. Phylogenetic tree of region A. The inter-PAI region between the serU island and the HPI (region A) is

about 1 kb and is shown as phylogenetic tree. The text and dot colour represents the PAI-group and the dot

shape the phylogenetic group. The algorithm which was used by PhyML was Maximum Likelihood with

Bayesian branch support. The scale bar represents the percentage of SNPs per nucleotide. Within PAI-

groups 2a and 2b, the percental homology is 100% without any SNP. Within PAI-group 3, the homology is

99.97% and the number of SNPs 0.3 on average.

https://doi.org/10.1371/journal.pone.0179880.g007
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thus, by definition, a member of PAI-group 2a. Comparing the HPI sequence of ECOR65 with

those of the PAI-groups 2a, 2b and 3, the HPI of ECOR65 was only distantly related (Fig 3). In

contrast, looking at the phylogenetic trees of the pks island (Fig 5) and the inter-PAI regions

(Figs 7 and 8), the strain resembled members of PAI-group 3, suggesting the loss of the serU
island in ECOR65. To prove whether ECOR65 lost this island we divided the inter-PAI regions

into equal parts and analysed them separately to examine the distribution of the genetic differ-

ences. The region between the serU island and the HPI (region A) is 1 kb in length. By investi-

gating the two 500 bp parts of region A we found the part next to the HPI to cluster ECOR65

together with strains of PAI-group 3. In the other 500 bp part the sequence of ECOR65 had an

aberration of only one single SNP compared to the sequences of the other strains, which we

regarded as non-discriminatory. The length of the inter-PAI region between the HPI and the

pks island (region B) is about 12.5 kb. We divided this region into equal sized parts and ana-

lysed the respective phylogenetic trees. The dendrogram of the 6 kb region next to the HPI

classified ECOR65 strain to be of PAI-group 3. In contrast, the tree of the region next to the

pks island clustered strains of PAI-group 3 and 2a together with ECOR65. However, the latter

6 kb region was regarded as non-discriminatory displaying only an average of 1.4 SNPs. In

conclusion, these data pointed towards the loss of the serU island in the ECOR65 strain, but

did not explain the sequence difference of HPI of ECOR65 to members of the PAI-group 3.

PAIs are transmissible via F’ plasmid-mediated transfer

After the in silico investigation of the ECOR collection and distinct additional strains, the hy-

pothesis of an "en bloc" transfer was proven applying an in vitro approach. We performed an F’

plasmid-mediated conjugation to reconstruct the simultaneous transmission of multiple PAIs.

The resulting transconjugants were sequenced and further analyzed. We focused (i) on the

amount of transferred DNA from different donor strains and (ii) on the recognition of poten-

tial hotspots for recombination. NGS is a powerful tool to retrace an "en bloc" transfer and to

gain insight into the evolution of the PAIs and the surrounding backbone. The sequenced

Fig 8. Phylogenetic tree of region B. The dendrogram of the inter-PAI region between the HPI and the pks

island (region B). The size of the sequence is about 12 kb. The text and dot colour represents the PAI-group

and the dot shape the phylogenetic group. The algorithm which was used by PhyML was Maximum Likelihood

with Bayesian branch support. The scale bar represents the number of SNPs per nucleotide. For the PAI

groups 2a, 2b and 3, the average homology was 99.99%,99.98% and 99.98% respectively and the number of

SNPs were 1.3, 3 and 2.3 on average.

https://doi.org/10.1371/journal.pone.0179880.g008
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genomes of donors, transconjugants and recipients were compared by an alignment to identify

the exact regions of homologous recombination.

We used both E. coli strain NU14 HPI-Cm F’ carrying the HPI together with the pks island

(PAI-group 2a) and E. coli 536 HPI-Cm F’ harbouring all three islands (PAI-group 3) as donor

strains to confirm our hypothesis. The respective HPIs were tagged with a chloramphenicol

resistance cassette applying the method of Datsenko and Wanner [27] to track the transfer of

the PAIs. As the investigated islands were immobile, an F’ plasmid was conjugated to the

donors to enable the transfer. As the transmissions were conducted to the recipient E. coli
MG1655, the further characteristics of selected transconjugants were to belong to phylogenetic

group A and to reveal no β-hemolysis on blood agar plates. In order to compare the conjuga-

tion efficiency of an F’ plasmid transfer in general (strR, tetR) with a PAI transmission in spe-

cial (strR, cmR), we calculated the ratio between the number of transconjugants and donors

[19]. The transconjugants were checked by PCR for the presence of the HPI and the pks island,

and in case of the donor strain 536 HPI-Cm F’, additionally for the presence of the serU island.

The pure F’ plasmid transfer exhibited a conjugation efficiency of 5.24 x 10−4 cfu/ml. None

of 120 screened clones were resistant to chloramphenicol indicating a transmission of other

DNA content than the HPI. In contrast to this conjugation, the HPI transfer rate of donor

NU14 HPI-Cm F’ (HPI and pks island) was significantly lower with 2.94 x 10−7 cfu/ml. The

conjugation efficiency for the HPI transfer of donor 536 HPI-Cm F’ (HPI, pks and serU island)

was very similar with 3.85 x 10−7 cfu/ml. This indicated that the efficiency was independent of

the donor. Interestingly, 50% of the transconjugants were tetracycline-resistant, indicating the

retention of the F’ plasmid. After three passages without antibiotic pressure 90% of the initially

tetracycline-resistant strains were not able to grow on tetracycline-LB-plates any more. The

loss of the resistance could reflect the recombination via double crossing-over (exchange of

donor and recipient DNA) and the loss of the F’ plasmid. Notably, the tetracycline-resistant

transconjugants were able to spread their new PAIs with a 100-fold enhanced conjugation effi-

ciency of 4.14 x 10−5 cfu/ml. This transfer rate resembled more the pure F’ plasmid transfer

than the PAI transfer.

Next, we analysed the transconjugants in silico. For this, we sequenced the whole genomes

of the respective transconjugants to gain insight into the F’ plasmid transfer of the PAIs, their

backbone and the recombination into the recipients. We took tetracycline-sensitive transcon-

jugants from five independent conjugations of donor NU14 HPI-Cm F’ (PAI-group 2a) and

from four independent conjugations of donor 536 HPI-Cm F’ (PAI-group 3). The sequences

of all investigated transconjugants revealed exclusively unfragmented DNA transfer events,

with only one piece of foreign DNA found per isolate. Furthermore, the tetracycline-negative

strains revealed no F’ plasmid DNA in their genome indicating a double, rather than a single,

crossing-over. The PAIs were always transmitted completely from donors to recipients. This

could be due to the fact that no homologous regions (related to the islands) were present in the

recipient. Also no IS elements contributing to recombination are described in the three PAIs.

With the entire genome sequences of donor and recipient strains in our hands, the NGS

approach enabled us to distinguish between DNA of donor and recipient within the trans-

conjugant sequences. The comparison of donors, recipients and transconjugants showed

that the size of integrated DNA was highly variable (Table 2). The transferred DNA from the

PAI-group 2a strain NU14 HPI-Cm F’ varied between 131,132 bp and 421,058 bp. The PAI-

group 3 strain 536 HPI-Cm F’ transferred DNA fragments from 62,496 bp to 470,591 bp in

size. This indicated that the size of integrated DNA was independent of the donor. Mostly, no

regular hotspots for recombination of the F’ plasmid within the chromosome were detectable.

Although one integration site was similar in three transconjugants, the recombination took

place at various locations within the genome. All sites were analysed for IS elements in the
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genome of E. coli MG1655, but none were found at these places. This finding could relate to

the fact that recombination of an F’ plasmid into the chromosome can occur at any homolo-

gous region [28].

Interestingly, only 64 of 70 transconjugants (91.4%) analysed by PCR had obtained the pks
island from the donors. No residual sequences of the pks island were found in silico in the two

sequenced isolates which had previously been identified as PCR-negative. This indicated a

transfer in an "all or nothing" fashion.

Discussion

The 72 strains of the Escherichia coli reference (ECOR) collection were composed in the early

1980s from a selection of 2,600 E. coli isolates to represent the range of genotypic variation in

the species as a whole [3]. Although the ECOR collection does not fully represent the different

pathotypes of E. coli, it is suitable to analyse the horizontal gene transfer (HGT) of extraintest-

inal pathogenic E. coli (ExPEC) pathogenicity islands (PAIs) due to the presence of this patho-

type in the compilation [24]. This strain collection was used for a variety of publications over

the last three decades. Differences in some strains have been described within the ECOR col-

lection, mainly regarding their published virulence factors [29]. Therefore, next-generation

sequencing (NGS) is a powerful tool enabling the definite verification of the respective ECOR

strains and delivering the adequate sequence data for phylogenetic comparisons of the strains.

Meanwhile, the cost for whole genome sequencing decreased enormously compared to the

introduction of this new technology [30]. Besides the ECOR collection, we used three arche-

typal ExPEC strains for our study: strain 536 [12], S107 and S108 [10]. As ExPECs are relevant

clinical pathogens with virulence often linked to PAIs [31], they are ideal to investigate PAI

transfer in E. coli.
To our knowledge, the HGT of large DNA regions has not been studied by an NGS

approach in such a comprehensive strain collection. Due to the high quality raw data obtained

by NGS, the assembly of draft genomes containing large contigs was possible. The aim of this

study was to analyse if these NGS draft genomes are sufficient for (i) phylogenetic analyses of

the core genome and (ii) defining PAI transfer in E. coli by combining in silico and in vitro
experiments. In order to determine the phylogenetic groups of the ECOR collection and the

additional strains, we analyzed the E. coli core genome and additionally applied an in silico
MLST by analysing the housekeeping genes of the Pasteur MLST scheme (trpA, trpB, pabB,

putP, icd and polB), which seemed to be only little affected by HGT and recombination events

Table 2. Transconjugants.

Transconjugant size of donor DNA [bp]

NU14 HPI-Cm F’ x MG1655 K1 223,368–224,149

NU14 HPI-Cm F’ x MG1655 K2 321,955–322,073

NU14 HPI-Cm F’ x MG1655 K3 419,923–421,058

NU14 HPI-Cm F’ x MG1655 K4 131,132–132,269

NU14 HPI-Cm F’ x MG1655 K5 (no pks island) 198,334–198,400

536 HPI-Cm F’ x MG1655 K1 225,011–226,036

536 HPI-Cm F’ x MG1655 K2 470,189–470,591

536 HPI-Cm F’ x MG1655 K3 348,167–348,408

536 HPI-Cm F’ x MG1655 K4 (no pks island) 62,496–62,711

The transconjugants from the independent conjugations NU14 HPI-Cm F’ x MG1655 and 536 HPI-Cm F’ x

MG1655 are listed. The amount of transferred donor DNA is given in base pairs (bp).

https://doi.org/10.1371/journal.pone.0179880.t002
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[16;32]. We constructed two phylogenetic trees using the standard 500 bp fragments of these

six genes ("MLST tree") and the core genome. The structure of the "MLST tree" was in almost

perfect agreement with the respective data of previous studies [22–24].

MLST is a good approach for rough classification of strains in phylogenetic groups, but by

NGS the analysis of the core genome and the yield of higher resolution of phylogeny is possi-

ble. As the draft genomes of the entire ECOR collection are now available for the scientific

community, extensive in silico approaches can be performed to investigate genomic regions of

interest. Furthermore, the draft genomes were used to analyse the DNA acquisition combining

in silico and in vitro experiments with a focus on three PAIs, namely the HPI, the pks and the

serU island as well as the surrounding backbone genome. Due to the distribution of the three

PAIs, we classified the analysed strains into distinct clusters named PAI-groups. We were able

to demonstrate, that the isolates of the different PAI-groups carried distinct PAI subtypes

regarding the respective islands. Also the neighbouring backbone regions were nearly identical

within each PAI-group. In contrast, the housekeeping genes scattered around the genome

showed no relationship among the strains within each group. This evidenced the same origin

of these PAIs and the directly adjacent backbone genome underscoring their horizontal "en
bloc" transfer.

Our 3-way comparison of phylogenetic trees using ML with bootstrap, ML with Bayesian

inference and NJ showed differences in clustering ECOR strains, but the conclusions to the

horizontal PAI transfer was supported by all three methods.

In order to reproduce the "en bloc" transfer indicated by our in silico data, we constructed

two donors: one harbouring the HPI and the pks island (NU14 HPI-Cm F’; PAI-group 2a) and

one harbouring all three PAIs (536 HPI-Cm F’; PAI-group 3). To apply a transfer of immobile

PAIs, we used an F’ plasmid which transfers the donors’ DNA to the recipients leading to inte-

gration. The resulting transconjugants were fully sequenced and the NGS data enabled us to

investigate exactly the size of the integrated donor DNA. We could transfer up to 470.5 kb,

which is almost 10% of the whole E. coli genome. These transfer events showed that in most

cases all PAIs were transmitted together with the directly adjacent backbone. Interestingly, the

pks island was only transferred into 91.4% of transconjugants from PAI-group 3. This indi-

cated that the PAIs of the different PAI-groups were not always completely transferred. In con-

trast, we never observed partial transfer of the islands leading to fragmented PAIs. This was

probably due to the required sequence homology of donor’s and recipient’s DNA, suggesting

an "all or nothing" transfer.

Of note, the tetracycline-resistant transconjugants were able to further spread the received

PAIs with higher conjugation efficiency. This could be the reason for the broad distribution of

the E. coli HPI although this PAI is not self-transferable. Interestingly, the ICE-type of the HPI,

which is still mobile, is less present in the E. coli species [5;33].

In the phylogenetic analyses of the pks island and the inter-PAI regions, the strain ECOR65

from PAI-group 2a did not cluster together with strains of the respective PAI-group, but could

be assigned to PAI-group 3 strains. Instead, the HPI sequence resembled those of PAI-group

1, which were scattered over the phylogenetic tree of the HPI. One possible explanation would

be that ECOR65 gained all three PAIs and the neighbouring backbone from a member of PAI-

group 3 and subsequently lost the serU island in a deletion event. It was reported that the

region surrounding the serU island and the HPI is a hotspot of recombination [34] and a "bas-

tion of polymorphism" [34;35]. Nevertheless, this hypothesis doesn’t explain the divergence

between the ECOR65-HPI and the HPIs of PAI-group 3 strains. Another explanation is based

on our findings of the in vitro approach. According to the phylogenetic tree of the HPI (Fig 3),

ECOR65 was a former PAI-group 1 isolate. Then, a PAI-group 3 strain might have transferred

only the pks island instead of three PAIs, representing an incomplete transfer event of the
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respective islands of the PAI group. This would lead to a clonal HPI subtype of PAI-group 1

and a clonal pks island subtype with surrounding backbone genome of PAI-group 3. This

hypothesis is supported by the fact that especially the inter-PAI region between the HPI and

the pks island were identical (Fig 8).

For the first time, we were able to reconstruct the HGT of large genomic regions by a com-

bination of in silico and in vitro experiments due to NGS. The results showed that the exchange

of immobile E. coli PAIs between E. coli isolates also influences the genomic backbone. Further

data have to follow to completely understand the dimension of this transfer.

Supporting information

S1 Fig. Radial tree of the six housekeeping gene fragments. The radial tree of the six house-

keeping gene fragments (trpA, trpB, pabB, putP, icd and polB) from the ECOR collection and

strains S107, S108 and 536. The scale bar represents the number of SNPs per nucleotide. The

node colour represents the distribution of the PAIs. The node shapes show the phylogenetic

group according to the triplex PCR [2]. a) Tree performed by PhyML using the Maximum

Likelihood algorithm with bootstrap. b) Tree performed by CLC Genomics Workbench using

the Neighbour-Joining algorithm.

(TIF)

S2 Fig. The phylogenetic tree of the entire HPI. All strains are at least HPI-positive. The text

and dot colour represents the PAI-group and the dot shape the phylogenetic group. Except

strain ECOR65 (asterisk) from PAI-group 2a, all members of PAI-groups 2a (blue), 2b (green)

and 3 (red) showed a HPI subtype specific for their group. The scale bar represents the per-

centage of SNPs per nucleotide. a) The utilized algorithm was Maximum Likelihood with

bootstrap performed by PhyML. b) The utilized algorithm was Neighbour-Joining performed

by CLC Genomics Workbench.

(TIF)

S3 Fig. The phylogenetic tree of the entire serU island. All strains are at least HPI- and serU
island-positive. The text and dot colour represents the PAI-group and the dot shape the phylo-

genetic group. The members of PAI-groups 2b (green) and 3 (red) showed a serU island sub-

type specific for their group. The scale bar represents the percentage of SNPs per nucleotide. a)

The algorithm which was used by PhyML was Maximum Likelihood with bootstrap. b) The

algorithm which was used by CLC Genomics Workbench was Neighbour-Joining.

(TIF)

S4 Fig. The phylogenetic tree of the entire pks island. All strains are at least HPI- and pks
island-positive. The text and dot colour represents the PAI-group and the dot shape the phylo-

genetic group. Except strain ECOR65 (asterisk) from PAI-group 2a, all members of PAI-

groups 2a (blue) and 3 (red) showed a pks island subtype specific for their group. The scale bar

represents the number of SNPs per nucleotide. a) The algorithm we used was Maximum Like-

lihood with bootstrap performed by PhyML. b) The algorithm we used was Neighbour-Joining

performed by CLC Genomics Workbench.

(TIF)

S5 Fig. Phylogenetic tree of region A. The inter-PAI region between the serU island and the

HPI (region A) is shown as phylogenetic tree. The text and dot colour represents the PAI-

group and the dot shape the phylogenetic group. The scale bar represents the percentage of

SNPs per nucleotide. a) The algorithm which was used by PhyML was Maximum Likelihood

with bootstrap. b) The algorithm which was used by CLC Genomics Workbench was
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Neighbour-Joining.

(TIF)

S6 Fig. Phylogenetic tree of region B. The dendrogram of the inter-PAI region between the

HPI and the pks island (region B). The text and dot colour represents the PAI-group and the

dot shape the phylogenetic group. The scale bar represents the number of SNPs per nucleotide.

a) The algorithm which was used by PhyML was Maximum Likelihood with bootstrap. b) The

algorithm which was used by CLC Genomics Workbench was Neighbour-Joining.

(TIF)
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