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Abstract: The objective of this study was to determine whether (5S)-5-(4-benzyloxy-3,5-dimethoxy-
phenyl)-5,9-dihydro-8H-furo [3’,4’:6,7] naphtho [2,3-d] [1,3]dioxol-6-one (JNC-1043), which is a novel
chemical derivative of β-apopicropodophyllin, acts as a novel potential anticancer reagent and
radiosensitizer in colorectal cancer (CRC) cells. Firstly, we used MTT assays to assess whether JNC-
1043 could inhibit the cell proliferation of HCT116 and DLD-1 cells. The IC50 values of these cell lines
were calculated as 114.5 and 157 nM, respectively, at 72 h of treatment. Using doses approximating
the IC50 values, we tested whether JNC-1043 had a radiosensitizing effect in the CRC cell lines.
Clonogenic assays revealed that the dose-enhancement ratios (DER) of HCT116 and DLD-1 cells
were 1.53 and 1.25, respectively. Cell-counting assays showed that the combination of JNC-1043
and γ-ionizing radiation (IR) enhanced cell death. Treatment with JNC-1043 or IR alone induced
cell death by 50~60%, whereas the combination of JNC-1043 and IR increased this cell death by
more than 20~30%. Annexin V-propidium iodide assays showed that the combination of JNC-1043
and IR increased apoptosis by more 30~40% compared to that induced by JNC-1043 or IR alone.
DCFDA- and MitoSOX-based assays revealed that mitochondrial ROS production was enhanced by
the combination of JNC-1043 and IR. Finally, we found that suppression of ROS by N-acetylcysteine
(NAC) blocked the apoptotic cell death induced by the combination of JNC-1043 and IR. The xenograft
model also indicated that the combination of JNC-1043 and IR increased apoptotic cell death in tumor
mass. These results collectively suggest that JNC-1043 acts as a radiosensitizer and exerts anticancer
effects against CRC cells by promoting apoptosis mediated by mitochondrial ROS.

Keywords: JNC-1043; radiosensitizer; topoisomerase inhibitor; ROS; apoptosis; colorectal cancer

1. Introduction

Colorectal cancer (CRC), which is also known as bowel cancer, colon cancer, or rectal
cancer, comprises cancer developed from the colon or rectum. CRC is the second most
common cause of cancer death in the United States [1,2]. Between 2008 and 2017, there
was a rapid decline in CRC incidence among those 65 years old and older, but the annual
death rate from CRC increased by 1.3% each year in those younger than 50 years old [3].
The treatment modalities currently utilized against CRC are surgery, radiation therapy,
chemotherapy, and immunotherapy [4,5]. The conventional chemo- or radio-therapies for
CRC involve delivering drugs systemically or IR locally to the cancer site of patients. These
modalities exert their effects by disrupting the cell cycle or inducing cell death. However,
repeated usages of these anticancer treatments are usually accompanied by increased
possibilities of resistance and/or side effects. Resistance can be intrinsic or acquired, and is
believed to cause treatment failure in over 90% of resistant patients due to the induction
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of recurrence or metastasis, usually resulting in death [6,7]. To overcome these issues,
researchers worldwide are seeking to develop various improved anticancer drugs and/or
radiosensitizer candidates [8].

Podophyllotoxin (PPT) is a major material used in the development of novel anticancer
drugs. PPT is an active plant ingredient that can be isolated as an abundant lignan from
podophyllin, which is a type of resin produced by Podophyllum peltatum Linnaeus. PPT is
known to exert immunosuppressive activity and antiviral effects against herpes, measles,
influenza, and venereal warts, and has also been shown to act against skin cancer [9]. Given
the beneficial pharmacological properties of PPT, many investigators have synthesized and
characterized various derivatives with the aim of improving the biological activities and
studying the underlying physiological mechanisms. Three representative semi-synthetic
epipodophyllotoxin derivatives have been identified as anticancer drugs: etoposide, tenipo-
side, and etopophos. Their anticancer activities are based on their ability to destroy the DNA
replication machinery by binding DNA topoisomerases, which are ubiquitous enzymes
that control the topological state of DNA in cells. Treatment of cells with these drugs leads
to the formation of DNA-drug-enzyme complexes that facilitate the breakage of one or both
of the DNA strands, eventually leading to cell death or apoptosis [10–12]. We previously
isolated podophyllotoxin acetate (PA), a naturally occurring derivative of PPT, and pre-
sented it as a novel candidate anticancer drug, chemosensitizer, and radiosensitizer against
non-small cell lung cancer (NSCLC) [13,14]. We also synthesized β-apopicropodophyllin
(APP) from PPT and demonstrated that it is a potential anticancer drug and radiosensitizer.
We showed that APP damages microtubule polymerization and DNA, thereby inducing cell
cycle arrest and pro-apoptotic ER stress [15,16]. The radiosensitizing effect of APP resulted
from the ROS accumulation-induced promotion of apoptosis. In the present study, we
synthesized a novel PPT derivative from APP, (5S)-5-(4-benzyloxy-3,5-dimethoxy-phenyl)-
5,9-dihydro-8H-furo [3’,4’:6,7] naphtho [2,3-d][1,3]dioxol-6-one (JNC-1043), and explored
its anticancer drug and radiosensitizer effects and the underlying molecular mechanisms
in CRC cells [17].

2. Results
2.1. JNC-1043 Inhibits Proliferation in CRC Cell Lines by Inducing DNA Damage

JNC-1043 was synthesized from APP (Figure 1a). Structural investigations using
Nuclear Magnetic Resonance (NMR) as well as literature searches confirmed that the
synthesized compound contains a novel chemical structure that enabled us to register
a Korean Patent (No. 10-2090554) and apply for a U.S. Patent (U.S. Application Serial
No. 16991190). We compared the anticancer effects of PA, APP, and JNC-1043 against the
CRC cell lines, HCT116 and DLD-1, and the human colon fibroblast cell line, CCD-18CO
(Figure 1b). Cells were treated with 100 nM PA, APP, and JNC-1043 for 72 h, and cell
viability was determined with the MTT assay. Our results clearly showed that PA and APP
exerted very similar percentages of cytotoxicity on CCD-18CO cells and the CRC cell lines,
whereas JNC-1043 showed very similar levels of cytotoxicity against the CRC cell lines,
but less against the CCD-18CO cells. More specifically, JNC-1043-treated CCD-18CO cells
showed about ~30% less cell death than those treated with APP or PA. These results implied
that JNC-1043 could selectively induce cancer cell death, exhibiting less cytotoxicity against
normal cells.
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Figure 1. Synthesis of JNC-1043 and comparison of its toxicity. (a) Chemical synthesis of (5S)-5-(4-
benzyloxy-3,5-dimethoxy-phenyl)-5,9-dihydro-8H-furo [3’,4’:6,7] naphtho [2,3-d][1,3]dioxol-6-one
(JNC-1043). (b) The human colon fibroblast cell line, CCD-18CO, and the CRC cell lines, HCT116 and
DLD-1, were treated with 100 nM APP, PPT, and JNC-1043 for 72 h, and cell viability was detected
with the MTT assay. * p < 0.05, ** p < 0.01, *** p < 0.001.

To investigate the anticancer effect of JNC-1043, we examined its IC50 (50% inhibition
of viability) values. HCT116 and DLD-1 cells were treated with various concentrations of
JNC-1043 for 48 or 72 h, and MTT assays were performed. The IC50 values of JNC-1043
against HCT116 and DLD-1 cells at 48 or 72 h were 171.9 nM and 159.8 nM or 114.5 nM
and 157 nM, respectively (Figure 2a,b, Table 1). The relatively low IC50 values of JNC-1043
supported its potential value as a candidate of cancer treatment drug.
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Figure 2. Anticancer effect of JNC-1043. The CRC cell lines, HCT116 (a) and DLD-1 (b), were treated
with 62.5, 125, 250, 500, and 1000 nM JNC-1043 for 48 or 72 h, and cell viability was measured with
the MTT assay. IC50 values for JNC-1043 against CRC cell lines were calculated as described in the
Section 4. (c) Immunoblot assay for the detection of γH2AX activation in cells treated with JNC-1043.
HCT116 and DLD-1 cells were incubated with 110 or 150 nM JNC-1043, respectively, and incubated
for 24 h prior to harvesting. The relative band densities were analyzed as described in the Section 4.
All experiments were repeated in triplicate, and the bands in the figures show representative data.
* p < 0.05.

Table 1. IC50 value.

IC50 Value (µM)

48 h 72 h

HCT116 0.1719 0.1145
DLD-1 0.1598 0.1570

Note: IC50 (the 50% inhibitory concentration) was calculated from a concentration-response analysis performed
with the SoftMax Pro software (Molecular Devices, Sunnyvale, CA, USA).

To begin examining the anticancer mechanism of JNC-1043, we used an immunoblot
assay to assess the phosphorylation level of H2AX (γH2AX) (Figure 2c). Our results
revealed that JNC-1043 treatment of HCT116 and DLD-1 cells increased their levels of
γH2AX, indicating that the anticancer effect of JNC-1043 might involve the induction of
DNA damage. Since HCT116 has wild-type p53 and DLD-1 has a mutant p53 [18], these
results also suggest that the anticancer effect of JNC-1043 is not affected by the genetic state
of p53.

2.2. JNC-1043 Acts as a Radiosensitizer by Inhibiting Cell Growth In Vitro

To investigate whether JNC-1043 has a radiosensitizing effect on CRC cells, clonogenic,
cell counting, and immunoblot assays were performed. Firstly, clonogenic assays were
performed by pre-treating cells with JNC-1043 (110 nM JNC-1043 for HCT116 cells and 150
nM JNC-1043 for DLD-1 cells) for 24 h and then irradiating them with 1, 2, 3, or 4 Gy IR. The
DER values were calculated as 1.528 for HCT116 cells and 1.25 for DLD-1 cells (Figure 3a,
Table 2). These results indicate JNC-1043 might be a radiosensitizer candidate. A cell
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counting assay was performed on cells co-treated with 110 or 150 nM JNC-1043, respectively,
and 3Gy IR. Our results revealed that JNC-1043 enhanced the growth-inhibiting effect of IR
by more than two-fold (Figure 3b). Additionally, our immunoblot assay revealed that the
γH2AX level was increased by ~50% in cells co-treated with JNC-1043 and IR, compared to
the JNC-1043-only or IR-only groups (Figure 3c). Taken together, these results indicate that
JNC-1043 might act as a novel radiosensitizer via amplifying DNA damage.
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Figure 3. Co-treatment with JNC-1043 and IR suppresses cell growth. (a) Clonogenic assay to
determine the radiosensitizing effect of JNC-1043 on HCT116 and DLD-1 cells. (b) Cell counting
assay for detection of cell death. Cell counting assays were performed as described in the Materials
and Methods. ‘Con’, DMSO-treated mock control; ‘IR’, treatment with 3 Gy IR only; ‘JNC-1043′,
treatment with 110 or 150 nM (for HCT116 and DLD-1 cells, respectively) JNC-1043 only; ‘IR+JNC-
1043′, combination of 3 Gy IR and 110 or 150 nM JNC-1043, respectively. The lower panel shows
microscopic images obtained prior to cell detachment. Experiments were repeated in triplicate, and
the presented results indicate the mean of triplicate assays. Each bar in the pictures indicates 500
µm. (c) Immunoblot assay for detection of γH2AX. HCT116 and DLD-1 cells were co-treated with
110 or 150 nM of JNC-1043, respectively, and 3 Gy IR for 24 h, and harvested. The relative band
densities were analyzed as described in the Materials and Methods. All experiments were repeated
in triplicate, and the bands in the figures show representative data. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 2. DER analysis.

DER (Dose-Enhancement Ratio)

110 or 150 nM

HCT116 1.53

DLD-1 1.25
Note: DER (Dose-Enhancement Ratio) was calculated by clonogenic assay. Irradiation dose at 0.1 of survival
fraction was used all the groups. For HCT116 cells, the doses were determined as 4.17 (control, irradiation only)
and 2.72 (co-treatment with 110 nM JNC-1043 and irradiation). For DLD-1 cells, the doses were determined as
3.21 (control, irradiation only) and 2.57 (co-treatment with 150 nM JNC-1043 and irradiation). DER was calculated
with these doses: irradiation dose at survival fraction of 0.1 IR only treatment/irradiation dose at survival fraction
of 0.1 co-treatment with JNC-1043 group.

2.3. Combination of JNC-1043 and IR Enhances Apoptosis and DNA Damage

To explore the intracellular mechanism underlying the radiosensitizing effect of JNC-
1043, we performed Annexin V-PI staining for apoptosis detection in HCT116 and DLD-1
cells. Apoptotic cell death was increased by ~20% in both CRC cell lines following co-
treatment with JNC-1043 (at 110 or 150 nM, respectively) and IR compared to the levels
seen in the JNC-1043-only and IR-only groups (Figure 4a). Immunoblot assays for the
apoptosis-related proteins, Bcl-2, Bcl-XL, cleaved caspase-3, cleaved caspase-9, and cleaved
PARP, were performed to assess whether the apoptotic cell death mechanism is increased
in CRC cells co-treated with JNC-1043 and IR. Indeed, the levels of Bcl-2 and Bcl-XL were
decreased while those of cleaved caspase-3, caspase-9, and PARP were increased in cells
co-treated with JNC-1043 and IR, relative to those in cells treated with JNC-1043 alone or IR
alone (Figure 4b,b’). The release of cytochrome c from mitochondria to the cytosol was also
increased in cells co-treated with JNC-1043 and IR (Figure 4c). These results indicate that a
combination of JNC-1043 and IR can enhance the apoptosis of CRC cells by activating the
apoptotic machinery.
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Figure 4. Co-treatment with JNC-1043 and IR induces apoptotic cell death. (a) Annexin V-PI assay
for detection of apoptosis. HCT116 and DLD-1 cells were treated with 110 or 150 nM JNC-1043,
respectively, and 3 Gy IR for 72 h. The assay method is described in the Materials and Methods. The
lower panel shows representative FACSort flow cytometry images obtained prior to quantitative
analyses. ‘Con’, DMSO-treated mock control; ‘IR’, treatment with 3 Gy IR only; ‘JNC-1043′, treatment
with 110 or 150 nM JNC-1043 only; ‘IR+JNC-1043′, combination of 3 Gy IR and 110 or 150 nM JNC-
1043. Experiments were repeated in triplicate, and the results indicate the mean of the triplicate assay.
(b) Immunoblot assay for detecting Bcl-2, Bcl-XL, cleaved caspase-3 (cas-3), cleaved caspase-9 (cas-9),
and cleaved PARP in cells treated with JNC-1043 and IR. ‘c-cas3′, ‘c-cas9′ and ‘c-PARP’ indicate the
cleaved forms. HCT116 and DLD-1 cells (1 × 105) were incubated with or without 110 or 150 nM
JNC-1043, respectively, exposed to 3 Gy IR, and incubated for 72 h prior to harvest. Each graph under
the panel presents the statistical analysis of the immunoblot bands. (b’) The relative band densities
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of (b) were analyzed as described in the Materials and Methods. (c) Immunoblot assay for detecting
release of cytochrome c (Cyto-C) from mitochondria to the cytosol in cells co-treated with JNC-1043
and IR. HCT116 and DLD-1 cells (3 × 105) were incubated with or without 110 or 150 nM JNC-
1043, respectively, and exposed to 3 Gy IR for 48 h. Details of the assay methods are described in
the Materials and Methods. Each graph in the right panel presents the statistical analysis of the
immunoblot bands. All experiments were repeated in triplicate, and the bands in the figures show
representative data. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. The Combination of JNC-1043 and IR Induces Cell Cycle Arrest at G2/M Phase

Based on previous reports, we next explored whether JNC-1043 also could facilitate
IR-induced cell cycle arrest. Cell cycle analysis was performed with HCT116 and DLD-1
cells co-treated with 110 (HCT-116) or 150 nM (DLD-1) of JNC-1043, respectively, and 1
Gy of IR for 4 (HCT-116) or 2 (DLD-1) h, respectively. After undergoing treatment with IR
and JNC-1043, samples were fixed for 24 h, stained with PI/RNase staining buffer, and
analyzed with a FACSort flow cytometer. Our results revealed that the population of CRC
cells at the G2/M phase was increased by ~20% in samples co-treated with 1 Gy and 110
or 150 nM JNC-1043, respectively, compared to the level in the JNC-1043-only- treated
and IR-only-treated groups (Figure 5a, Table 3). Immunoblot analyses showed that the
expression levels of p21 and cyclin B1 were increased in cells co-treated with JNC-1043 and
IR (Figure 5b). These results indicate that JNC-1043 can also induce cell cycle arrest at the
G2 phase, which might eventually lead to cell death.
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Figure 5. Co-treatment with JNC-1043 and IR promotes G2/M phase arrest in the cell cycle. (a) Cell
cycle analyses. HCT116 and DLD-1 cells (8 × 105) were treated with or without 110 or 150 nM
JNC-1043, respectively, exposed to 1 Gy IR, and incubated for 2 or 4 h, respectively, prior to harvest.
Cell cycle parameters of JNC-1043 and IR co-treated HCT116 and DLD-1 cells were analyzed with
a FACSort flow cytometer. ‘Con’, DMSO-treated mock control; ‘IR’, treatment with 1 Gy IR only;
‘JNC-1043′, treatment with 110 or 150 nM JNC-1043 only; ‘IR+JNC-1043′, combination of 1 Gy IR and
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110 nM or 150 nM JNC-1043. (b) Immunoblot assay for detection of cyclin B1, p21, and β-actin.
HCT116 and DLD-1 cells (8× 105) were treated with or without 110 or 150 nM JNC-1043, respectively,
exposed to 1 Gy IR, and incubated for 2 or 4 h, respectively, prior to harvest. Each graph in the right
panel presents the statistical analysis of the immunoblot bands. The relative band densities were
analyzed as described in the Materials and Methods. All experiments were repeated in triplicate, and
the bands in the figures show representative data. * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 3. Effect of JNC43 and irradiation on the cell cycle distribution of CRC cells.

HCT116 Con IR (1 Gy) JNC-1043 IR+JNC-1043

Sub-G1 3.2 ± 0.3 1.7 ± 0.1 3.1 ± 0.3 3.5 ± 0.3
G1 38.5 ± 5.9 19.5 ± 3.4 22.2 ± 2.3 14.4 ± 2.0
S 12.6 ± 0.9 13.3 ± 0.9 12.2 ± 1.9 15.8 ± 4.0

G2/M 31.1± 2.1 40.5 ± 3.1 40.7 ± 0.6 50.7 ± 2.3

DLD-1 Con IR (1 Gy) JNC-1043 IR+JNC-1043

Sub-G1 1.4 ± 0.3 0.5 ± 0.3 1.1 ± 0.1 0.8 ± 0.1
G1 40.1 ± 4.0 34.7 ± 3.5 32.4 ± 5.0 30.4 ± 4.0
S 13.4 ± 3.0 13.4 ± 1.9 15.7 ± 1.9 10.8 ± 1.5

G2/M 25.9 ± 5.4 32.8 ± 5.0 33.8 ± 3.1 40 ± 5.0
Note: Con, Control; IR (1 Gy), treatment with 1 Gy IR only; ‘JNC43’, treatment with 110 (for HCT116 cells) or
150 nM (for DLD-1 cells) JNC43 only; ‘IR+JNC43’, combination of 1 Gy IR and 110 or 150 nM JNC43.

2.5. Co-Treatment of JNC-1043 and IR Enhances the Accumulation of ROS in CRC Cells

Since cancer cells are more vulnerable than normal cells to disruption of the redox
balance and mitochondrial function, oxidative stress triggered by disruption in ROS home-
ostasis is an important principle of many cancer therapies, including chemotherapy, ra-
diotherapy, and combination therapy [19,20]. Indeed, we previously showed that the
disruption of ROS homeostasis is the main cause of radiosensitizer-induced apoptosis in
our experimental settings [21,22].

Thus, intracellular and mitochondrial ROS detection assays were performed to deter-
mine whether JNC-1043 and IR co-treatment could enhance ROS production. The results of
an intracellular ROS detection assay performed using H2DCFDA showed that the combina-
tion of JNC-1043 and IR enhanced the production of ROS by more than 20~40% compared
to the levels seen in the JNC-1043-only or IR-only groups (Figure 6a). A mitochondrial ROS
detection assay performed using Mitosox also showed that the combination of JNC-1043
and IR promoted the production of mitochondrial ROS by more than 30~40% compared to
the levels seen in the JNC-1043-only or IR-only groups (Figure 6b).

Next, we sought to identify the source of the accumulating ROS by using JC-1 stain-
ing to detect mitochondrial membrane potential (∆Ψm) (Figure 7a). Our results revealed
that the combination of JNC-1043 and IR increased the mitochondrial potential by more
than ~30% compared to the levels seen in the JNC-1043-only or IR-only groups. We also
detected increased levels of cytochrome c into cytoplasm (Figure 7b). Treatment with the
ROS scavenger, N-acetyl cysteine (NAC), abolished the increases in both intracellular and
mitochondrial ROS production induced by co-treatment with JNC-1043 and IR (Figure 6c,d).
Additionally, we detected that NAC treatment also decreased the increase in the mitochon-
drial potential and the levels of cytochrome c in cytoplasmic fractions (Figure 7a,b). These
results suggest that the combination of JNC-1043 and IR may enhance ROS production by
targeting mitochondria and affecting the homeostasis of ROS level.
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Figure 6. Co-treatment with JNC-1043 and IR leads to accumulation of mitochondrial ROS. (a,b)
Detection of intracellular ROS (a), and mitochondrial ROS (b) using a FACSort flow cytometer.
HCT116 and DLD-1 cells (5× 105) were treated with or without 110 or 150 nM JNC-1043, respectively,
exposed to 3 Gy IR, and incubated for 24 h prior to harvest. ‘Con’, mock control; ‘IR’, treatment
with 3 Gy IR only; ‘JNC-1043′, treatment with 110 nM or 150 nM JNC-1043 only; ‘IR+JNC-1043′,
combination of 3 Gy IR and 110 nM or 150 nM JNC-1043. Experiments were repeated in triplicate,
and the presented results indicate the mean of triplicate assays. (c,d) Inhibition of ROS production by
NAC. HCT116 and DLD-1 cells (2.5 × 105) were treated with or without 110 or 150 nM JNC-1043,
respectively, exposed to 3 Gy IR, and incubated for 48 h prior to harvest. ‘Con’, mock control; ‘NAC’,
HCT116 or DLD-1 cells pre-treated with 5 or 1 mM NAC, respectively; ‘IR+JNC-1043′, combination
of 110 or 150 nM JNC-1043 with 3 Gy IR; ‘IR+JNC-1043+NAC’, combination of 3 Gy IR with 110
or 150 nM JNC in cells pre-treated with 5 or 1 mM NAC, respectively. Intracellular ROS (c) and
mitochondrial ROS (d) were detected with a FACSort flow cytometer. Experiments were repeated in
triplicate, and the results indicate the mean of triplicate assays. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 7. Co-treatment with JNC-1043 and IR disrupts mitochondrial potential. (a) HCT116 and
DLD-1 cells (5 × 105) were treated with or without 110 or 150 nM JNC-1043, exposed to 3 Gy IR and
incubated for 24 h prior to harvest. ‘Con’, mock control; ‘IR’, treatment with 3Gy IR only; ‘JNC-1043′,
treatment with 110nM or 150nM JNC-1043 only; ‘IR+JNC-1043′, combination of 3 Gy IR and110nM
or 150nM JNC-1043. Mitochondrial potential in JNC-1043 and irradiation co-treated HCT116 and
DLD-1 cells were detected with a FACSort flow cytometer. Experiments were repeated in triplicate,
and the results indicated the mean of triplicate assays. (b) Immunoblot assay for detecting the
release of cytochrome c from mitochondria to cytosol. JNC-1043 and IR co-treated CRC cells for 72
h with or without NAC pre-treatment for 2 or 1 h, respectively. HCT116 and DLD-1 cells (3 × 105)
were incubated with or without 110 or 150 nM JNC-1043 and exposed to 3 Gy IR for 48 h. Detail
assay methods are described in the Material and Methods. Each graph under the panel indicates
the statistical analysis of the immunoblot bands. The relative band densities were determined via
densitometry using ImageJ software (NIH, Bethesda, MD, USA) and then normalized to that of each
control. Experiments were repeated in triplicate, and bands in the figures show representative data. *
p < 0.05, *** p < 0.001.

2.6. ROS Is Important for the Radiosensitizing Effect of JNC-1043 against CRC Cells

As reported above, the combination of JNC-1043 and IR increased ROS production
and apoptotic cell death. Therefore, we hypothesized that the increase in ROS could be
linked to cell death in the radiosensitizing effect of JNC-1043 and tested this using NAC.
Cell counting and Annexin V-PI staining assays were performed to determine whether
pre-treatment with NAC could affect the disruption of ROS homeostasis by the combination
of JNC-1043 and IR (Figure 8a,b). Indeed, pre-treatment with NAC reduced the cell number
decrease and apoptotic cell death increase caused by co-treatment with JNC-1043 and
IR by more than ~30% compared to cells that received the co-treatment without NAC.
Pre-treatment with NAC also decreased the expression levels of Bcl-2/Bcl-XL, the levels
of cleaved caspases and PARP (Figure 8c,c’), and the level of γH2AX (Figure 8d). Taken
together, these results indicate that the combination of JNC-1043 and IR could enhance
apoptotic cell death and DNA damage via mitochondrial membrane potential (∆Ψm)
disruption followed by mitochondrial ROS accumulation.
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JNC-1043 and IR co-treated CRC cells with or without NAC pre-treatment for 2 or 1 h, respectively.
HCT116 and DLD-1 cells (1 × 105) were incubated with or without 110 or 150 nM JNC-1043, re-
spectively, exposed to 3 Gy IR and incubated for 72 h prior to harvest. ‘Con’ DMSO-treated mock
control; ‘NAC’, HCT116 or DLD-1 cells pre-treated with 5 or 1 mM NAC, respectively; ‘IR+JNC-1043′,
combination of 110 or 150 nM JNC-1043 with 3 Gy IR; ‘IR+JNC-1043+NAC’, combination of 3 Gy
IR with 110 or 150 nM JNC-1043 in cells pre-treated with 5 or 1 mM NAC, respectively. The lower
panel shows microscopic images obtained prior to cell detachment. Each bar in the pictures indicates
500 µm. (b) Annexin V-PI uptake assay for detection of apoptosis in CRC cells co-treated with
JNC-1043 and IR for 72 h with or without NAC pretreatment for 2 or 1 h, respectively, as detected
using a FACSort flow cytometer. The lower panel shows representative FACSort flow cytometry
images obtained prior to quantitative analyses. Experiments were repeated in triplicate, and the
results indicate the mean of triplicate assay. (c,d) Immunoblot assay for detection of apoptosis-related
proteins (c) and its relative band densities (c’), and γH2AX activation (d). Activation of caspase-3,
caspase-9, PARP, and γH2AX were detected in cells pre-treated with NAC and treated with JNC-1043
and IR for 72 h. ‘cas3′, caspase-3; ‘cas9′, caspase-9; ‘c-cas3′, cleaved caspase-3; ‘c-cas9′, cleaved
caspase-9; ‘c-PARP’, cleaved PARP. The relative band densities were analyzed as described in the
Materials and Methods. All experiments were repeated in triplicate, and the bands in the figures
show representative data. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.7. In Vivo Radiosensitization Effect of JNC-1043

Next, we tested whether the radiosensitization effect of JNC-1043 could be observed
in an in vivo animal model. Xenograft model mice were prepared using HCT116 cells, and
apoptotic cell death in xenografts was measured under various experimental conditions:
mock control, IR only, JNC-1043 only, and the combination of JNC-1043/IR (Figure 9a).
TUNEL assays of xenograft tissues were performed to determine the number of apoptotic
cells. Quantitative analysis of TUNEL-stained areas showed that apoptotic cell death was
increased by ~40% in the tumors of mice treated with the combination of JNC-1043 and IR.
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Figure 9. Combination treatment with JNC-1043 and IR inhibits tumor growth in vivo. (a) TUNEL
assays measuring apoptotic cells in mouse xenografts. Mice injected with CRC cells were divided
into four groups: control group, IR-only group (1.5 Gy), JNC-1043-only group (40 mg/kg), and
IR+JNC-1043 group (in which mice were pretreated with 40 mg/kg JNC-1043 for 6 h prior to IR).
Apoptotic cells in each xenograft were detected by TUNEL assay. The dark brown area in each tissue
sample, indicating staining with the TUNEL reagent, was detected using Image J Ver.1.8.0. The graph
indicates quantitative analyses of the ratios of TUNEL-stained apoptotic cells to total cells. ‘Con’,
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mock control; ‘IR only’, treatment with 1.5 Gy IR only; ‘JNC-1043 only’, treatment with 40 mg/kg
JNC-1043 only; ‘IR+JNC-1043′, co-treatment with 1.5 Gy IR and 40 mg/kg JNC-1043. Each bar in the
tissue images indicates 100 µm. Experiments were repeated in triplicate, and the results indicate the
mean of triplicate assays. (b) Schematic diagram showing the radiosensitization effect of JNC-1043.
** p < 0.01.

Our results demonstrate that JNC-1043 has a radiosensitization effect against CRC
cells via the induction of apoptosis, both in vitro and in an in vivo system. From our
findings, we conclude that the combination of JNC-1043 and IR enhances apoptotic cell
death via increases in mitochondrial ROS and DNA damage, followed by caspase activation.
(Figure 9b).

3. Discussion

Radiosensitizers in cancer therapy are various materials that, when combined with
IR, achieve greater tumor treatment effects than seen following the application of IR or
the material alone. Radiosensitizers were historically characterized as: (1) suppressors of
intracellular thiols or other endogenous radioprotective substances; (2) inducers of cyto-
toxic substances by intracellular radiolysis of the radiosensitizer; (3) inhibitors of repair
mechanisms/molecules of biomolecules; (4) DNA-incorporating thymine analogs; and (5)
oxygen mimics containing electrophilic activity [23]. Recently, given that in-depth research
has revealed intracellular molecular mechanisms and led to the development of several
novel materials, this classification was modified to focus on the structures of radiosensitiz-
ers. They are now classified into three categories: small molecules, macromolecules, and
nanomaterials [24]. In a previous study, we examined the radiosensitizing small molecule,
APP. First, we showed that the anticancer effects of APP were due to microtubule poly-
merization interruption and DNA damage, leading to cell cycle arrest accompanied by
the induction of the pro-apoptotic ER stress-signaling pathway [15,16]. Additional studies
showed that APP could function as a radiosensitizer against NSCLC and CRC cells [17].
Based on these reports, coupled with our observation that APP showed low toxicity and
poor pharmacokinetic (PK) values in vivo (data not shown), we set out to improve APP as
a potential anticancer agent. As shown in Figure 1, we newly synthesized JNC-1043 from
APP and then validated that it has enhanced anticancer effects against CRC cells and less
toxicity in normal cells. As shown in Figure 2C, JNC-1043 also exerted its anticancer effects
on CRC cells by damaging DNA as evidenced by the increased phosphorylation of γH2AX.

When IR induces DNA damage to eukaryotic cells, cell death is triggered via the
formation of DNA double-strand breaks (DSBs). DSB formation is immediately followed
by histone H2AX phosphorylation (γH2AX) and the accumulation of numerous repair
factors [25]. The accumulation of repair factors at the DSB region results in the formation of
large irradiation-induced foci (IRIFs) that contain two major repair systems: homologous
recombination (HR) and nonhomologous end joining (NHEJ) [26]. The major DSB-repair
molecules for HR are members of the Rad52 epistasis group, whereas those for NHEJ are
Mre11/Rad50/Nbs1 and Ku70/80/DNa-PK/Ligase IV [27]. The previous findings and our
present data suggest that JNC-1043 could act intracellularly to initiate DNA damage and,
thereby, function as a radiosensitizer. Indeed, JNC-1043 showed a radiosensitizing effect
on CRC cells, suppressing cell viability by more than two-fold and increasing the γH2AX
level by more than three-fold (Figure 3). Combination treatment with JNC-1043 and IR
further enhanced apoptosis in vitro and in vivo (Figures 4 and 8a and induced arrest at the
G2 phase of the cell cycle (Figure 5). As shown in Figure 4, the combination of JNC-1043
and IR down-regulated anti-apoptotic Bcl-2 and Bcl-XL, up-regulated cleaved caspase-3,
caspase-9, and PARP, and enhance the release of cytochrome c. It is known that released
cytochrome c can form a complex with procaspase 9 and apoptosis protease-activating
factor 1 (APAF1), which can activate caspase 9. Caspase 9 then activates pro-caspase 3 and
pro-caspase 7, resulting in cell death [28–30]. The progression of cells from the G2 phase to
the M phase is triggered by activation of the cyclin B1-dependent kinase, Cdc2, during a
normal cell cycle [31–33]. Suppression of cyclin B1/Cdc2 activity would tend to cause cell
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cycle arrest at G2 phase, whereas a cell with elevated cyclin B1/Cdc2 activity would tend
to enter mitosis [34]. Our data inducing p21 and cyclin B1 coincide with previous studies
that described the induction of the G2/M phase cell cycle arrest following treatment of
cells with microtubule inhibitors or IR has been observed with increasing cyclin B1 and p21
expression [35–37]. We also found that combination treatment with JNC-1043 and IR led to
an increase in intracellular ROS. It is well known that exposure to penetrating IR can directly
or indirectly lead to cellular stress via ROS generation [19,38]: ROS accumulation typically
disrupts ROS homeostasis and, thereby, leads to oxidative stress, which can transiently or
permanently injure cellular components such as proteins, lipids, RNA, and DNA [39]. ROS
can induce almost all forms of DNA damage, including base modifications, strand breakage,
and DNA cross-linking, all of which are known to be associated with cell death. Here, we
show that co-treatment with JNC-1043 and IR enhanced the intracellular/mitochondrial
ROS levels of CRC cells to induce apoptotic cell death (Figure 8). Pre-treatment with
the ROS scavenger, N-acetylcysteine (NAC), was found to inhibit co-treatment-induced
ROS production, cytochrome c release, H2AX phosphorylation, and apoptotic cell death
(Figures 6–8). These results suggest that increasing ROS under co-treatment with JNC-
1043 and IR might be one of the most important effects of JNC-1043 as a radiosensitizer
against CRC.

4. Materials and Methods
4.1. Cell Culture and Chemical Reagents

The HCT116, DLD-1, and CCD-18Co cell lines were purchased from the American
Type Culture Collection (Rockville, MD, USA). All three cell lines were cultured in RPMI
medium containing 10% fetal bovine serum and 1% penicillin, at 37 ◦C in a 5% CO2
incubator. For harvesting, the cells were washed with cold PBS and scraped into lysis
buffer. JNC-1043 was synthesized by J&C Sciences (Daejeon, South Korea) as follows:
a 60% dispersion of NaH in mineral oil (1.26 g, 31.4 mmol) was added portion-wise to
a solution of 4′-demethyl-β-apopicropodophyllin (10 g, 26.2 mmol) in anhydrous DMF
(100 mL) at 0 °C. The mixture was stirred for 1 h at 0 °C, benzyl bromide (6.7 g, 39.2 mmol)
was added slowly, and stirring was continued for 12 h at ambient temperature. Water
(300 mL) was added slowly to quench the reaction, and the mixture was extracted with
ethyl acetate (2 × 100 mL). The combined organic layers were dried over MgSO4, filtered,
and concentrated in vacuo. The residue was purified via column chromatography on SiO2
using ethyl acetate:n-hexane (1:4, v/v) to give JNC-1043 (7.7 g, 62%) as a white solid.

4.2. MTT Assay and IC50 Determination

HCT116, DLD-1, and CCD-18Co cells were seeded on 96-well plates (3× 103 cells/well)
and exposed to various concentrations of JNC-1043 for 48 h or 72 h at 37 ◦C. MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution (20 µL of 2 mg/mL) was
added to each well, and the cells were incubated for 1 h at 37 ◦C. The formazan crystals
generated in living cells were dissolved in 100 µL of DMSO, and the absorbances of in-
dividual wells were measured at 545 nm using a microplate reader (Molecular Devices,
San Jose, CA, USA). The 50% inhibitory concentration (IC50) of JNC-1043 was calculated
by performing a concentration–response analysis using the SoftMax Pro software Ver. 6.5
(Molecular Devices, Sunnyvale, CA, USA).

4.3. Clonogenic Assay

HCT116 and DLD-1 cells were seeded in 60-mm dishes at cell concentrations estimated
to yield 20–100 colonies/dish (100, 200, 400, 600, 1000 cells/dish). After 24 h of incubation,
the cells were treated with or without 110 nM and 150 nM JNC-1043, respectively, for 24
h, and then irradiated with 137Cs (as a source of γ-ray; Atomic Energy of Canada, Ltd.,
Mississauga, ON, Canada) at different doses (1, 2, 3, or 4 Gy). The cells were incubated
for at least 14 days until colonies formed, and colonies larger than 200 µm in diameter
were stained with 1% methylene blue in methanol. Stained colonies were counted using a
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colony counter (Imaging Products, Chantilly, VA, USA). The colony number of each dose
was compensated with ratios that the maximum seeded cell number (1000 cells/dish) is
divided by each seeded cell number. The dose-enhancement ratio (DER) value of each cell
line was determined from the colony numbers using the Excel program (Microsoft Co.,
Redmond, WA, USA).

4.4. Cell Counting Assay

HCT116 and DLD-1 cells (1 × 105 cells/60-mm dish) were incubated with or without
110 nM and 150 nM JNC-1043, respectively, and exposed to 3 Gy IR. The cells were incubated
for 72 h at 37 ◦C, collected by trypsinization, and washed twice with cold PBS, and equal
volumes of cells were stained with trypan blue. The cells were counted using an EVETM

Automated Cell Counter (NanoEntek, Seoul, Korea). These experiments were repeated in
triplicate.

4.5. Cell Cycle Analysis

HCT116 and DLD-1 cells (6 × 105 cells/60-mm dish) were incubated with or without
110 nM and 150 nM JNC-1043, respectively, and exposed to 1 Gy IR for 2 or 4 h, respectively.
The cells were collected by centrifugation at 1200 rpm for 1 min, washed twice with ice-cold
phosphate-buffered saline (PBS), and fixed with ice-cold 70% ethanol. The fixed cells were
stained with PI/RNase Staining Buffer (Becton Dickinson, Franklin Lakes, NJ, USA) for 15
min, and then analyzed with a FACSort flow cytometer (Becton-Dickinson, Franklin Lakes,
NJ, USA). The percentages of cells in each phase of the cell cycle were determined using
the Cell Quest software (Becton-Dickinson, Franklin Lakes, NJ, USA). These experiments
were repeated in triplicate.

4.6. Immunoblot Analysis

HCT116 and DLD-1 cells were harvested and lysed with RIPA buffer (50 mM Tris-HCl,
pH 7.6, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 2 mM EDTA),
and the lysates were centrifuged at 14,000× g for 20 min. The supernatants were removed,
and the concentrations of proteins were measured at 280 nm using Bradford solution (Bio-
Rad, Hercules, CA, USA) and a microplate reader (Molecular Devices). Twenty-milligram
aliquots of proteins were heated at 95 ◦C for 1 min, resolved by SDS-PAGE, and transferred
to a nitrocellulose membrane. After being blocked for 1 h at room temperature with 5%
skim milk, the membranes were incubated at 4 ◦C with primary antibodies in 5% BSA
solution. After 24 h of incubation, the membranes were washed and incubated with a
secondary antibody for 1 h at room temperature. Bands were detected with the ClarityTM

Western ECL Substrate (Bio-Rad) and visualized using an Amersham ImageQuant 800 (GE
Healthcare Bio-Sciences Corp., Marlborough, MA, USA). Primary antibodies were used
against Bcl-2, Bcl-XL, pro-caspase-3, pro-caspase-9, cleaved caspase-3, cleaved caspase-9,
pro-PARP, cleaved PARP, γ-H2AX (Cell Signaling Technology, Beverly, MA, USA), cyclin B1,
and p21 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). An anti-β-actin antibody (Sigma-
Aldrich, St. Louis, MO, USA) was used as a loading control. The relative immunoblot band
densities were determined via densitometry using the ImageJ software (NIH, Bethesda,
MD, USA), normalized to that of each control, and analyzed with GraphPad Prism Ver. 5
(GraphPad Software, La Jolla, CA, USA). All experiments were repeated in triplicate.

4.7. Isolation of Mitochondrial and Cytosolic Fractions

HCT116 and DLD-1 cells were treated with 110 nM and 150 nM JNC-1043, respectively,
irradiated 3 Gy IR, and incubated for 48 h at 37 ◦C. The cells were then incubated with
trypsin-EDTA for 5 min, collected by centrifugation at 250 g for 1 min, resuspended with
extraction buffer (1 M sucrose, 1 M HEPES, pH 7.4, 1 M KCl, 1 M MgCl2, 0.25 M EGTA, and
1 M DTT), homogenized, and centrifuged at 12,000× g at 4 ◦C for 15 min. The supernatants
were used as the cytosolic fraction and the pellets were resuspended with lysis buffer (pH
7.6, 50 mM Tris-HCl, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS,
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2 mM EDTA) and used as the mitochondrial fraction. The fractions were immunoblotted
with a cytochrome c antibody (Cell Signaling Technology, Beverly, MA, USA). VDAC
(Sigma-Aldrich, St. Louis, MO, USA) was used as a loading control. These experiments
were repeated in triplicate.

4.8. Annexin V-Propidium Iodide Assay

HCT116 and DLD-1 cells (1 × 105 cells/60-mm dish) were incubated with or without
110 nM and 150 nM JNC-1043, respectively, exposed to 3 Gy IR, and incubated for 72 h. The
cells were then collected by trypsinization, washed twice with cold PBS, and stained with
an FITC Annexin V apoptosis detection kit I (Becton-Dickinson, Franklin Lakes, NJ, USA)
as described by the manufacturer. A FACSort flow cytometer (Becton-Dickinson, Franklin
Lakes, NJ, USA) was used to measure the fraction of apoptotic cells (x-axis: FL1 channel
and y-axis: FL-2 channel). These experiments were repeated in triplicate.

4.9. Cellular ROS Detection Assay

HCT116 and DLD-1 cells (5 × 105 cells/60-mm dish) were incubated with or without
110 nM and 150 nM JNC-1043, respectively, and exposed to 3 Gy IR. After incubation for
24 h, the cells were stained with 25 mM H2DCFDA (Merck, Darmstadt, Germany) for 5 min
and trypsinized. The cells were harvested by centrifugation and resuspended with cold
PBS. A FACSort flow cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA) was used for
the detection and analysis of intracellular ROS (x-axis, FL1 channel; y-axis, Counts). These
experiments were repeated in triplicate.

4.10. Mitochondrial ROS Detection Assay

HCT116 and DLD-1 cells (4 × 105 cells/60-mm dish) were incubated with or without
110 nM and 150 nM JNC-1043, respectively, and exposed to 3 Gy IR. After incubation for
48 h, the cells were treated with 5 µM MitoSOX (Molecular Probes/Invitrogen, Eugene,
OR, USA) for 20 min and trypsinized. The cells were harvested by centrifugation and
resuspended with ice-cold PBS. A FACSort flow cytometer (Becton-Dickinson, Franklin
Lakes, NJ, USA) was used for the detection and analysis of mitochondrial ROS (x-axis, FL2
channel; y-axis, Counts). These experiments were repeated in triplicate.

4.11. Mitochondrial Membrane Potential (∆Ψm) Detection Assay

HCT116 and DLD-1 cells (4 × 105 cells/60-mm dish) were incubated with or without
110 nM and 150 nM JNC-1043, respectively, and exposed to 3 Gy IR. After incubation
for 48 h, the cells were treated with 10 µM JC-1 (Molecular Probes/Invitrogen, Eugene,
OR, USA) for 20 min and trypsinized. The cells were harvested by centrifugation and
resuspended with ice-cold PBS. A FACSort flow cytometer (Becton Dickinson) was used
for the detection and analysis of mitochondrial membrane potential (x-axis, FL1 channel;
y-axis, Counts). These experiments were repeated in triplicate.

4.12. TUNEL Assay

All animal experiments were performed using approved protocols of the Institutional
Animal Care and Use Committee (KIRAMS 2021-0017). The in vivo radiosensitization
effects of JNC-1043 were measured using a xenograft model constructed by subcutaneously
injecting 1× 107 HCT116 cells/mouse into 6-week-old BALB/cAnNCrj-nu/nu mice (KOAT-
ECH, Seoul, Korea). The mice were divided into four groups (n = 3 mice/group): control
(mock-treated), IR treatment only (IR only), JNC-1043 treatment only (JNC-1043 only), and
co-treatment with JNC-1043 and IR (IR+JNC-1043). When the xenografts reached 100−120
mm3 in size, 40 mg/kg JNC-1043 in DMSO was intratumorally injected into mice of the
JNC-1043-only and IR+JNC-1043 groups. The IR-only and control groups were intratu-
morally injected with an equal volume of DMSO (vehicle). At 6 h after the injection, mice
in the IR-only and IR+JNC-1043 groups were locally irradiated with 1.5 Gy using a 60Co
γ-ray source (Theratron 780; AECL Ltd., Mississauga, Ontario). Irradiation was repeated
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three times at 3- to 4-day intervals for a total of 12 days. Mice were sacrificed 30 days
after the start of the experiment. Extracted tumors were fixed with formaldehyde, paraffin-
embedded, and sliced. TUNEL assay for the detection of dUTP nicks was performed using
Super Bio Chips (Seoul, South Korea). The TUNEL-positive cells were measured for each
group, and the ratios of TUNEL-positive to total cells in each image were measured with
the Image J software (NIH, Bethesda, MD, USA). Percentages were calculated relative to
the value obtained from the control group.

4.13. Statistical Analysis

Data were analyzed using GraphPad Prism Ver. 5 (GraphPad Software, La Jolla, CA,
USA). The significance of differences between experimental groups was determined using
two-way ANOVA and Student’s t-test. p-values < 0.05 were considered significant, and
the individual p-values are denoted in the figures by asterisks (*; p < 0.05, **; p < 0.01, ***;
p < 0.001). The number above each point or bar represents the mean results from three
independent experiments and the error bars signify the standard deviation (SD).

5. Conclusions

Taken together, our present findings reveal the anticancer and radiosensitizer effects of
JNC-1043. Our detailed intracellular mechanistic studies and the lower toxicity of JNC-1043
against normal cells demonstrate that JNC-1043 might be a candidate radiosensitizer for
inducing apoptotic cell death via DNA damage/cell cycle arrest/ROS-triggered apoptosis
in CRC cells.
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