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ABSTRACT

Motivation: Yeast two-hybrid screens are an important method
to map pairwise protein interactions. This method can generate
spurious interactions (false discoveries), and true interactions can
be missed (false negatives). Previously, we reported a capture–
recapture estimator for bait-specific precision and recall. Here, we
present an improved method that better accounts for heterogeneity
in bait-specific error rates.
Result: For yeast, worm and fly screens, we estimate the overall
false discovery rates (FDRs) to be 9.9%, 13.2% and 17.0% and the
false negative rates (FNRs) to be 51%, 42% and 28%. Bait-specific
FDRs and the estimated protein degrees are then used to identify
protein categories that yield more (or fewer) false positive interactions
and more (or fewer) interaction partners. While membrane proteins
have been suggested to have elevated FDRs, the current analysis
suggests that intrinsic membrane proteins may actually have reduced
FDRs. Hydrophobicity is positively correlated with decreased error
rates and fewer interaction partners. These methods will be useful
for future two-hybrid screens, which could use ultra-high-throughput
sequencing for deeper sampling of interacting bait–prey pairs.
Availability: All software (C source) and datasets are available as
supplemental files and at http://www.baderzone.org under the Lesser
GPL v. 3 license.
Contact: joel.bader@jhu.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Two-hybrid experiments have been widely used to identify pairwise
protein–protein interactions. Genome-wide screens have been
performed for viruses (Uetz et al., 2006), yeast (Ito et al., 2001;
(Uetz et al., 2000), worm (Li et al., 2004), fly (Giot et al., 2003)
and recently human (Rual et al., 2005; Stelzl et al., 2005). Related
split-ubiquitin screens have been developed for membrane proteins
(Johnsson and Varshavsky, 1994; Stagljar et al., 1998). Protein-
fragment complementation assays can provide higher resolution
structural information (Tarassov et al., 2008). These screens provide
valuable insights into how proteins are organized into pathways and
functional networks.
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Interactions identified by two-hybrid experiments can have
low reproducibility and low coverage (Bader and Chant, 2006).
High-confidence datasets from two experiments for yeast (Ito et al.,
2001; Uetz et al., 2000) have only 9% overlap. Independent datasets
reported for human (Rual et al., 2005; Stelzl et al., 2005) have
almost no overlap. False positives and false negatives can both be
responsible for small overlap, but are confounding factors whose
contributions can be difficult to deconvolute. Furthermore, false
positives and false negatives arise for both technical and biological
reasons.

False positives include both ‘technical’ false positives, those that
are not reliably recovered under identical experimental conditions,
and ‘biological’ false positives, which are reliably recovered in a
particular experimental system but do not occur in vivo. Methods
that rely on data from a single type of experiment inherently lack
the information to distinguish between biological false positives
and true positives. The analysis presented here is developed for
data from two-hybrid screens alone and only detects technical false
positives. Previous studies suggest that biological false positives
may be rare, as interactions reliably identified in high-throughput
two-hybrid screens are of similar quality as interactions from
small-scale experiments (Rual et al., 2005). The probability that
a non-interacting protein is scored as positive is termed the false
positive rate. An alternative statistic is the false discovery rate
(FDR), the fraction of scored positives that are true negatives.

Similarly, false negatives may have technical or biological origins.
Technical false negatives in the two-hybrid screens considered
here are due to under-sampling: clones corresponding to the true
interaction exist, but were missed due to a stochastic sampling
process. Biological false negatives are systematically absent from
screening data. These may be due to requirements for temperature,
pH, cofactors, scaffold proteins or post-translational modifications.

Estimates of the false discovery and false negative rates (FNRs)
in yeast and human interactomes can be based on intersections
of independent datasets (Hart et al., 2006). However, because
the assays have little overlap, the estimates have large variances.
Overlap methods are restricted to global estimates of the rates,
which provide limited information in understanding protein-specific
problems. More recent work has used a multinomial model for node
degree in the presence of false positives and false negatives, but is
not directly applicable to pooled screens where clones are sampled
to identify interacting pairs (Scholtens et al., 2008).

An important related problem is the degree distribution of
interaction partners. Statistical models of degree distributions can
be sensitive to a few observations of high-degree proteins in the tail
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of a distribution. In other contexts, spurious observations at the tail
of a distribution have led to faulty conclusions of power-law (PL)
behavior. For example, initial studies of animal foraging patterns
characterized the distributions as PL Lévy walks (Viswanathan
et al., 1996). The same authors recently revisited these datasets and
concluded that the PL were erroneous, with the actual distributions
having exponential truncation (Edwards et al., 2007).

A capture–recapture estimator was recently proposed by some
of us (Huang et al., 2007). This framework differs from the
classical capture–recapture method in that it models the captured
species as a mixture of true positives and false positives, whereas
the classical theory admits only true positives. In a two-hybrid
screen, a bait protein is used as a query to sample its interaction
partners. False positive interaction partners may arise as spurious
interactions and true interaction partners may be missed due to
insufficient sampling depth. The number of the missing true-
interaction partners can be estimated using the k-sample capture–
recapture method (Jolly, 1965; Seber, 1965) and the number of
false positives can be estimated from the likelihood function
based on a binomial distribution once the FDR is known. The
estimates for the two quantities have to be done jointly because
the known number of interactions from the two-hybrid screen is a
mixture of both true interactions and false positives. Expectation
maximization (EM) solves this joint estimation problem (Dempster
et al., 1977).

In the true biological system, different baits probably have
different FDRs. Thus, the previous capture–recapture model
permitted baits to have different FDRs: in addition to a null model
with a uniform FDR, a scaled error rate model reflected mass balance
between true positives and false positives, and a two-component
mixture error rate model assumed a mixture of ‘good’ baits and
‘bad’ baits. The two-component mixture was found to be the best
fitting model for experimental data from yeast (Ito et al., 2001),
worm (Li et al., 2004) and fly (Giot et al., 2003).

A natural and important question to ask is whether the
heterogeneity in FDRs is limited to a two-component mixture, or
whether more components would provide an improved description
and improved estimates of bait-specific error rates. The biological
significance is that protein properties associated with high error rates
could be identified and used to improve screening protocols and also
improve confidence values ascribed to screening results.

Here, we investigate this question. Although one approach would
be to systematically add additional mixture components, this would
lead to more parameters, risking over-fitting. We take an alternate
approach by proceeding directly to what is essentially an infinite-
component mixture model in which error rates in the range 0–1 are
modeled by a two-parameter beta distribution. Depending on the
choices of both the parameters, beta distributions can be unimodal,
U-shaped, strictly increasing/decreasing or uniform. EM can be used
to determine the beta distribution parameters jointly with posterior
estimates of bait-specific FDRs.

This work first uses standard model selection criteria to
demonstrate that the beta distribution error rate model improves
inference within the capture–recapture framework. With the updated
estimates of the FDRs and FNRs for each protein, we perform
stringent tests to identify protein characteristics that correlate with
elevated or reduced FDRs and protein degrees. Estimated error rates
are compared with previous methods based on overlap of datasets,
including a recently available screen of yeast (Yu et al., 2008).

2 METHODS

2.1 Data sources
Datasets were collected from two-hybrid screens for yeast (Ito et al., 2001),
worm (Li et al., 2004) and fly (Giot et al., 2003). Many two-hybrid screens,
including those for human (Rual et al., 2005; Stelzl et al., 2005), have
not released clone-level information and thus cannot be analyzed by these
methods.

2.2 Overview of the model and definitions
Consider a particular protein j used as one of the N baits in a two-hybrid
screen against a pool of � possible preys. A total of nj clones have been
sampled, out of which wj unique preys are found to interact with bait j.
Among the wj interaction partners of bait j, sj have been sampled once
and wj −sj have been sampled at least twice. Any interaction partner that
appears twice is virtually assured to be a true positive; thus, we treat pairs that
interact reproducibly in vitro as true positives. As noted in the Section 1, this
treatment addresses only technical false positives, as opposed to biological
false positives that are observed systematically in vitro but do not occur
in vivo. Based on this assumption, we assume fj out of sj singletons are
false positives and all the interactions that have been sampled more than
once (there are wj −sj of them) are true positives. For a given FDR αj and
interaction degree distribution parameters �, the joint distribution of the
total number of true interactions (kj) and the number of false positives in the
sampled interactions (fj) is

Pr
(
kj,fj|sj,wj,nj,αj,�

) = Pr
(
kj|�

)
Pr

(
fj|sj,nj,αj

)
Pr

(
kj|wj,fj,nj

)
N

, (1)

in which N is a normalization constant:

N =
sj∑

f =0
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k=wj−f

Pr
(
k|�)
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)
Pr

(
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)
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Pr(kj|�) is the prior distribution of the protein interaction degree.
Pr(fj|sj,nj,αj) and Pr(kj|wj,fj,nj) are the probabilities that bait j has fj false
positives and kj true interaction partners.

For convenience, we define xj = observed variables
(
sj,wj,nj

)
; yj = hidden

variables (kj ,fj); and Q = parameters for the degree distribution and error
rate. Standard EM methods may be used to identify the parameters Q̂ that
maximize the probability of the observed variables (see Supplementary
Methods). Posterior means of the hidden variables are then

f̂j =
sj∑

f =0
Pr

(
f |xj,Q̂

)
f

k̂j = exp

[ ∞∑
k=1

Pr
(

k|xj,Q̂
)

logk

]
.

(3)

The logarithmic transform in the degree estimates improves stability for
long-tailed distributions. FNRs are defined as

∑
i (k̂i −wi + f̂i)/

∑
i k̂i.

2.3 Beta distribution
FDRs can be modeled as samples from a beta distribution, a standard
generative model for probabilities because its values are in the range 0–1. It is
also a natural conjugate prior for a binomial distribution. The beta error rate
model has two non-negative shape parameters, β1 and β2. The distribution
of the FDR αj conditioned on the two parameters is

Pr
(
αj|β1,β2

) = α
β1−1
j

(
1−αj

)β2−1

Beta
(
β1,β2

) , (4)

with normalization Beta(β1,β2) = �(β1)�(β2)/�(β1 +β2).
When β1, β2, and the degree distribution parameters have been

determined, posterior estimates are obtained from the maximum likelihood
estimator (MLE), α̂ML

j = argmax
α∈[0,1]

Pr(α|nj,sj,Q̂).
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Model selection used log-likelihood from 10-fold cross-validation, the
Bayesian information criterion (BIC) of the likelihood of the full data, and
BIC of 100 bootstrap replicates of the full data to assess stability. Full
details of EM update equations and model selection criteria are available
(see Supplementary Methods).

3 RESULTS

3.1 Model selection
Our previous report, with full details of model selection by
cross-validation log-likelihood, BIC and bootstrap replicates,
demonstrated that the two-component error model was superior
to both the single and scaled error rate models, and that the
truncated PL (TPL) generally dominated the purely scale-free PL
distribution (Huang et al., 2007). These model selection criteria have
demonstrated that the beta error model is markedly superior to the
two-component mixture for all three organisms tested (Table 1 and
Supplementary Table S1). The beta error rate model, in combination
with the TPL degree distribution, has the best log likelihood and
the best BIC score for all three organisms. Of the 100 bootstrap
replicates, 96 choose beta and TPL as the best prior combination for
yeast and all choose this model for both worm and fly. The remaining
four replicates for yeast chose the beta error model with the PL
distribution. The fitted parameters for this model are presented
(Table 1). These results again confirm the conclusion that protein
interaction degree distributions are not scale-free, but instead are
subject to exponential or similar truncation.

3.2 False discovery rate
The overall FDRs estimated using the beta error rate model increase
to 9.9% (yeast), 13.2% (worm) and 17.0% (fly) from 9.3%, 12.2%
and 15.7% estimated using the two-component mixture error model.
This small increase may indicate an improved estimate of the high
FDR component in the two-component mixture model.

The FDRs for individual baits are indeed quite disperse,
demonstrating why the beta distribution improves on a two-
component mixture model (Fig. 1). These results are significant
because they provide the first picture of the shape of the FDR
distribution, as opposed to a lumped mean.

The beta distribution is strictly decreasing for the yeast and fly
but peaked for the worm, consistent with MLE estimates. The
distribution of FDRs for worm, worm open reading frame (ORF)
and cDNA collections are also peaked (Supplementary Fig. S1),
suggesting that this is an intrinsic property of the worm screens.
One possibility is that this screen was more stringent in eliminating
auto-activators. In agreement with previous analysis (Huang et al.,
2007), the ORF collection has a lower FDR than the cDNAcollection
in worm.

These results indicate that a vast majority of baits perform well in
the assays, with a small number of baits contributing a proportionally
larger number of spurious interactions. Because the error-rates are
bait specific, we can proceed to attempt to identify systematic
characteristics leading to spurious interactions.

3.2.1 Gene annotation The Gene Ontology (GO) (Ashburner
et al., 2000) provides a controlled vocabulary to describe gene
attributes in any organism. Attributes such as membrane localization

Table 1. Network properties and parameter estimations for the beta error
rate model with TPL degree distributions

Properties Yeast Worm Fly

Network
N 1532 729 3639
n̄ 7.65 20.08 14.79
w̄ 2.97 5.55 5.69
s̄ 1.97 3.71 3.57

Parameter
ε 1.61729 0.84128 0.62162
c 0.00354 0.06187 0.11412
β1 0.76185 1.39727 0.76634
β2 9.21670 8.43195 4.26594
ᾱ 0.09930 0.13187 0.16999

Estimates
k̂ 4.49 5.02 4.43
f̂ 0.76 2.65 2.51

FNR (%) 51 42 28
FDR per unique interaction (%) 26 48 44
FDR per singleton (%) 39 71 70
Bootstrap wins 96/100 100/100 100/100

N is the number of baits. n̄ is the average number of preys sampled per bait, w̄ is the
average number of unique preys and s̄ is the average number of singletons. k̂ is the
estimated number of preys per bait and f̂ is the estimated number of false positives per
bait. The FDR per clone (ᾱ) is f̂ /n̄, the FDR per unique interaction is f̂ /w̄ and the FDR
per singleton is f̂ /s̄.

have been suggested to influence performance of a protein in a two-
hybrid screen. Access to posterior estimates of the FDR permits a
robust non-parametric test (Wilcoxon-signed rank test) to identify
classes of proteins with elevated or reduced FDRs. Two-sided
P-values were corrected for multiple testing by multiplying by the
number of GO terms tested (Bonferroni method).

GO terms having significantly higher or lower FDRs were
identified (Supplementary Table S2). The non-parametric test yields
fewer significant findings than a previous parametric test based on
estimates of the number of false positives, rather than on the FDR
directly (Huang et al., 2007). There are two main differences in
methods: use of a beta versus mixture model for FDRs, and use of a
non-parametric Wilcoxon test versus a parametric binomial test for
significance. We find that the smaller number of significant findings
is due to the use of the non-parametric test, rather than a difference in
FDR estimates (Supplementary Fig. S4). The categories that trigger
only the parametric test are enriched for singleton interactions,
which may violate the assumptions of the parametric test due to
correlations between baits (each is assigned the bulk parameter
value). The newer non-parametric test may be more robust to this
effect.

Despite these differences, major conclusions are still valid.
Grouped by biological processes, the cellular metabolic process
(worm) and the regulation of metabolic process (yeast) show
elevated FDRs. Molecular functions involved in protein binding
and transcription regulator activity, particularly RNA polymerase
II transcription factor activity (yeast), also have elevated FDRs.

Proteins involved in fly multicellular organismal process and
development are newly identified to have a high FDR. Sequence-
specific DNA binding is also found to have an elevated FDR.
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Fig. 1. The distributions of FDRs for baits are displayed for Beta/TPL (solid
line), Beta/PL (dashed line) and Mixture/TPL (black impulses) for yeast (A),
worm (B) and fly (C). Posterior maximum likelihood estimates are displayed
for the Beta/TPL model (open circles). Baits with a single clone do not
contribute to the estimator and are not included in the histograms.

These proteins include transcription factors, whose auto-activation
within the two-hybrid system may trigger false positive findings.
Thus, a possible explanation of these results is that auto-activators
were not sufficiently characterized and removed from the bait
collection.

Although nuclear membrane proteins (yeast) show a high FDR,
proteins that are intrinsic to membranes, particularly those integral
to membranes (fly), show a low FDR. A closer examination
indicates that nuclear pore proteins, pore complex members (cellular
component) and proteins involved in the nuclear import (biological
process) have high FDRs. On the other hand, integral membrane
proteins do not have higher FDRs as a group. These results suggest
that large pore complexes may be generally ‘sticky’, perhaps to
provide general affinity for many types of proteins.

3.2.2 Promiscuous and chaste domains A protein domain is a
fragment of amino sequence that may appear in multiple proteins
and function independently of the rest of amino acid chains. We
tested the hypothesis that some protein domains may yield more
false positive interactions than others. The PFAM database (Bateman
et al., 2004) was used to characterize protein domains. We define
the FDR of each domain as a collection of the FDRs of the proteins
having this domain. We used a similar approach as we analyzed the
GO terms to test whether some domains consistently yield more (or
fewer) false positive interactions than others.

The only significant PFAM domain was the Homeobox domain
(PF00046), which occurs in 29 fly bait proteins. The mean FDRs
are 16% and 7.9% for proteins with and without this domain,
respectively. Homeobox domains are transcriptional regulators that
operate differential genetic programs along the animal anterior–
posterior axis. This result is consistent with the GO term result
that proteins which are transcription regulators or those involved
in multicellular organismal development are more likely to yield
false positives.

3.2.3 Hydrophobic interactions and protein length The GO term
analysis suggested proteins that are integral to membranes have a
low FDR. We assessed this hypothesis by testing for the significant
correlations between the FDRs and the hydrophobicity of proteins.
Hydrophobicity scales were denoted Kyte–Doolittle (Kyte and
Doolittle, 1982), Eisenberg (Eisenberg et al., 1984), Cornette
(Cornette et al., 1987) and Rose (Rose et al., 1985). For each
protein, we summed the hydrophobic values of each amino acid
residue to obtain a summary value for the entire protein chain. We
then tested the significance of a linear model that the FDRs depend
on the hydrophobicity values (Supplementary Table S4). We also
reported the significance level of a reference model testing the linear
correlation between the rank orders of both variables.

We observed negative correlations between the FDRs and
hydrophobicity values, indicating that proteins having high
hydrophobicity scores are less likely to generate false positive
interactions. This result agrees with our finding in the GO analysis
that membrane intrinsic and integral proteins tend to have smaller
FDRs. Although the correlations are very weak from the magnitude
of the slope and the R2-values, they are significant across all the
hydrophobicity scales and all the three species. One explanation for
the weak correlation is that the entire length of the protein is used for
the hydrophobicity score, which dilutes the magnitude of correlation
by the variance of the sequence as a whole. As discussed in the GO
term analysis, membrane proteins with chains exposed in cytoplasm
or nucleus, such as nuclear pore proteins, have high FDRs.

We did not find significant correlations between the FDRs and the
protein lengths for yeast and worm. However, we do see a significant
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correlation for fly. The test using rank orders shows significant
correlations for all three organisms.

3.3 False negative rates
Statistical tests indicate that the TPL distribution is superior to
other tested degree distributions for yeast, worm and fly. Although
TPL was the best-fit model for worm and fly in Huang et al.
(2007), its estimated parameters changed in this work because of
the updated FDRs. Therefore, the projected average number of
interaction partners per bait has dropped to 4.5, 5.0 and 4.4 from
4.8, 5.9 and 5.0 for yeast, worm and fly, respectively. The FNRs are
51%, 42% and 28% for yeast, worm and fly, respectively. In addition
to the global analysis of the protein degrees, we also investigated
protein characteristics that correlate with more or fewer interaction
partners.

3.3.1 Gene annotations and protein domains Proteins involved
in organ development and multicellular organismal processes have
roughly 20% more interaction partners than proteins not involved in
the processes (Supplementary Table S3), a statistically significant
difference (P-values = 0.048 and 0.049 after multiple-testing
correction). In terms of molecular function, proteins that selectively
bind identical proteins, such as homodimers, have on average 1.33
fewer interaction partners (corrected P-value = 0.0005). The protein
binding category, the parent category of the identical protein binding,
is surprisingly found to have fewer interaction partners than average.
Around 82% of fly proteins are associated with this category and they
have 0.32 fewer interaction partners than proteins not associated
with this category (corrected P-value = 0.046).

We did not find any PFAM protein domains that are significantly
associated with greater or fewer interaction partners.

3.3.2 Hydrophobic interactions and protein length We found
significant but weak correlations between the hydrophobicity scales
and the interaction degrees in worm and fly (Supplementary Table
S4). All four hydrophobicity scales indicate that hydrophobic
proteins tend to have fewer interaction partners. One possibility
is that the hydrophobic proteins are mis-folded in the two-hybrid
screens and lose their binding functions. In addition, hydrophobic
proteins may have fewer available binding domains because a
significant proportion of the protein sequence is membrane-bound.

The correlation between the hydrophobicity scales and the protein
degrees is not significant for yeast. This may be due to fewer
hydrophobic proteins in yeast compared with worm and fly, which
reduces the significance even if the effect size is identical. Yeast has
50% and 83% fewer transmembrane proteins compared with fly and
worm (Krogh et al., 2001).

Protein length is not significantly correlated with protein
interaction degree for yeast and worm based on linear correlation,
but a more robust rank-order test does show weak but significant
positive correlation. The linear correlation for fly is significant but
weak, with R2-value of 0.006.

3.4 Correlations among counts and error rates
We tested for correlations among w− f̂ , n, αML and k̂. We used
w− f̂ instead of w because w− f̂ has been corrected for the false
positives. The estimated true number of interactions (k̂) is strongly
correlated with the observed number (w− f̂ ) (Supplementary

Table 2. Comparison with previous studies using computational predictions,
overlap with gold standards and capture–recapture theory

Method FNR (%) FDR (%) Reference

Yeast
Prediction – 72–84 (Deane et al., 2002)
Overlap >70 >50 (von Mering et al., 2002)
Overlap 43–71 – (Edwards et al., 2002)a

Overlap 76–96 – (Edwards et al., 2002)b

Overlap – 50 (Sprinzak et al., 2003)
Overlap 80–85 – (Salwinski et al., 2004)
Overlap 50 70–90 (Hart et al., 2006)
Recap 52 24 (Huang et al., 2007)
Overlap 62 52 This workc

Recap 51 26 This work
Worm

Prediction 22–100 – (Salwinski et al., 2004)
Recap 47 44 (Huang et al., 2007)
Recap 42 48 This work

Fly
Prediction 74–96 – (Salwinski et al., 2004)
Recap 32 41 (Huang et al., 2007)
Recap 28 44 This work

aEstimated using crystal structure data.
bEstimated using MIPS complexes data.
cOverlap from comparison with data from Yu et al. (2008).
Bold values indicate results from this work.

Fig. S2). The R2-values are 0.592, 0.474 and 0.628 for yeast, worm
and fly, respectively (Supplementary Table S5). The true number of
interactions also correlates very weakly with the number of clones
(n). This correlation may be caused by the dependence of the number
of observed interactions on the number of clones.

The estimated αML depends on both the observed (w− f̂ ) and
the true number of interactions (k̂). The dependence of the FDR on
the number of clones (n) is significant in this work, although this
correlation is much weaker than other correlations.

3.5 Comparison with published estimates
Previous estimates of error rates have compared Y2H datasets to gold
standards from annotations (Sprinzak et al., 2003), experimental
structures (Edwards et al., 2002) and independent datasets (Hart
et al., 2006). The estimates for the FDR range from 50% to 90%
and the estimates for the FNR range from 43% to 90% (Table 2).

A recent high-quality two-hybrid screen is now available for
the yeast proteome (Yu et al., 2008). We report overlap-based
error rates using this new data as a gold standard (Table 2 and
Supplementary Table S6). The overall FDR and FNRs estimated
from the comparison are 52% and 62%, respectively, compared with
26% and 51% from capture–recapture.

Comparing the capture–recapture estimates with estimates
from overlap identifies four GO Slim categories for baits
with significantly lower capture–recapture FDRs: cytoplasm and
membrane fraction from the cellular component ontology, and
membrane organization/biogenesis and transport from the biological
process hierarchy (Supplementary Fig. S3 and Table S7). A
similar analysis identifies categories with baits having lower FNRs
according to capture–recapture (Supplementary Table S7).
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The discrepancy in estimated error rates is due in part to
systematic differences between the interactions observed in the two
screens. There are 78 interactions in Ito et al. (2001) with three or
more clones that do not appear in Yu et al. (2008), even though
these interactions were tested. These interactions are scored as true
positives based on capture–recapture, but as false positives based on
overlap.An analysis of the annotations of these proteins immediately
identifies 12 of these 78 interactions as highly likely true positives
(Supplementary Table S8), and thus false negatives in the more
recent dataset. These results indicate that estimates of false positive
and FNRs from overlap may be biased by systematic differences
between screens.

4 DISCUSSION AND CONCLUSIONS
Protein interaction screens do not work uniformly well for each
protein. This work develops a statistical model for heterogeneous
FDRs for proteins used in two-hybrid screens. The model uses
the beta distribution as a prior distribution for FDRs. Statistical
model selection criteria decisively choose this model over a simpler
dichotomous categorization into good and bad proteins.

The bait-specific FDRs can then be used to identify classes of
proteins that perform better or worse on average in two-hybrid
screens. One consistent finding is that normalized libraries of cloned
ORFs perform better than cDNA libraries. This may be due to better
normalization of individual preys, better DNA quality or both. For
application to cDNA libraries, accounting for heterogeneous mRNA
abundance may improve error rate estimates. We do not pursue this
direction because cloned ORFs have been used exclusively in the
most recent screens.

Posterior estimates of FDRs permit tests of hypotheses
that hydrophobic or promiscuous domains lead to non-specific
interactions. Similarly, estimates of true interaction counts permit
tests of hypotheses that classes of proteins are hubs. Evidence
for these hypotheses is limited. Proteins involved in transcription
regulations and cellular metabolic processes have a high FDR,
in accord with previous work. Fly proteins that are involved in
multicellular organismal process and development, and sequence-
specific DNA-binding proteins are also found to be error-prone,
possibly due to auto-activation rather than non-specific interactions.
While proteins that function in membrane pores have high FDRs,
intrinsic membrane proteins have reduced FDRs. Although previous
work found a larger number of protein categories to have elevated
FDRs (Huang et al., 2007, p. 497), the current work is based on
non-parametric tests that are likely to be more robust.

Several model selection criteria indicate that protein interaction
degree distributions are not scale free; exponential truncation
provides a superior fit. Analysis of protein interaction degrees
indicates that proteins involved in fly developmental processes
and multicellular organismal processes are likely to have more
interaction partners, while proteins involved in binding identical
proteins, such as homodimers, are likely to have fewer interaction
partners. Hydrophobic proteins also generally have fewer interaction
partners.

The statistical methods described here will be relevant for
future two-hybrid screens. Ultra-high-throughput DNA sequencing
technologies, such as 454 (Margulies et al., 2005), Illumina (Hillier
et al., 2008) andABI SOLiD (Valouev et al., 2008) have the potential
to sample far deeper into bait–prey clones. Bayesian methods for

error rate estimation can also be used to improve data integration
from multiple independent screens, as has been reported for studies
of co-complex membership (Gilchrist et al., 2004).

Improved pooling strategies may also increase the efficiency
of two-hybrid screens (Thierry-Mieg and Bailly, 2008), with a
move to smaller pools and redundancy for error checking. To take
advantage of smaller pool sizes (including direct tests of each pair)
and increased bi-directional coverage, the probability that a specific
interaction is true would become a latent variable conditioning
both the bait–prey and prey–bait observations, as opposed to the
uni-directional methods described here. These additional variables
would add to the computational complexity, but not necessarily to
the number of free parameters in a model. Extensions of this capture–
recapture theory are therefore feasible and relevant to future studies
of protein–protein interactions.
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