
nanomaterials

Article

Graphene−Perfluoroalkoxy Nanocomposite with
High Through-Plane Thermal Conductivity
Fabricated by Hot-Pressing

Xinru Zhang 1,2 , Xiaoyu Xie 1, Xinzhi Cai 1 , Zeyi Jiang 1,3,*, Ting Gao 1, Yujie Ren 4, Jian Hu 5

and Xinxin Zhang 1,3

1 School of Energy and Environmental Engineering, University of Science and Technology Beijing,
Beijing 100083, China

2 Beijing Engineering Research Center of Energy Saving and Environmental Protection,
University of Science and Technology Beijing, Beijing 100083, China

3 Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry,
University of Science and Technology Beijing, Beijing 100083, China

4 China Energy Conservation and Environmental Protection Group, Beijing 100082, China
5 China Energy Conservation and Environmental Protection Group National Machinery United Electric

Power (Ningxia) Co., Ltd., Yinchuan 750011, China
* Correspondence: zyjiang@ustb.edu.cn; Tel.: +86-10-62334971

Received: 1 August 2019; Accepted: 4 September 2019; Published: 15 September 2019
����������
�������

Abstract: With the rapid development of electronics and portable devices, polymer nanocomposites
with high through-plane thermal conductivity (TC) are urgently needed. In this work, we fabricated
graphene nanosheets−perfluoroalkoxy (GNs−PFA) composite sheets with high through-plane TCs
via hot-pressing followed by mechanical machining. When the GNs content exceeded 10 wt%,
GNs were vertically aligned in the PFA matrix, and the through-plane TCs of nanocomposites were
10–15 times higher than their in-plane TCs. In particular, the composite with 30 wt% GNs exhibited a
through-plane TC of 25.57 W/(m·K), which was 9700% higher than that of pure PFA. The composite
with 30 wt% GNs was attached to the surface of a high-power light-emitting diode (LED) to assess
its heat-dissipation capability. The composite with vertically aligned GNs lowered the LED surface
temperature by approximately 16 ◦C compared with pure PFA. Our facile, low-cost method allows
for the large-scale production of GNs–PFA nanocomposites with high through-plane TCs, which can
be used in various thermal-management applications.

Keywords: thermal conductivity; nanocomposite; graphene; alignment; hot-pressing;
perfluoroalkoxy

1. Introduction

Thermal management has become one of the most critical challenges in the design of electronic
components, smart phones, light-emitting diodes (LEDs), touch panels, etc. [1,2]. The development
of high-power electronic devices needs to obtain new materials with high thermal conductivity,
excellent thermal stability, tailored thermal expansion and reduced weight. To address this issue,
many novel materials have been developed, such as, polymer matrix composite, carbon matrix
composite and metal matrix composite [1,3,4]. Among them, polymers have several favorable
attributes for thermal management because of their low cost, light weight, high stability and good
processability. Unfortunately, almost all polymers possess low thermal conductivity, on the order
of 0.1–0.5 W/(m·K) [5], providing insufficient heat dissipation for effective thermal management.

Nanomaterials 2019, 9, 1320; doi:10.3390/nano9091320 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-0643-390X
https://orcid.org/0000-0002-3068-1711
http://www.mdpi.com/2079-4991/9/9/1320?type=check_update&version=1
http://dx.doi.org/10.3390/nano9091320
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 1320 2 of 11

Therefore, improving the thermal conductivity (TC) of polymers is necessary for their application in
thermal management.

Over the past two decades, to improve the TC of polymers, extensive studies have been conducted
on incorporating nanofillers with high TCs into polymer matrix, such as copper/silver, silicon carbide,
and aluminum oxide nanoparticles, carbon nanotubes, graphene nanosheets (GNs), boron nitride
nanosheets (BNNs) [6–11]. Among these nanofillers, 2-dimensional (2D) platelet-like GNs and BNNs
are particularly promising owing to their ultrahigh and unique anisotropic TCs [12–14]. For example,
previous studies reported that GNs and BNNs had in-plane TCs of 2000−5000 and 600 W/(m·K),
respectively, whereas their through-plane TCs ranged from 10 to 20 W/(m·K) [15,16].

Taking advantage of this ultrahigh TC of GNs and BNNs along the in-plane direction,
significant efforts have been devoted to enhancing the nanocomposite’s TC by aligning GNs and
BNNs in the polymer matrix [13]. Several methods to fabricate composites with aligned GNs or BNNs
have been proposed, such as liquid crystal method [17,18], exerting an electric/magnetic field [19,20],
vacuum filtration [21,22], unidirectional freeze casting [23,24], and electrospinning [25]. For example,
Kumar et al. used a liquid-crystal method to fabricate composite films with layer-aligned GNs
in polyvinylidene fluoride co-hexafluoropropylene, and reported that the composite film had an
in-plane TC of 19.5 W/(m·K) at a GNs content of 27.2 wt% [26]. By exerting an external magnetic
field, Yan et al. aligned GNs in epoxy by functionalizing them with Fe3O4 nanoparticles, and found
that for a GNs content of 0.52 vol%, the TC of the composite was 0.361 W/(m·K) along the direction
of GNs alignment [27]. Using the vacuum filtration method, Li et al. fabricated layer aligned
GNs–epoxy composite with an in-plane TC of 16.75 W/(m·K) at a GNs content of 11.8 wt% [22].
Using the freeze casting method, Lian et al. fabricated vertically aligned and interconnected GNs–epoxy
nanocomposite with through-plane TC of 2.13 W/(m·K) for a GNs content of 0.92 vol% [28].

Recently, based on a facile hot-pressing method, Sun et al. fabricated the polycarbonate
composite films with layer aligned BNNs via pre-coating followed by hot-pressing, achieving a
TC of 3.09 W/(m·K) for 18.5 vol% BNNs [29]. In addition, Yu et al. fabricated a composite film with
layer aligned BNNs in thermoplastic polyurethane via solution ball-milling followed by hot-pressing.
They reported TCs of 50.3 and 6.9 W/(m·K) along the in-plane and through-plane directions, respectively,
with 95 wt% layer-aligned BNNs [30]. The above studies indicate that it is promising to fabricate the
high-performance polymer nanocomposites with well aligned nanosheets by using this facile and
low-cost hot-pressing method. Whereas, it should be noted that these examples are 2D films that exhibit
high in-plane TCs, because the alignment direction of BNNs is parallel to the surface of composite film.
By contrast, in many thermal management applications, composites with high through-plane TCs are
more desired [23,27,28]. However, to date, little research has been reported on nanocomposites with
high through-plane TCs using the hot-pressing method.

In this work, we fabricated the 3D bulk perfluoroalkoxy (PFA) composites with highly layer-aligned
GNs using the hot-pressing method. We then cut the bulk GNs–PFA composites into thin sheets along
the direction perpendicular to the alignment direction of GNs. By characterizing the microstructure and
TC of these obtained nanocomposite sheets, we found that, when the GNs content exceeded 10 wt%,
the GNs had a high degree of vertical alignment and the through-plane TCs were approximately
10–15 times higher than the in-plane TCs. In particular, for a GNs content of 30 wt%, the through-plane
TC was 25.57 W/(m·K), which was 9700% higher than that of pure PFA. Our method is facile and low
cost, and enables the large-scale production of GNs–PFA nanocomposites with high through-plane TC.

2. Materials and Methods

2.1. Preparation and Characterization of Graphene Nanosheets (GNs)

The GNs were produced by exfoliating flaked graphite (TNGNP, Chengdu Organic Chemicals Co.
Ltd., Chengdu, China) in ethanol–water mixture (ethanol: 45 vol%) using a tip sonicator (Scientz-950E,
Scientz Biotechnology Co. Ltd., China) at 300 W for 120 min (see Supplementary Materials (SM)
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Figure S1 for further details). Then the GNs were collected and redispersed in ethanol (Sinopharm
Chemical Reagent Co. Ltd, Shanghai, China) [31,32]. The morphology, thickness and crystal structure
of the GNs were then characterized. Specifically, the morphology was observed using a scanning
electron microscopy (SEM) (Nova NanoSEM 430, FEI, Hillsboro, OR, USA) operating at a 5-kV
acceleration voltage by pipetting the GNs dispersions onto a Si substrate. The GNs thickness was
examined using transmission electron microscopy (TEM, JEM-2200FS, JEOL Ltd., Tokyo, Japan) by
pipetting the GNs dispersions onto carbon-coated copper grids, atomic force microscope (AFM,
Dimension FastScan, Brucker Ltd., Santa Barbara, CA, USA) by pipetting the GNs dispersions onto
mica, as well as Raman spectroscopy (LabRAM HR800, Horiba Jobin-Yvon, Lyon, France) with a
514 nm wavelength laser. The crystal structure of GNs was determined by the high-resolution TEM
and fast-Fourier transformation.

2.2. Fabrication of Aligned Graphene Nanosheets−Perfluoroalkoxy (GNs–PFA) Nanocomposites

Figure 1 shows the method to fabricate the aligned GNs–PFA nanocomposites via hot-pressing
followed by mechanical machining. First, GNs were prepared by exfoliating graphite in an ethanol
(45 vol%)–water mixture, followed by redispersion in ethanol. PFA powder (obtained from DuPont,
USA) was then added into the GNs dispersions and mixed while removing ethanol under heating and
magnetic stirring for 6 h at 60 ◦C. Afterwards, the GNs–PFA slurry was dried at 120 ◦C for 24 h in a
vacuum oven to remove the residual ethanol. The obtained GNs–PFA powder was put into a mold
and heated at 400 ◦C for 1 h. The molten GNs–PFA sample was hot-pressed at 380 ◦C under a pressure
of 15 MPa for 15 min, then cooled to room temperature under the ambient pressure to form bulk
composites (see Figure S2 for the details of the hot-pressing system) [33]. Finally, the bulk composites
(length ×width × height: 30 × 30 × 11 mm3) were cut into many thin sheets (30 × 11 × 1 mm3) along
the direction perpendicular to the top surface of the bulk composite. The properties of these sheets
were then evaluated. We performed the above steps for GNs–PFA composites with GNs contents of 1,
5, 10, 15, 20, 25 and 30 wt%.
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Figure 1. Schematic representation of the fabrication process for the perfluoroalkoxy (PFA) composite
with vertically aligned graphene nanosheets (GNs). First, GNs were prepared by exfoliating the flaked
graphite. Then, PFA powder was added into the GNs dispersion and mixed while removing the
ethanol. Afterwards, the GNs–PFA slurry was dried in a vacuum oven to remove the residual ethanol.
The obtained powder was placed in a mold and hot-pressed into the bulk sample. Finally, the bulk
sample was cut, perpendicular to its top surface, into thin sheets.

2.3. Characterization of GNs–PFA Nanocomposite

The thermal stability, microstructure, through-plane and in-plane TCs, heat dissipation capability,
as well as coefficient of thermal expansion (CTE) of the GNs–PFA composite sheets were characterized.
The thermal stability of the composites was determined by thermogravimetric analysis using a thermal
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analysis platform (Labsys Evo, Setaram, France) at a heating rate of 10 ◦C/min from 25 ◦C to 900 ◦C
under a nitrogen atmosphere. The microstructures of the GNs–PFA composite sheets were observed
using SEM (Nova NanoSEM 430, FEI, Hillsboro, OR, USA) operating at a 20-kV acceleration voltage.
We note that, prior to the SEM observation, the composites were fractured in liquid nitrogen to form a
neat cross-section.

The through-plane TCs (i.e., λ⊥) and in-plane TCs (i.e., λ‖) of the composite sheets were determined
by λ = α × cp × ρ, where, α is the thermal diffusivity, cp is the specific heat, and ρ is the density
of composite sheet. The values of α and cp of the composites were measured using a laser flash
thermal analyzer (LFA 427, Netzsch, Germany), and ρ was determined by measuring the weight and
dimensions of the samples.

To evaluate the application potential of the GNs–PFA composite sheets, we measured their heat
dissipation capability when attached to a high-power LED. Specifically, the back surface of the LED
was attached to the composite sheet (diameter: 10 mm; height: 1 mm), and a heat sink was connected
to the bottom side of the composite. After the LED was switched on, the temperature of the LED was
measured using an infrared thermal imaging instrument (E60, FLIR Systems, USA). We compared the
heat dissipation capability of the PFA composite with 30 wt% GNs with that of pure PFA.

In addition, the CTE of the composites was measured using an optical dilatometry (DIL 806,
TA Instruments, USA), which is capable of measuring, without sample contact, dimensional changes
in the sub-micro range. The measurement was conducted in the temperature range from 25 to 200 ◦C
under a 10 ◦C·min−1 heating rate.

3. Results and Discussion

3.1. Properties of the GNs Produced by Liquid Phase Exfoliation

The morphology, thickness, and crystal structure of the produced GNs were characterized using
SEM, Raman spectroscopy, TEM and AFM. As shown in the SEM image in Figure 2a, the flaked
graphite had a size of 30–50 µm, and a thickness of several micrometers. Figure 2b shows the SEM
image of the GNs produced by exfoliating graphite in ethanol (45 vol%)–water mixture. The GNs
had a size of about 5–10 µm. The Raman spectra of the pristine graphite and the GNs produced
by exfoliating graphite are shown in Figure 2c. The 2D band (~2750 cm−1) of the GNs shifted to
a lower position than that of graphite, which demonstrates that the GNs were few-layered [34].
In addition, the bright-field TEM image of the GNs (Figure 2d) indicates that the GNs were few-layered.
The AFM image (Figure 2e) shows that the thickness of GNs was approximately 2.1 nm. Evidently,
both the TEM and AFM observation were consistent with the Raman spectra measurement shown in
Figure 2c. The high-resolution TEM images of the GNs are shown in Figure 2f. The lattice spacing of
approximately 0.21 nm suggests that there was no structural distortion for these GNs [35]. The inset
of Figure 2f shows the fast-Fourier transformation pattern of the GNs, which demonstrates that the
GNs maintained a six-fold symmetry pattern, which is the typical crystal structure of GNs. Together,
the characterization of the morphology, thickness, and crystal structure of GNs demonstrated that they
had a large size, were few-layered, and had high structural quality.
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3.2. Thermal Stability of the GNs–PFA Nanocomposites

The thermal stability is an important parameter of nanocomposites. We measured the
thermogravimetric analysis curves to analyze the thermal stability of the composites. As shown in
Figure 3a, the pure PFA and GNs–PFA nanocomposites showed a similar one-step decomposition
between 500 and 620 ◦C. This result indicates that the addition of GNs had little influence on the
decomposition behavior of the PFA composite. Figure 3b shows the relationship between the initial
GNs content and the actual residual content obtained in thermogravimetric analysis. Because the GNs
are stable at 800 ◦C in nitrogen, the residual GNs can be used to estimate the GNs content in PFA
matrix. The residual content agreed well with the initial GNs content, implying that the GNs were
dispersed uniformly in the PFA matrix.
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The heat-resistance index (THRI) was used to analyze the thermal stability of the nanocomposite
(see Table S1 for details) [36]. As shown in Figure 3c, the THRI value for the pure PFA was about 275.2 ◦C,
whereas those of the nanocomposites was slightly lower (271.0 to 274.6 ◦C). This result indicates that
the addition of GNs slightly reduced the thermal stability of the nanocomposite. This could be due
to the ultrahigh TC of GNs, which would serve to increase heat conduction, thus accelerating the
decomposition of the matrix [37]. The addition of GNs to the PFA may also decrease the thermal
stability by increasing the number of defects in the nanocomposite [38].
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3.3. Microstructure of the GNs–PFA Nanocomposites

The microstructure of the GNs–PFA nanocomposites and the alignment of GNs in PFA were
observed using SEM. Figure 4 shows the SEM images of the fractured surfaces for pure PFA,
and GNs–PFA nanocomposites containing 5, 10, 15, 20 and 30 wt% GNs. The image in Figure 4a
shows the smooth surface of the pure PFA matrix. In the nanocomposite with 5 wt% GNs (Figure 4b),
the GNs were well dispersed in the PFA matrix and were almost isolated from each other; however,
the GNs were almost randomly ordered, with only a small number vertically aligned. At 10 wt% GNs
(Figure 4c), there was clear alignment of GNs in the PFA matrix; however, few GNs were in contact with
each other, which means there were few thermally conductive paths in the composite. At 15% GNs
(Figure 4d), there were a large number of GNs, nearly all of which were vertically aligned with a high
degree of overlap. This contact and overlap of well-ordered, stacked GNs would lead to the formation
of thermally conductive paths in the nanocomposite, which is one of the most important factors for
improving the TC [39]. At higher GNs contents of 20 and 30 wt% (Figure 4e,f), there was even greater
alignment and a higher number of thermally conductive paths than at 10 wt% GNs, which may be due
to the increased compactness of GNs in the polymer matrix [40]. In summary, when the GNs content
was low (i.e., 5 wt%), there was no clear alignment of GNs in the PFA. At higher content (i.e., 10 wt%),
GNs were well aligned, and above 15 wt%, the vertically aligned GNs were in contact with each other,
forming thermally conductive paths in the PFA matrix.
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containing 5, 10, 15, 20, and 30 wt% GNs, respectively.

3.4. Through-Plane and in-Planes Thermal Conductivity (TC) of the GNs–PFA Nanocomposites

Figure 5a shows the through-plane (λ⊥) and in-plane (λ‖) TCs of pure PFA and the GNs–PFA
composite sheets with GNs contents of 1, 5, 10, 15, 20, 25, and 30 wt%. The results indicate that pure
PFA had a low TC of 0.27 W/(m·K). At GNs contents higher than 10 wt%, the through-plane TC became
higher than the in-plane TC. For example, at 30 wt% GNs, the through-plane TC was 25.57 W/(m·K),
whereas the in-plane TC was only 2.39 W/(m·K), indicating strong anisotropy.

To analyze the anisotropic property of the TC for the composite sheets, we determined the ratio
of the through-plane to in-plane TC (i.e., λ⊥/λ‖). As shown in Figure 5b, the λ⊥/λ‖ ratio for 1 wt%
GNs–PFA composite was about 1.5, suggesting that the alignment of GNs in this nanocomposite was
very weak. At 5 wt% GNs, the λ⊥/λ‖ ratio was approximately 5.9, indicating that a small number of
GNs were vertically aligned in the nanocomposite sheet. As the GNs content increased to 10 wt%,
the λ⊥/λ‖ ratio was about 10.1. For the GNs contents between 15 and 25%, the λ⊥/λ‖ ratio ranged
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from 14.2 to 15.5. According to Figure 4d,e, this high λ⊥/λ‖ ratio may be due to the high alignment
and contact of GNs in the PFA matrix. At a GNs content of 30 wt%, the λ⊥/λ‖ ratio decreased to 10.7,
which indicates that although the through-plane TC increased, the in-plane TC also increased owing to
the increased compactness of GNs in the polymer. Overall, the results in Figure 5b demonstrate that
when the GNs content in the composites was higher than 10 wt%, the TC exhibited strong anisotropy.
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composites reported in literature.

The through-plane TC of the PFA composite with 30 wt% GNs (25.57 W/(m·K)) was 9700% higher
than that of pure PFA. Therefore, we compared the through-plane TC obtained in this work with the
values reported in the literature for other GNs-based composites, which were fabricated by different
methods, such as vacuum filtration [22], the liquid-crystal method [26], application of a magnetic
field [27], and unidirectional freeze casting [28], among others [41–47]. The TCs of our GNs–PFA
nanocomposites were higher than those reported in the literature. This may be because the degree of
GNs alignment in the polymer matrix induced by hot pressing is much higher than that induced by
the other methods as a result of the high pressure exerted on the nanocomposite surface during the
hot-pressing process.

3.5. Heat Dissipation Capability of the GNs–PFA Nanocomposites

To evaluate the application potential of the nanocomposites, we compared the heat-dissipation
capability of the PFA composite sheet with 30 wt% GNs with that of pure PFA, by using them in
the thermal management of a high-power LED. Note that, to make a direct comparison of in-plane
and through-plane heat dissipation capability, as shown by the insets in Figure 6a, the composites
containing layer aligned and vertically aligned GNs were both attached to the LEDs. Figure 6a shows
the infrared thermal images for LEDs attached to pure PFA and the PFA composites after switching the
LEDs on for 30, 120, and 300 s. The surface temperature of the LED was much lower when attached
to the composite with vertically aligned GNs (through-plane TC) than the pure PFA. This clearly
demonstrates the higher heat-dissipation capability of this composite than pure PFA.

Figure 6b shows the surface temperatures of the LEDs as a function of time. The surface
temperature of the LED attached to pure PFA increased to approximately 56 ◦C within 150 s after it
was switched on. While, the temperature of the LED attached to the composite with layer aligned
GNs (in-plane TC) increased to approximately 51 ◦C within 100 s. By contrast, the temperature of
the LED lamp attached to the composite with vertically aligned GNs (through-plane TC) increased
to approximately 40 ◦C within 50 s and remained stable at this temperature. Thus, the temperature
of the LED attached to the composite with vertically aligned GNs increased more quickly than that
attached to pure PFA, and the maximum temperature was substantially lowered by 16 ◦C. This result
demonstrates that the vertically aligned GNs increase heat dissipation capability of the composite in
the direction of heat transfer.
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Figure 6. Infrared thermal images (a) and surface temperatures (b) as a function of time for high-power
LEDs attached to pure PFA and the PFA nanocomposites with 30 wt% GNs (in-plane TC: Layer aligned
GNs; through-plane TC: Vertically aligned GNs). In the experiment, the back surface of a high-power
LED lamp was attached to a thin composite sheet, then a heat sink was connected to the bottom side of
the composite as shown by the insets in (a).

3.6. Coefficient of Thermal Expansion (CTE) of the GNs–PFA Nanocomposites

As is known, poor dimension stability would directly influence the functionality of electronic
devices [3,4,24]. To examine the dimension reliability, we determined CTE for the GNs–PFA
nanocomposites. As shown in Figure 7a, the dimensional changes of the samples increased with the
increasing temperature. Figure 7b depicts the determined CTE for pure PFA and the nanocomposites,
which indicates that CTE decreased with the increasing GNs contents. In particular, pure PFA had a
CTE of 92. 6 ppm/◦C, while the values were 89.5, 82.4, 55.1 and 14.6 ppm/◦C for PFA nanocomposites
at the GNs contents of 5, 10, 20 and 30 wt%, respectively. The composite at 30 wt% GNs content
possessed a low CTE. This is attributed to the well-ordered, and stacked aligned GNs stabilizing the
whole framework of the composites.

In summary, the characterization of the thermal stability, microstructure, TC, heat dissipation,
and CTE indicates that the 30 wt% GNs–PFA composite possessed excellent thermal stability,
well vertically aligned GNs, high through-plane TC, and low CTE. Accordingly, considering that hot
pressing and mechanical machining are both facile and low cost, we believe that our approach is
effective for the large-scale production of GNs–PFA composites with high through-plane TCs.
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4. Conclusions

In this work, we fabricated PFA composites with vertically aligned GNs via hot pressing followed
by mechanical machining. We found that the GNs–PFA nanocomposites possessed good thermal
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stability. When the GNs content was higher than 10 wt%, the GNs were well aligned in the PFA
composites owing to the hot pressing, and the through-plane TCs were about 10–15 times higher
than the in-plane TCs. In addition, the through-plane TC of the PFA composite with 30 wt%
GNs was 25.57 W/(m·K), which was 9700% higher than that of pure PFA. This study suggests that
combining hot pressing with mechanical machining is a facile, low-cost strategy for large-scale
production of GN–PFA nanocomposites with high through-plane TCs that can be used in various
thermal-management applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/9/1320/s1,
Figure S1. The optical densities of GNs dispersions obtained by exfoliating graphite in a series ethanol−water
mixtures. Figure S2. The hot-pressing system used in this work. Table S1. The heat resistance index (THRI) for
pure PFA and GNs–PFA nanocomposites.
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