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Abstract: Bacterial infections have threatened the lives of human beings for thousands of years either
as major diseases or complications. The elimination of bacterial infections has always occupied a
pivotal position in our history. For a long period of time, people were devoted to finding natural
antimicrobial agents such as antimicrobial peptides (AMPs), antibiotics and silver ions or synthetic
active antimicrobial substances including antimicrobial peptoids, metal oxides and polymers to
combat bacterial infections. However, with the emergence of multidrug resistance (MDR), bacte-
rial infection has become one of the most urgent problems worldwide. The efficient delivery of
antimicrobial agents to the site of infection precisely is a promising strategy for reducing bacterial
resistance. Polymeric nanomaterials have been widely studied as carriers for constructing antimicro-
bial agent delivery systems and have shown advantages including high biocompatibility, sustained
release, targeting and improved bioavailability. In this review, we will highlight recent advances
in highly efficient delivery of antimicrobial agents by polymeric nanomaterials such as micelles,
vesicles, dendrimers, nanogels, nanofibers and so forth. The biomedical applications of polymeric
nanomaterial-based delivery systems in combating MDR bacteria, anti-biofilms, wound healing,
tissue engineering and anticancer are demonstrated. Moreover, conclusions and future perspectives
are also proposed.

Keywords: antimicrobial agent; polymeric nanomaterial; self-assembly; antimicrobial peptide; silver
nanoparticle; anti-biofilm; wound healing; multidrug resistance

1. Introduction

Infectious diseases induced by bacteria, virus and fungi have been considered as
one of the biggest enemies that threatened the lives of human beings for a long time [1].
Since the discovery of penicillin in 1928, antibiotics have played an unprecedented role in
saving lives of human beings and caused revolutionary changes in medicine. However,
with overuse and improper use of antibiotics, the emergence of bacterial drug resistance is
becoming a severe problem. In particular, combating MDR bacteria such as methicillin-
resistant Staphylococcus aureus (S. aureus) (MRSA) has drawn wide attention and efforts [2,3].
Non-antibiotic antimicrobial agents such as AMPs [4–6], silver nanoparticles (AgNPs) [7–9],
metal oxides [10–12], antimicrobial peptoids [13,14] and polymers [15–18] are alternatives
for treating infectious diseases that kill bacteria in a physical manner and avoid the genera-
tion of drug resistance. For instance, cationic compounds including AMPs, antimicrobial
peptoids and polymers, as well as their corresponding nanostructures, strongly interacted
with the negatively charged cell membrane of bacteria, resulting in the disruption of the cell
membrane and outflow of the content of bacteria [19,20]. Metal (oxide) nanoparticles such
as widely studied AgNPs kill bacteria via heavy metal ions induced by the denaturation
of proteins or genetic materials, while ZnO and TiO2 nanoparticles eliminate bacteria by
reacting with reactive oxygen species (ROS) generated from photocatalytic process [12,21].

Pharmaceutics 2021, 13, 2108. https://doi.org/10.3390/pharmaceutics13122108 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-4928-9450
https://doi.org/10.3390/pharmaceutics13122108
https://doi.org/10.3390/pharmaceutics13122108
https://doi.org/10.3390/pharmaceutics13122108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13122108
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics13122108?type=check_update&version=3


Pharmaceutics 2021, 13, 2108 2 of 27

Moreover, emerging antimicrobial agents including gases, photothermal sensitizers and
carbon materials were also developed to combat bacterial infections [17,22–24].

The efficient delivery of antimicrobial agents to the target preventing the defense
system of bacteria including efflux pump, degrading enzymes and resistance genes is
critical for reducing the emergence of drug resistance [25–27]. Polymeric nanomaterials
are promising vehicles for the efficient delivery of antimicrobial agents due to their tai-
lorable chemical compositions, microstructures and biological properties for a wide range
of biomedical applications [28–30]. For instance, low dimensional nanostructures including
dendrimers [31,32], polymeric nanoparticles [33,34], micelles [35,36], vesicles [37,38] and
nanogels [39,40] have shown superiorities in the delivery of antimicrobial agents to the
areas of infections and on-demand release. Polymeric nanofibers and hydrogels are bene-
ficial for the long-term release of antimicrobial agents and wound coverage [41,42]. Very
recently, metal organic frameworks (MOFs) have attracted attention as emerging carriers
for the efficient delivery of metal ions, metal nanoparticles, antibiotics and enzymes due to
their highly porous structures [43–46]. There are several advantages of using polymeric
nanomaterials as carriers to accomplish the on-demand delivery of antimicrobial agents:
(i) reduced dosage and drug resistance; (ii) increased in vivo circulation stability; (iii) en-
hanced penetration ability; (iv) prolonged antimicrobial performance; and (v) improved
bioavailability. Therefore, apart from the wide attentional broad spectrum antimicrobial
properties, biomedical applications including combating MDR bacteria, anti-biofilm, anti-
cancer, wound healing and tissue engineering based on the polymeric antimicrobial agent
delivery systems have been rapidly developed [47–50].

In this review, we aim to present the state of the art of polymeric nanomaterials
as carriers for the efficient delivery of antimicrobial agents from the following aspects:
(1) classification of polymeric nanoparticles based on their nanostructures; (2) the structural
features and corresponding advantages in delivery of antimicrobial agents; and (3) biomedical
applications benefiting from the constructed delivery systems, as illustrated in Figure 1.
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Figure 1. Schematic illustration of polymeric nanomaterials for efficient delivery of antimicrobial
agents and their biomedical applications.

2. Efficient Delivery of Antimicrobial Agents by Diverse Polymeric Nanostructures
2.1. Self-Assembled Polymeric Nanoparticles

Polymer self-assembly has been recognized as one of the most versatile strategies for
preparing soft nanomaterials with various morphologies and functionalities from small
building blocks [51–56]. Typically, polymer micelles and vesicles are the most easily ob-
tained and widely studied nano-objects due to their well-organized structures [57–60].
Polymer micelles are formed by the regular arrangement of building blocks with hydropho-
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bic components forming the cores and hydrophilic polymer chains covering the surface.
Moreover, the hydrophobic cores facilitated the efficient encapsulation of hydrophobic
drugs [61,62], while polymer vesicles are hollow bilayer nanostructures with hydrophobic
membranes, hydrophilic coronas and interior cavities, endowing them with superiorities
in loading and delivering hydrophobic, hydrophilic and large-sized cargoes [63–66]. The
design of polymer vesicles for meeting the requirements of various applications mainly
focuses on the chemical composition and structure of coronas and membranes, such
as permeability and homogeneity of the membrane, symmetricity of the corona and so
forth [67–69]. Despite the wide applications of polymer micelles and vesicles in cancer
therapy, gene delivery and cell imaging, they also exhibit considerable potentials in the
efficient delivery of antimicrobial agents [36,70,71].

Polymer micelles, core-shell nanostructures that usually self-assembled from am-
phiphilic block copolymers, are regarded as one of the most extensively studied nanostruc-
tures for antimicrobial agent delivery [35,72]. Typically, hydrophobic antibiotics, AMPs and
AgNPs can be loaded in the hydrophobic core, and amphiphilic antimicrobial molecules are
usually decorated on the surface of polymer micelles by covalent bonding or electrostatic
interaction [73–76]. For instance, a poor water-soluble anti-fungi agent, amphotericin B,
could be encapsulated in the core of micelles and showed ultra-long sustained release for
150 h, resulting in reduced hemotoxicity and comparable anti-fungi activity compared
with free amphotericin B [77]. Xiong and coworkers [78] functionalized terpyridine on the
surface of polymer micelles; after chelating with Fe(II), the micelles displayed excellent
biofilm inhibition activity up to 99.9% at a concentration of 128 µM. Recently, Lee et al. [79]
prepared AMP-covered micelles by the co-assembly of chimeric antimicrobial lipopeptide
and a biodegradable amphiphilic polymer (poly-(lactic-co-glycolic acid)-b-poly(ethylene
glycol), (PLGA-b-PEG)). The chimeric peptide HnMc and PEG formed the shell of the
micelles in which PEG protected HnMc from proteolytic degradation. Moreover, HnMc
on the surface could help micelles in preferentially binding and killing bacteria. Due to the
synergy between HnMc and PEG, the micelles targeted a wide range of bacteria preferentially
including Escherichia coli (E. coli), Listeria monocytogenes, Pseudomonas aeruginosa (P. aeruginosa)
and S. aureus instead of mammalian cells. Moreover, in vivo experiments also demonstrated su-
perior anti-inflammatory effects of the micelles in a mouse model of drug-resistant P. aeruginosa
lung infection with highly targeted abilities, as shown in Figure 2.

Very recently, Wooley and coworkers [80] fabricated spherical micelles, cylinders and
nanoplates derived from the crystallization-driven self-assembly (CDSA) of an amphiphilic
block copolymer composed of zwitterionic poly(
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-glucose carbonate) and semicrystalline
poly(Ï-lactide) segments (PDGC-b-PLLA). As illustrated in Figure 3, fluorescent molecule
and cysteine were modified on the polymer in order to afford tracing ability and to chelate
with silver ions, respectively. The morphology of the nanostructures could be well con-
trolled by the hydrophilic-to-hydrophobic ratios, which exhibited negligible cytotoxicity,
immunotoxicity and cytokine adsorption. However, the nanostructures offered substantial
silver ion loading capacity, extended release and in vitro antimicrobial activity. Compared
with spherical micelles, the cylinders and nanoplates exhibited enhanced association with
uroepithelial cells due to their high aspect ratio, resulting in improved inhibition of the
growth of E. coli in recurrent urinary tract infections.

Compared with polymer micelles, polymer vesicles are closed hollow spheres with
more complicated structures usually acting as simple mimics of biological cells [81]. There
are three compartmentalized regions that should be considered for realizing different func-
tions, namely the inner hydrophilic cavity, hydrophobic membrane and hydrophilic corona
in contact with external environments [82]. Therefore, both hydrophilic and hydrophobic
compounds and even nanoparticles could be encapsulated in the interior cavity or mem-
brane of vesicles, respectively. Moreover, hydrophilic molecules could also be linked onto
the coronas of polymer vesicles by covalent bonding. Considering the structural feasibility
of polymer vesicles, a large variety of antimicrobial agents could be loaded and delivered to
combat bacteria with high loading efficiency, controlled release manner, targeting capability
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and improved bioavailability [83,84]. For example, Du and coworkers [35] deposited ultra-
fine AgNPs with a diameter of 1.9 ± 0.4 nm on the membrane of polymer vesicles by in situ
reduction of silver ions to inhibit the growth of Gram-negative and Gram-positive bacteria.
Battaglia et al. [71] reported the intracellular delivery of metronidazole or doxycycline to
P. gingivalis-infected oral epithelial cells by polymer vesicles, which were disassembled in
early endosomes due to the acidic condition, resulting in the release of loaded cargoes.
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Recently, Liu and coworkers [85] designed enzyme-responsive polymer vesicles for
bacterial strain-selective delivery of antimicrobials, as shown in Figure 4. Both hydrophilic
and hydrophobic antimicrobials including vancomycin, gentamicin, quinupristin and
dalfopristin could be encapsulated either in the interior cavity or membrane of the poly-
mer vesicles with high efficiency. The PEG chains covered on the surface of the vesicle
could reduce cytotoxicity and improve biocompatibility, while the self-immolative side
chains could be degraded by penicillin Gamidase (PGA) and β-lactamase (Bla), which are
overexpressed by drug resistant bacterial strains. Without the trigger by PGA and Bla,
the encapsulated antimicrobials were well protected by vesicles. Upon being exposed
to drug-resistant bacteria, the membrane of the vesicle was degraded, resulting in the
sustained release of antimicrobials, as well as the elimination of bacteria. Considering that
Bla is the main cause of bacterial resistance to β-lactam antibiotic drugs that are secreted by
MRSA, selective antimicrobial activity of the antimicrobials-loaded vesicles was achieved.
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Loading bioactive enzymes by polymer vesicles to generate antimicrobial active
species triggered by external stimuli is another effective method for combating bacteria.
For example, Blackman et al. [86] prepared glucose oxidase-loaded semipermeable polymer
vesicles by polymerization-induced self-assembly inspired by honey. Hydrogen peroxide,
an effective antimicrobial agent, could be generated in response to glucose to switch
on antimicrobial activity of the vesicles. In the absence of glucose, the vesicles were
completely nontoxic to bacteria, while the vesicles showed seven-log reduction in bacterial
growth at high glucose concentrations against a range of Gram-negative and Gram-positive
bacterial pathogens including S. aureus, S. epidermidis, E. coli and Klebsiella pneumoniae
(K. pneumonia), even the MRSA clinical isolate. More importantly, the toxicity of the
vesicle toward human fibroblasts at different dosage and glucose concentrations was also
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evaluated, demonstrating that the optimal concentration of the vesicle was 0.69 mg mL−1

at physiological blood glucose level to effectively eliminate bacteria while preserving good
compatibility to mammalian cells.

2.2. Dendrimers

Dendrimers are highly branched, globular macromolecules with many arms em-
anating from a central core, which have shown unique structural properties such as
high degree of branching, multivalency, globular architecture and well-defined molec-
ular weight, rendering them promising scaffolds for drug delivery [87,88]. Many com-
mercial drugs with anticancer and antimicrobial activity have been successfully loaded
within dendrimers including poly(amidoamine) (PAMAM), poly(propylene imine) (PPI)
and poly(etherhydroxylamine) (PEHAM), either via physical interactions or by chemical
bonding to improve their water solubility [89]. Dendrimers themselves could be used as
effective antimicrobial agents [90]. For instance, those with positively charged surfaces
usually have strong interaction with negatively charged bacterial cell membranes, while
those with metal cores can release active antimicrobial agents such as metal ions and ROS,
resulting in the death of bacteria [91].

Moreover, antimicrobial agents including antibiotics, AMPs, AgNPs and metal ox-
ide nanoparticles could be also effectively loaded by dendrimers [89,92]. For example,
Tang et al. [93] prepared silver-dendrimer nanocomposites by loading AgNPs in low gen-
eration poly(amido amine) dendrimers. The AgNPs were formed by an in situ reduction
of silver ions enriched by the amine groups of dendrimers. The factors that influenced
the size of AgNPs were discussed, and the average diameter of the AgNPs could be con-
trolled from 7.6 to 16.2 nm. The synthesized silver-dendrimer nanocomposite was used as
antimicrobial agent in the fabrication of cotton fabrics, which exhibited excellent antimi-
crobial activity against both of E. coli and S. aureus. Recently, Huang and coworkers [94]
reported PLGA nanoparticles and PAMAM dendrimers in order to effectively encapsu-
late and deliver platensimycin, a potent inhibitor for the synthesis of bacterial fatty acid,
respectively, to combat MDR bacteria. Benefiting from the improved pharmacokinetics,
both the platensimycin-loaded PLGA nanoparticles and PAMAM dendrimers showed en-
hanced antimicrobial activity and reduced cytotoxicity compared with free platensimycin,
resulting in an efficient inhibition of S. aureus biofilm formation and the full survival of
MRSA-infected mice.

Dendrimers are ideal platforms for compacting and delivering deoxyribonucleic acids
(DNAs) and ribonucleic acids (RNAs) for gene therapy due to their hyperbranched struc-
ture and strong positive charges, especially PAMAM [95,96]. Recently, antisense therapy
strategy has been developed to treat bacterial infections facilitated by the dendrimers-
based antisense delivery system [97]. For example, the G3 PAMAM dendrimer has good
antimicrobial activity, as shown in Figure 5. However, the cytotoxicity of the G3 PAMAM
dendrimer toward mammalian cells is also high. Luo et al. [98] conjugated LED209, a
specific inhibitor of quorum sensor QseC of Gram-negative bacteria, onto the surface of
G3 PAMAM to generate PAMAM-LED209 in order to reduce cytotoxicity to mammalian
cells while retaining the excellent antibacterial activity of the G3 PAMAM dendrimer. In
addition, PAMAM-LED209 also inhibited the virulence gene expression of Gram-negative
bacteria and prevented the generation of drug resistance. As shown in Figure 5, com-
pared with the control group (Figure 5A), entero-hemorrhagic E. coli (EHEC) were severely
damaged after being treated with G3 PAMAM and G3 PAMAM-LED209 for 300 min
(Figure 5B,C), demonstrating that G3 PAMAM-LED209 retained strong antibacterial ac-
tivity toward resistant Gram-negative bacteria after functionalization of LED209. The
induction of the resistance of G3 PAMAM-LED209 was also evaluated after 15 reproduc-
tions of bacteria, as illustrated in Figure 5D. The minimal inhibition concentration (MIC)
of G3 PAMAM-LED209 barely changed, while the MIC values of classical antimicrobials,
including ceftazidime, ampicillin and levofloxacin, increased by 8-fold to 64-fold. The
cytotoxicity and antibacterial activity of terminally modified PAMAM are related to the
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conjugated ligand and degree of modification, as shown in Figure 5E. With an increase
in modification ratio, the cytotoxicity of G3 PAMAM-PEG and G3 PAMAM-LED209 de-
creased dramatically to being almost nontoxic and then increased, while the antimicrobial
activity of the G3 PAMAM-PEG and G3 PAMAM-LED209 decreased with an increase in
modification ratio due to the shielding of positive charges. Therefore, there is an optimal
modification ratio range for balancing cytotoxicity and antimicrobial activity, as pointed out
by the arrow in Figure 5E. Moreover, the antibacterial potency of G3 PAMAM-LED209 is
also higher than that of G3 PAMAM-PEG, which is indicated by area A and B in Figure 5E,
demonstrating better biocompatibility and higher antibacterial potency than compared to
G3 PAMAM-PEG.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 8 of 30 
 

 

 
Figure 5. The morphology of EHEC was investigated by transmission electron microscopy (TEM) after different treatments 
for 300 min. (A) Control; (B) 75 μg mL‒1 of G3 PAMAM; and (C) 150 μg mL‒1 of G3 PAMAM-LED209. (D) Induction of 
resistance to G3 PAMAM-LED209. (E) The influence of the conjugated ligand and degree of modification on cytotoxicity 
and antibacterial activity of terminally modified G3 PAMAM dendrimer. Area A and B showed increased antibacterial 
activity and reduced cytotoxicity with respect to G3 PAMAM-LED209 and G3 PAMAM-PEG, respectively (reproduced 
with permission from Xue et al. [98], Nanomedicine: Nanotechnology, Biology and Medicine; published by Elsevier, 2015). 

2.3. Polymer Nanofibers 
Polymer nanofibers are one dimensional nanostructures with large aspect ratio and 

high surface area and have shown significant potential for delivering antimicrobial agents 
locally into an infected area, especially in wound healing [42,99]. Typically, there are sev-
eral methods for preparing nanofibers including self-assembly [100], template synthesis 
[101], phase separation [102] and electrospinning [103], among which electrospinning is a 
superior technique for preparing nanofibers with desired chemical compositions and di-
ameters due to its simplicity and versatility [104–106]. Antimicrobial agents including an-
tibiotics, AMPs, AgNPs and metal oxide nanoparticles could be incorporated into nano-
fibers by mixing with polymer precursors followed by electrospinning or attaching onto 
the surface of the nanofibers by noncovalent interactions or chemical bonds [107]. For in-
stance, Schiffman et al. [108] immobilized zeolites nanoparticles with high silver ion 
change capability onto the surface of chitosan nanofibers. After ion exchange, silver ions 
were loaded in the zeolites to function as molecular delivery vehicles, and their ion release 
profiles and ability to inhibit E. coli were evaluated as a function of time. Interestingly, the 
zeolites immobilized on the nanofibers showed significantly enhanced antibacterial activ-
ity 11-times greater than that of the pure zeolites due to high porosity and hydrophilicity 
of the nanofibers. 

Recently, Tu and coworkers [109] reported the in situ deposition of AgNPs on 
gold/polydopamine core-shell nanoparticles encapsulated by poly(lactic acid) (PLA) nan-
ofibers (PLA-Au@PDA@Ag), which could be applied to biological coatings for bacterio-
static functionality. The schematic illustration of the preparation and antimicrobial capa-
bility of the PLA-Au@PDA@Ag is presented in Figure 6. Chloroauric acid was reduced by 
ascorbic acid to afford gold nanoparticles. Following the polymerization of dopamine on 
the surface, Au@PDA core-shell nanoparticles formed, which were then mixed with PLA 
solution to produce PLA-Au@PDA hybrid nanofibers by electrospinning. Later, PLA-

Figure 5. The morphology of EHEC was investigated by transmission electron microscopy (TEM) after different treatments
for 300 min. (A) Control; (B) 75 µg mL−1 of G3 PAMAM; and (C) 150 µg mL−1 of G3 PAMAM-LED209. (D) Induction of
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2.3. Polymer Nanofibers

Polymer nanofibers are one dimensional nanostructures with large aspect ratio and
high surface area and have shown significant potential for delivering antimicrobial agents
locally into an infected area, especially in wound healing [42,99]. Typically, there are several
methods for preparing nanofibers including self-assembly [100], template synthesis [101],
phase separation [102] and electrospinning [103], among which electrospinning is a supe-
rior technique for preparing nanofibers with desired chemical compositions and diameters
due to its simplicity and versatility [104–106]. Antimicrobial agents including antibiotics,
AMPs, AgNPs and metal oxide nanoparticles could be incorporated into nanofibers by
mixing with polymer precursors followed by electrospinning or attaching onto the sur-
face of the nanofibers by noncovalent interactions or chemical bonds [107]. For instance,
Schiffman et al. [108] immobilized zeolites nanoparticles with high silver ion change capa-
bility onto the surface of chitosan nanofibers. After ion exchange, silver ions were loaded
in the zeolites to function as molecular delivery vehicles, and their ion release profiles
and ability to inhibit E. coli were evaluated as a function of time. Interestingly, the zeo-
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lites immobilized on the nanofibers showed significantly enhanced antibacterial activity
11-times greater than that of the pure zeolites due to high porosity and hydrophilicity of
the nanofibers.

Recently, Tu and coworkers [109] reported the in situ deposition of AgNPs on
gold/polydopamine core-shell nanoparticles encapsulated by poly(lactic acid) (PLA)
nanofibers (PLA-Au@PDA@Ag), which could be applied to biological coatings for bac-
teriostatic functionality. The schematic illustration of the preparation and antimicrobial
capability of the PLA-Au@PDA@Ag is presented in Figure 6. Chloroauric acid was re-
duced by ascorbic acid to afford gold nanoparticles. Following the polymerization of
dopamine on the surface, Au@PDA core-shell nanoparticles formed, which were then
mixed with PLA solution to produce PLA-Au@PDA hybrid nanofibers by electrospinning.
Later, PLA-Au@PDA hybrid nanofibers were immersed in silver nitrate solution for in situ
reduction of adsorbed silver ions into AgNPs to yield PLA-Au@PDA@Ag nanofibers. The
hydrophilicity of the PLA-Au@PDA@Ag nanofibers significantly improved compared to
that of PLA nanofibers, resulting in the promoted release of silver ions. Benefiting from the
synergy between AuNPs, PDA and AgNPs, including AuNPs providing effective contact
with microorganisms, PDA as binder was used to immobilize AgNPs and facilitated the
release of silver ions; the PLA-Au@PDA@Ag nanofibers showed significant antibacterial
ability against both of E. coli and S. aureus.
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Due to their large exposed surface area and nanoporosity, polymer nanofiber meshes
have shown distinct advantages in wound healing compared with hydrogels, films and
foams [110]. The extracellular matrix (ECM) mimicking the structure of nanofibers facili-
tated the interaction with cells in the wound bed. Moreover, small molecules such as water,
oxygen, nutrients and metabolic wastes could be efficiently exchanged due to the highly
porous structure of nanofibers [111]. In order to promote the healing rate and elimination
of bacteria, functional agents including enzymes, drugs and antimicrobial agents have
been incorporated in polymer nanofibers. Rath et al. [112] loaded ZnO nanoparticles and
cefazolin in the gelatin nanofibers to accelerate wound healing and prevented infection
concurrently. Cefazolin was used to inhibit bacterial reproduction, while zinc cations could
be released from ZnO nanoparticles to raise re-epithelialization, reduce inflammation and
inhibit bacterial growth. Moreover, ROS was also produced by ZnO nanoparticles, thereby
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optimizing cell adhesion, proliferation and migration via growth factor mediated pathways,
promoting the regeneration of the ECM.

2.4. Polymer Nanogels

Polymer nanogels are a class of nanoparticles composed of nanosized physically or
chemically cross-linked hydrophilic or amphiphilic polymer networks [113]. They are
of wide interest in various fields including drug delivery due to their flexible nanosize,
good stability and high loading capacity, etc. [114]. As their analogues, polymer hydro-
gels have been widely used in antimicrobial applications due to their high water content,
three-dimensional structure and stimuli-responsive sol-gel transition behavior [115]. There
are several reviews summarizing the recent advances of antimicrobial polymer hydro-
gels [116–118]. Therefore, we will not discuss this part and focus on the nanogels as carriers
for antimicrobial agent delivery in this section.

The stimuli-responsive swelling and collapsing of nanogels triggered by external
stimuli including pH, temperature, enzymes or ionic strength render them ideal candidates
in on-demand delivery and release of antimicrobial agents [119]. For instance, AMPs could
be encapsulated in nanogels with high loading content via strong electrostatic interaction
with negatively charged polymer chains, and they can be released when triggered by salt
ions in physiological conditions [120,121]. El-Feky et al. [122] loaded silver sulfadiazine in
alginate coated chitosan nanogels to heal burn wounds, and the nanogels showed a release
profile of an initial burst followed by a slow and continuous release, resulting in excellent
in vivo therapeutic efficacy.

In addition, loading and delivery of antimicrobials including berberine, cyclodextrin,
tetracycline hydrochloride and lincomycin hydrochloride by nanogels to combat bacteria
and MDR bacteria were widely studied by Paunov, Schaefer and so forth [123–126]. Wang
and coworkers [127] designed a lipase-sensitive polymeric triple-layered nanogel (TLN)
formed by a cross-linked polyphosphoester core, poly(ε-caprolactone) (PCL) fence and
PEG shell to encapsulate and deliver vancomycin, as illustrated in Figure 7. In aqueous
solutions, hydrophobic PCL segments collapsed and covered the core to form a densely
packed molecular fence to prevent the leakage of vancomycin. Once TLN was exposed
to lipase secreting bacteria, the PCL chains were degraded to trigger the release of van-
comycin, resulting in the inhibition of bacterial growth. They found that all encapsulated
vancomycins were released within 24 h in the presence of S. aureus. Moreover, lipase secret-
ing bacteria inside the cells could also be inhibited by TLN, demonstrating the versatility
of the strategy of lipase-induced on-demand delivery and release of antimicrobials.

Recently, Knowles et al. [128] synthesized hybrid organic/inorganic AgNPs loaded
nanofibrillar silk microgels to effectively eradicate bacteria by a two-step mechanism in-
cluding bacterial adherence and consequent eradication. Compared with conventional
AgNPs and silver ions, the hemolysis and cytotoxicity of hybrid microgels toward mam-
malian cell lines were significantly reduced due to the protection of the silk matrix. van
Rijn and coworkers [129] prepared injectable nanogels loaded with hydrophobic triclosan
in hydrophobic domains inside the nanogel networks through intraparticle self-assembly
of aliphatic chains, which enhanced antimicrobial efficiency of triclosan up to 1000 times.
As shown in Figure 8, a three-stage antimicrobial mechanism of the nanogels was proposed.
Firstly, the nanogels attached onto the surfaces of the bacteria via electrostatic interaction
to disturb the balance of charge density of the cell membranes. Secondly, bacterial cell
membranes were destroyed by the insertion of hydrophobic aliphatic chains. Thirdly,
loaded triclosan was released from the hydrophobic domains inside the nanogels and
injected into the bacterial cell membranes, resulting in the death of bacteria. This approach
dramatically increases the effective concentration of triclosan inside the bacteria. More-
over, both the MIC and minimal bactericidal concentration (MBC) against Gram-positive
S. aureus and S. epidermidis decreased by three orders of magnitude compared with free
triclosan, resulting in a decrease in the dosage of triclosan and reduction in drug resistance.
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2.5. Hybrid Delivery Systems

Incorporating polymer nanoparticles including dendrimers, micelles and vesicles with
high dimensional polymeric nanomaterials such as nanofibers, hydrogels and coatings as
hybrid delivery systems could combine the advantages of both and achieve the hierarchical
release of antimicrobial agents [130–133]. For example, Zhang and coworkers [130] devel-
oped a bioadhesive nanoparticle-hydrogel hybrid in order to enhance localized antimicro-
bial drug delivery. The antimicrobials ciprofloxacin was loaded in polymer nanoparticles
that were embedded in hydrogels adhering to biological surfaces. Hydrogel network
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properties could be tailored independently for adhesion, which maintained controlled and
prolonged ciprofloxacin release profiles from nanoparticles. Imae et al. [131] immobilized
AgNPs-loaded amine-terminated fourth generation poly(amido amine) dendrimers onto
the viscose rayon cellulose fibers, which exhibited excellent biocidal activity against E. coli
with low weight percentage of silver of 0.2%. Du and coworkers [132] embedded penicillin
encapsulated polypeptide polymersomes in the hydrogels to achieve quick and long-term
antibacterial capability in which penicillin could be released from the hydrogel networks
for quick bacteria elimination while the intrinsic antibacterial property of the polymer-
somes ensured long-term antibacterial activity. However, despite the advantages of hybrid
delivery systems, the development of incorporation of different polymeric nanostructures
as hybrid delivery platforms is still in its infancy, which may bring new opportunities in
efficient loading and delivery of antimicrobial agents.

3. Biomedical Applications of Polymeric Nanomaterials Based Antimicrobial Agent
Delivery Systems
3.1. Combating MDR Bacteria

The generation of drug resistance of pathogens is typically caused by the accumulation
of drug resistant genes through mutation with the long-term use, especially overuse and
improper use of antibiotics [25]. Therefore, the exploration of highly efficient delivery
system to reduce dosage and improve bioavailability of antibiotics, as well as the deliv-
ery of non-antibiotic antimicrobial agents including AMPs, AgNPs, metal oxides, gases
and so forth, is a promising strategy for reducing drug resistance [134,135]. Polymeric
nanomaterial-based antimicrobial agent delivery systems have widely been used in com-
bating MDR bacteria [136,137]. For instance, Liu et al. [138] conjugated quercetin and
acetylcholine on the surface of selenium nanoparticles to combat MDR bacteria, which
could effectively eliminate MRSA by destroying the membrane due to the synergy be-
tween quercetin, acetylcholine and selenium nanoparticles. Cationic polymeric star-shaped
nanoparticles or dendrimers have also shown excellent antimicrobial activity against MDR
bacteria even without loading antimicrobial agents [139–141], demonstrating the great
potentials of polymeric nanomaterials in combating MDR bacteria.

Hu et al. [142] prepared polyprodrug antimicrobials to combat MRSA by membrane
damage and concurrent drug release, as shown in Figure 9. Triclosan was covalently
linked with acrylic acid to produce a triclosan prodrug monomer (TMA). Then, TMA
was copolymerized with quaternized N,N-dimethylaminoethyl methacrylate (QDMA),
affording PQDMA-b-PTMA, which could self-assemble into prodrug micelles with pos-
itively charged surfaces. The hydrophilic–hydrophobic balance of the prodrug micelles
was optimized to enhance interaction with bacterial cell membranes, resulting in improved
antimicrobial activity. They proposed that the antimicrobial mechanism was as follows:
(1) the prodrug micelles attached onto the surface of MRSA due to strong electrostatic inter-
action; (2) the prodrug micelles fused with and inserted into the cell membrane of MRSA;
(3) the cell membrane of MRSA was damaged due to charge disorder, and prodrug micelles
were encapsulated into the cell; (4) prodrug micelles were disassembled, and the linkage
between triclosan and acrylic acid was broken due to the reductive milieu environment,
resulting in the in situ release of triclosan and death of MRSA. It was noteworthy that no
detectable resistance was observed due to the synergistic antibacterial mechanism, and
prodrug micelles exhibited remarkable bacterial inhibition and low hemolysis toward red
blood cells compared with commercial triclosan and vancomycin.

The combination of different classes of antimicrobial agents such as antimicrobials
and AgNPs could afford synergistic effects, resulting in the efficient inhibition of MDR
bacteria that is far better than its individual components [143,144]. Webster and cowork-
ers [145] prepared polymer vesicles to co-deliver ampicillin and AgNPs simultaneously in
the hydrophilic cavity and hydrophobic membrane, respectively. The AgNPs-embedded
polymersomes exhibited potent antibacterial activity against E. coli transformed with a
gene for ampicillin resistance in a dose-dependent fashion, while the free ampicillin, Ag-
NPs decorated polymersomes without ampicillin and ampicillin loaded polymersomes
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without AgNPs had no effect on bacterial growth. TEM images in Figure 10 revealed
that the interactions between vesicles, AgNPs and bacterial cells might result in the de-
formation and disruption of bacterial envelopes and consequently result in the death of
bacteria. Later, the same group [146] functionalized proline-rich AMP PR-39 on the corona
of polymer vesicles with AgNPs embedded in the membrane to combat MRSA with a
AMP/AgNPs ratio-dependent behavior. A ratio of AgNPs-to-AMP of 1:5.8 corresponding
to 11.6 µg mL−1 of AgNPs and 14.3 × 10−6 M of AMP exhibited the best MRSA inhibition
activity, demonstrating the potentials of binary or ternary antimicrobial agent co-delivery
systems in combating MDR bacteria.
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3.2. Anti-Biofilm

Biofilms are matrix-enclosed communities of bacteria that show increased drug resis-
tance and capability to evade the immune system [47]. It has been widely recognized that
bacteria exist in the form of biofilms in many instances, which is hard to eliminate due to
the protection of extracellular polymeric substances (EPS), a complex matrix composed
of proteins, nucleic acids, phospholipids, polysaccharides, blood components and humic
substances produced by bacteria [147]. Therefore, it is difficult for antimicrobials to pene-
trate the EPS to kill bacteria, resulting in the occurrence of drug resistance. The efficient
delivery of antimicrobial agents by polymeric nanomaterials is considered a promising
strategy for penetrating the biofilm and delivering antimicrobial agents to the deep end of
the matrix to kill pathogens [148–150]. For example, Deoxyribonuclease I functionalized
ciprofloxacin-loaded PLGA nanoparticles were prepared to target and disassemble the
P. aeruginosa biofilm by degrading extracellular DNA that stabilizes the biofilm matrix and
released ciprofloxacin inside the biofilm to effectively eliminate P. aeruginosa, as reported
by Torrents and coworkers [151].

Webster et al. [152] prepared bifunctional polymersomes with methicillin encapsu-
lated in the hydrophilic cavity and superparamagnetic iron oxide nanoparticles (SPIONs)
embedded in the membrane, as illustrated in Figure 11. The iron oxide-encapsulated poly-
mersomes (IOPs) penetrated into the S. epidermidis biofilm with high efficiency, promoted
by external magnetic field. Comparing with individual SPIONs, methicillin and SPION
co-encapsulated polymersomes showed enhanced penetration capability up to 20 µm due
to the improved relaxivity and magneticity (Figure 11c). Thus, methicillin could be released
into the deep end of the biofilm, resulting in the effective eradication of pathogens. The
confocal microscopy images and the 3D reconstructions of z-stacks of the bacterial biofilm
revealed the capability of IOPs to eradicate biofilms with and without methicillin, as shown
in Figure 11d. When there was no methicillin, only bacteria in the bottom layer of the
biofilm were killed. On the contrary, all bacteria throughout the biofilm were eliminated by
the methicillin loaded IOPs. These organic/inorganic hybrid nanocarriers showed great
promise as new weapons for eradicating persistent biofilm or drug-resistant bacteria.

Recently, Du and coworkers [153] reported the treatment of periodontitis by efficiently
disrupting biofilms using a dual corona antimicrobials-loaded polymer vesicle with stealthy
poly(ethylene oxide) (PEO) corona to penetrate the biofilm and antibacterial polypeptide
corona to provide intrinsic antimicrobial activity, as shown in Figure 12. The dual corona
polymer vesicles were prepared by the co-assembly of two polymers PCL-b-poly(lysine-
stat-phenylalanine) [PCL-b-P(Lys-stat-Phe)] and PEO-b-PCL with the same hydrophobic
biodegradable PCL segment and different hydrophilic chains. Ciprofloxacin could be
efficiently encapsulated in the cavity of the vesicles. Due to the protein-repelling ability of
PEO, dual corona polymer vesicles penetrated the EPS of the biofilms with high efficiency,
while the positive charged P(Lys-stat-Phe) allowed the vesicle to target and kill bacteria via
electrostatic interaction. In addition, the encapsulated ciprofloxacin could be released as
the polymer vesicle reached the deep end of the biofilm, resulting in a reduced dosage of
the antimicrobials up to 50% to eradicate E. coli or S. aureus biofilms. In vivo experiment
results demonstrated excellent performance of the dual corona vesicles in reducing dental
plaque and alleviating inflammation using a rat periodontitis model.

Despite the strategy of delivering antibiotics to the deep end of biofilms by polymeric
nanocarriers in order to reduce dosage and enhance antimicrobial activity, the efficient
delivery of non-antibiotic antimicrobial agents including AMPs, AgNPs, photosensitizers
and so forth for eliminating biofilms was also widely studied [154–156]. For instance,
Haldar et al. [157] fabricated biodegradable polymer-coated AgNPs nanocomposite to
eradicate biofilms, which reduced MRSA burden both on the catheter (>99.99% reduc-
tion) and in tissues surrounding the catheter (>99.999% reduction) in a mice model. Ji
and coworkers [158] developed targeted photodynamic therapy strategies by using a
supramolecular delivery system for the treatment of biofilms. The photosensitizer Chlorin
e6 was grafted onto α-cyclodextrin, and the targeting group AMP Magainin I was covalently
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bound with PEG. Taking advantage of supramolecular recognition between α-cyclodextrin
and PEG, targeting supramolecular micelles loaded with Chlorin e6 were formed, which
exhibited excellent bacterial targeting effects and enhanced biofilm eradication ability
against P. aeruginosa biofilm and MRSA biofilm. These results proved the versatility and
great potential of polymeric nanomaterial-based antimicrobial agent delivery systems for
eradicating biofilms.
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Figure 11. (a) Synthesis of IOPs loaded with SPION and methicillin. (1) 5 nm monodisperse hydropho-
bic SPIONs are combined with mPEG-PDLLA co-polymer in organic solvent and ultrasonicated to
create a uniform suspension. (2) This organic phase is injected through an atomizer into an actively
stirring aqueous phase containing PBS and methicillin. (3) The mixture is dialyzed against pure
PBS to remove the organic solvent and unencapsulated drug to yield (4) highly stable polymersome
solution. (b) TEM image of SPIONs loaded polymersomes. (c) Magnetic field induced treatment
of biofilm using SPIONs and/or antimicrobials. (d) Confocal microscopy images of LIVE/DEAD
staining of S. epidermidis biofilms treated with IOPs with an external magnetic field (reproduced with
permission from Geilich et al. [152], Biomaterials; published by Elsevier, 2017).
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3.3. Wound Healing

Wound infections induced by pathogens have become one of the main problems in
wound care management systems, which impede the healing process and may result in
life threatening complications. One of the approaches for treating wound infection is the
use of wound dressings with antibacterial agents possessing broad-spectrum antimicrobial
activity [159]. Typically, the moisture environment provided by the dressing has been
shown to promote ulcer healing and to reduce pain experienced by patients [160]. More-
over, there are other requirements for wound dressings such as separating the wound
with external environments and providing good breathability to promote wound healing.
Polymeric nanomaterial-based delivery systems have shown considerable potentials in
wound healing, especially polymer nanofibers and hydrogels [99,161]. For example, Laksh-
minarayanan et al. [162] prepared polydopamine crosslinked polyhydroxy antimicrobials
loaded gelatin nanofiber mats for advanced wound dressings with long-term antimicrobial
activity up to 20 days. The morphology of the nanofiber mats was retained for 1 month
in an aqueous environment and showed comparable wound closure compared to com-
mercially available silver-based dressings. Cai and coworkers [163] prepared composite
hydrogels embedded with copper nanoparticles that could effectively convert NIR laser
irradiation energy into localized heat for photothermal therapy. The synergistic effect
of photothermal performance and rapid release of copper ions upon laser irradiation
were responsible for excellent antimicrobial activity, reduced inflammatory response and
promoted angiogenesis ability.
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Antimicrobial agents including AMPs [49], antibiotics [164], AgNPs [165], metal oxide
such as ZnO [166], photothermal sensitizers including porphyrin [167] and heavy metal
ions [163] are usually used to improve the antimicrobial activity of polymeric wound dress-
ings by covalent linkage, physical interaction or encapsulation. For example, Liu et al. [168]
decorated chloramine on the surface of chitosan films by electrostatic interaction to heal
MRSA infected wounds. Zhou and coworkers [167] prepared porphyrin containing alter-
nating copolymer vesicles for the disinfection of drug-resistant bacteria infected wounds
via photothermal effect. Fahimirad et al. [169] loaded recombinant LL37 AMP into chitosan
nanoparticles for the elimination of MRSA infection during wound healing process with
ultrahigh encapsulation efficiency of 78.52% and improved the activity and stability of LL37
AMP under thermal, salts and acidic pH treatments. Guo et al. [170] prepared injectable
antimicrobial conductive quaternized chitosan hydrogels by loading graphene oxide via
covalent bond for drug resistant bacterial disinfection and infectious wound healing, and
the hybrid hydrogels showed excellent performance in the treatment of MRSA infected
full-thickness defect mouse model.

Very recently, polymer vesicles loaded with antimicrobials have been explored as
dressings in promoting wound healing by spraying onto wounds [167,171–173]. Du and
coworkers [173] reported bifunctional polymer vesicles loaded with antimicrobials and
antioxidant for healing infected diabetic wounds, as presented in Figure 13. As one of
the chronically infected wounds, the diabetic wounds are difficult to heal due to high
ROS concentration and recurrent infections, resulting in the occurrence of diabetic ulcers
and chronic diabetic complications with very high mortality rate. Therefore, scavenging
ROS is very important in the treatment of diabetic wounds. In this study, well-dispersed
ceria nanoparticles were deposited on the membrane of ciprofloxacin-loaded polymer
vesicles (CIP-Ceria-PVs). The CIP-Ceria-PVs could inhibit peroxide free radicals up to
50% at extremely low cerium concentrations of 1.25 µg mL−1, protecting normal L02 cells
from the damage of peroxide free radicals. Moreover, CIP-Ceria-PVs exhibited enhanced
antimicrobial activity compared with free ciprofloxacin due to scavenging ROS. In vivo
studies in Figure 13b demonstrated the excellent wound healing capability of CIP-Ceria-
PVs, and the diabetic wound was completely healed within 14 days. At the same time, they
developed a H2S delivery polymer vesicle, which was capable of long-term H2S generation
to promote the proliferation, migration of epidermal and endothelial cells and angiogenesis,
accelerating the complete healing of diabetic wounds [172].
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3.4. Tissue Engineering

The regeneration of adult tissue following an injury or degeneration is quite a lim-
ited process. Usually, the injury site is vulnerable to bacterial infections, which causes
complications and delay of the regeneration of tissues [174]. Therefore, the prerequisite of
tissue regeneration is to eliminate localized bacterial infections, followed by the delivery of
bioactive molecules such as growth factor to the defected tissues. Antimicrobial polymer
coatings on the surface of implants can provide appropriate biointerfaces to promote the
regeneration of tissues. For instance, ZnO nanoparticles embedded PLA was dip coated
on magnesium alloy, which helped to control the degradation and increase antibacterial
activity [175]. Suteewong et al. [176] deposited polymethylmethacrylate (PMMA)/chitosan-
silver hybrid nanoparticles on rubber substrate, which exhibited enhanced antibacterial
activity toward E. coli and S. aureus and reduced cytotoxicity to L-929 fibroblast cells,
demonstrating the potential of this hybrid nanoparticle coating at soft substrates. In addi-
tion, antimicrobial agents loaded with polymer nanomaterials can be used as bioadhesives
to repair damaged soft tissues. Gu and coworkers [177] developed fast and high strength
bioadhesives based on polysaccharides and peptide dendrimers with inherent hemostatic
ability and antibacterial properties. Moreover, the bioadhesive showed a remarkable 5-fold
increase in adhesion strength comparing with commercial bioadhesive Coseal.

Biocompatible polymeric nanoparticles have been investigated as delivery vehicles
for various tissue engineering applications [178]. For example, Du and coworkers [179]
prepared antibacterial peptide-mimetic alternating copolymers (PMACs) vesicles loaded
with growth factor for bone regeneration. They designed a series of PMACs with different
repeating units, and the PMAC with a repeating unit of 14 exhibited the best antibacterial
activity against both E. coli and S. aureus with ultralow MICs of 8.0 µg mL−1. After
self-assembling into vesicles in pure water, the antimicrobial activity of the vesicles was
well-preserved. Growth factor could be encapsulated in antimicrobial vesicles and released
during the long-term antibacterial process to promote the regeneration of bone with a
20 mm defect model in rabbits. Micro-CT, bone mineral content and BMD were used to
evaluate the repair of bone defects with scaffolds at 4 weeks and 6 weeks after implantation.
After 6 weeks, the defect in the rabbit bone was completely repaired, demonstrating the
excellent bone repair capability of antimicrobial growth factor-loaded vesicles.
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3.5. Anticancer

The anticancer application of antimicrobial agents is an attracting field since cancers
are often accompanied by inflammation, and the drug resistance of cancer cells is becoming
increasingly concerning [180]. Theoretically, antimicrobial agents that kill bacteria via
non-selective behaviors such as damage of the cell membrane [181], elevating tempera-
ture [182] and induced degeneration of proteins and genetic materials [183] can also kill
cancer cells. For instance, Shim et al. [183] prepared AgNPs loaded chitosan-alginate
composite, exhibiting broad-spectrum antimicrobial activity and high toxicity toward
breast cancer cell line MDA-MB-231; Jothivenkatachalam and coworkers [184] fabricated
chitosan-copper nanocomposite for the inhibition of various microorganisms and A549
cancer cells by photocatalytic effect. In addition, AMPs with specific sequences and proper
positive charge densities have shown anticancer and antiviral activities, such as cecropin
A and B, magainins, melittin, defensins, lactoferricin and so forth, as summarized by
Hoskin’s and Franco’s group, respectively [181,185]. However, the AMPs are vulnerable
to enzymes and can easily cause immune responses; thus, the delivery system is critical
for in vivo applications of AMPs. Hazekawa et al. [186] conjugated antimicrobial human
peptide, LL-37 peptide fragment analog, with a PLGA copolymer. The formed micellar
system significantly improved the permeability of the peptide to cancer cells, and the
proliferation, migration and invasion in various cancer cell lines were effectively exhibited.
The intracellular delivery of peptides by polymer carriers in oncology applications has
been summarized by Pun et al. very recently [187].

Another strategy for eliminating cancer cells using antimicrobial delivery systems is
the co-delivery of antimicrobial and anticancer agents simultaneously or loading anticancer
drugs with antimicrobial carriers [188,189]. For instance, Du and coworkers [190] proposed
the concept of “armed” carrier to co-deliver anticancer and antiepileptic drugs with an-
tibacterial polypeptide-grafted chitosan-based nanocapsules. Mahkam et al. [191] designed
pH-responsive antibacterial clay/polymer nanocomposite as a carrier to deliver anticancer
drug methotrexate and antibacterial agent ciprofloxacin with an ultrahigh efficiency of
>90%, which showed enhanced antimicrobial and anticancer activity compared with free
methotrexate and ciprofloxacin, demonstrating the potential of antibacterial nanocarriers
in cancer therapy. Lei and coworkers [192] developed a class of multifunctional polymeric
hybrid micelles (PHM) with high antibacterial activity for the efficient delivery of siRNA
to cancer cells, as illustrated in Figure 14. The PHM was prepared by the co-assembly
of EHP-FA and EHE, for which their structures were presented in Figure 14A. Due to
the existence of positively charged poly(ethylene imine) (PEI) and poly-ε-L-lysine (EPL),
the PHM showed high antibacterial activity against S. aureus in vitro and in vivo. On the
contrary, PHM exhibited good hemocompatibility and lower cytotoxicity toward A549,
HeLa, HepG2 and C2C12 cells benefiting from the shield effect of PEG. siRNA could be
complexed onto PHM by electrostatic interaction, and PHM with folic acid decorated
on the surface could effectively target FA receptor overexpressed HeLa cells and other
low-expressed cancer cells, resulting in the targeted delivery of siRNA. In vitro experi-
ments revealed that the PHM showed a high p65 gene silencing efficiency above 90% in
various cancer cells, which is significantly higher than EHP-FA and EHE, demonstrating
the potential of PHM as a safe and effective siRNA vector with high antibacterial activity
for multifunctional gene therapy.
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(B) schematic illustration of the application of PHM in siRNA delivery (reproduced with permission
from Zhou et al. [192], Nanoscale; published by Royal Society of Chemistry, 2018).

4. Conclusions and Future Perspectives

In summary, the recent progress of efficient loading, delivery and controlled release of
antimicrobial agents in vivo or in vitro by polymeric nanomaterial-based delivery systems
have been concluded. A large diversity of antimicrobial agents including antibiotics, AMPs,
AgNPs, metal nanoparticles, metal oxides, gases, photosensitizers and so forth could be
loaded and delivered by polymeric nanomaterials either by physical interactions or cova-
lent bonding while maintaining the intrinsic antimicrobial activity of these antimicrobial
agents. In order to fit the physiochemical properties of different kinds of antimicrobial
agents to construct highly efficient delivery systems with superiorities such as high loading
content and efficiency, good stability and on-demand release, polymeric nanomaterials
with different chemical compositions and nanostructures including micelles, vesicles, den-
drimers, nanofibers and nanogels etc. are developed. Benefiting from the versatility of
polymeric nanomaterials, the antimicrobial agent delivery systems have shown significant
potentials in a wide variety of biomedical applications, such as combating MDR bacteria,
anti-biofilm, wound healing, tissue engineering and anticancer. Despite the rapid devel-
opment of this field, the in vivo and intracellular delivery of antimicrobial agents is still
in its early stage, and there are numerous challenges that should be considered in the
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future, which may bring new opportunities in the biomedical applications of antimicrobial
agent-based delivery systems.

Non-covalent interactions such as hydrogen bonding, π-π stacking and coordination
should be introduced to enhance the interactions between antimicrobial agents and the
polymeric nanocarriers to increase loading content and efficiency. The strong interactions
could also prevent the leakage of cargoes before reaching the target and enhance the stabil-
ity of the delivery system. Modulation of the properties of different kinds of antimicrobial
agents and the structural features of carriers may maximize the efficiency of the loaded
antimicrobial agents. Targeting the infected area and high selectivity toward bacteria
rather than mammalian cells should always be considered, which is very important for
the reduction in side effects and drug resistance. Moreover, external stimuli, especially
non-invasive stimuli-triggered release of loaded antimicrobial agents (in other words, the
switchable antimicrobial activity of the delivery system), are also helpful for the reduc-
tion in side effects and drug resistance. However, the spatial and temporal sensitivity of
the stimuli-triggered response still needs to be improved to meet practical applications.
Furthermore, the generations of antimicrobial active species such as ROS or change of the
micro-circumstance including elevating temperature triggered by stimuli or chemicals se-
creted by bacteria are also effective methods for eliminating bacteria without the generation
of drug resistance. Regardless of the generation of drug resistance, taking advantage of
the synergistic effect of multiple antibacterial agents is an effective strategy for eradicating
MDR bacteria. In addition, the combination of antibacteria and anticancer simultaneously
will be of great significance in cancer therapy.

The biosafety of polymeric nanomaterial-based delivery systems has always been
selectively ignored in previous studies. Although many biodegradable polymers have
been used, the cytotoxicity and hemolytic activity of the polymeric carriers, especially
those with positively charged surfaces, should be evaluated systematically. In addition,
the word “biocompatibility” is a comprehensive evaluation of in vivo delivery systems.
If we claim that the carrier is biocompatible, numerous parameters should be evaluated
more than cytotoxicity and hemolytic activity. The in vivo delivery of antimicrobial agents
has been reported in many studies. However, very few investigated the stability of the
delivery system in physiological conditions and the interactions between the carriers and
proteins, salts, glucose, fatty acids, antigens and so forth. Moreover, the immune response
of the delivery systems is also hardly investigated. Considering the complexity of the
physiological condition, it is necessary to reveal the stability and true circulation behavior
of the delivery systems in vivo and not only borrowing the results of in vitro experiments.
Furthermore, the full life-cycle assessment of polymeric carriers should be conducted to
explore blood circulation behavior, biodistribution, metabolism and organic accumulations,
etc., which will be very valuable for the instructive design of polymer carriers to promote
the clinical applications of polymeric nanomaterials-based antimicrobial delivery systems.
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