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Abstract

Mammalianmale meiosis requireshomologous recombination between the XandY chromosomes. Inhumans, such recombination

occurs exclusively in the short arm pseudoautosomal region (PAR1) of 2.699 Mb in size. Although it is known that complete deletion

ofPAR1causes spermatogenic arrest,nostudieshaveaddressed towhatextentmalemeiosis toleratesPAR1size reduction.Here,we

report two families in which PAR1 partial deletions were transmitted from fathers to their offspring. Cytogenetic analyses revealed

that a�400-kb segment at the centromeric end of PAR1, which accounts for only 14.8% of normal PAR1 and 0.26% and 0.68% of

the X and Y chromosomes, respectively, is sufficient to mediate sex chromosomal recombination during spermatogenesis. These

results highlight the extreme recombinogenic activity of human PAR1. Our data, in conjunction with previous findings from animal

studies, indicate that the minimal size requirement of mammalian PARs to maintain male fertility is fairly small.
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Introduction

Homologous recombination between the X and Y chromo-

somes is indispensable for mammalian male meiosis (Koller

and Darlington 1934; Simmler et al. 1985; Raudsepp and

Chowdhary 2015). Such recombination occurs exclusively in

the pseudoautosomal regions (PARs), in which the two sex

chromosomes share homologous sequences (Simmler et al.

1985; Skaletsky et al. 2003; Ross et al. 2005). Although the

human genome contains two PARs, only PAR1 spanning

2.699 Mb at the end of Xp/Yp (GRCh37/hg19) serves as the

platform for sex chromosomal recombination (Charchar et al.

2003; Raudsepp and Chowdhary 2015).

The high frequency of meiotic recombination in PAR1 gives

rise to various deletions and duplications (Bussell et al. 2006;

Otto et al. 2011; Shima et al. 2016). Of note, Gabriel-Robez

et al. (1990) and Mohandas et al. (1992) identified Xp termi-

nal deletions encompassing the entire PAR1 in two men with

spermatogenic arrest. These X chromosomal deletions con-

tained no known spermatogenic genes, indicating that infer-

tility of these two men results from the loss of PAR1.

Consistent with this, animal studies revealed that the struc-

tural or sequence divergences of PARs between two murine

subspecies affect the success rate of X–Y crossover (Dumont
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2017). To date, however, no study has addressed to what

extent human spermatogenesis tolerates PAR1 size reduction.

Results and Discussion

We identified two families (families A and B) with large ter-

minal deletions of PAR1 (fig. 1A). These families were found

through molecular analyses of SHOX, an osteogenic gene lo-

cated in PAR1 at a position �600 kb from the end of Xp/Yp

(Rao et al. 1997; the UCSC Genome Browser, http://genome.

ucsc.edu/ [GRCh37/hg19]). The probands of these families (II-

1 of family A and III-4 of family B) presented with mesomelic

short stature and skeletal deformity indicative of SHOX hap-

loinsufficiency (Belin et al. 1998). Multiplex ligation-

dependent probe amplification showed decreased copy num-

ber of all SHOX exons and their flanking regions in both

individuals. The same copy-number losses were also identified

in their relatives (fig. 1A). Microarray-based comparative ge-

nomic hybridization (CGH) detected PAR1 terminal deletions

of �1.24 Mb (maximum interval, chrXY:1–1,256,608;

minimum interval, chrXY:1–1,235,344) in family A and of

�2.30 Mb (maximum interval, chrXY:1–2,309,402; minimum

interval, chrXY:1–2,297,925) in family B (fig. 1B). Fluorescent

in situ hybridization revealed that the deletion in family A was

located on the X chromosome of the proband and on the Y

chromosome of her father (A-I-1) (supplementary fig. 1,

Supplementary Material online), whereas the deletion in fam-

ily B resided on the X chromosome of the proband, his elder

sister (B-II-3), mother (B-II-2), and maternal grandfather (B-I-1)

(fig. 1A). All deletion-positive individuals exhibited skeletal

features indicative of SHOX haploinsufficiency (Belin et al.

1998), but no other congenital anomalies. Allegedly, another

individual of family B (III-2) also had short stature, although

genomic DNA samples and detailed clinical information of this

individual were unavailable.

The most striking finding from these families was that two

adult men, that is, the proband’s father in family A (A-I-1;

hereafter referred to as case 1) and the proband’s grandfather

in family B (B-I-1; case 2), were fertile and transmitted their

PAR1 deletions to daughters (fig. 1A). Cases 1 and 2 retained

–

–
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FIG. 1—Molecular findings of families A and B. (A) The pedigrees of families A and B. Black boxes and circles indicate individuals with mesomelic short

stature and/or skeletal deformities, whereas the white box and circles depict unaffected family members. The striped circle indicates an individual with short

stature, whose genomic DNA sample and detailed clinical information were unavailable. Red stars on the X and Y chromosomes indicate SHOX-containing

deletions in the pseudoautosomal region 1 (PAR1). (B) Representative results of microarray-based comparative genomic hybridization for the probands of

families A and B. PAR1 is indicated by the red arrow. Black, green, and red dots denote signals indicative of the normal, decreased (<�0.8) and increased

(>þ0.4) copy numbers, respectively. Green arrows indicate the deleted regions in families A and B. Genomic positions refer to the human genome database

(GRCh37/hg19). The position of SHOX is indicated by the black box. (C) Schematic representation of PAR1. The deleted regions in families A and B, together

with those in the three previously reported cases with normal fertility (Ogata et al. 2002; Kant et al. 2011) and two cases with spermatogenic failure (Gabriel-

Robez et al. 1990; Mohandas et al. 1992), are shown as black arrows. The broken lines depict dosage-unknown regions. The position of SHOX is indicated by

the black box. The panel at the bottom shows the recombination rates of normal males (in cM) calculated by Hinch et al. (2014).
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only�1.44-Mb and�400-kb segments of PAR1, respectively

(fig. 1B). In case 1, homologous recombination between the X

and Y chromosomes must have occurred within the �1.44-

Mb segment in the most centromeric part of PAR1, because

during meiosis, the SHOX-containing deletion was translo-

cated from the Y chromosome to the X chromosome

(fig. 1A and supplementary fig. 1, Supplementary Material

online). The normal female phenotype of the daughter of

case 1 (A-II-1) provides evidence that the X–Y crossover in

case 1 occurred telomeric to SRY, the sex-determining gene

located in the Y-specific region only �5 kb from the PAR1

boundary (the UCSC Genome Browser). It is known that

male meiotic homologous recombination occurs predomi-

nantly in the telomeric part of PAR1, with the hottest hotspot

being at the SHOX locus (May et al. 2002; Flaquer et al. 2009;

Hinch et al. 2014). Moreover, in several species, telomeric

regions are predicted to play an important role in the meiotic

chromosomal pairing (McKee 2004). However, the results of

case 1 indicate that loss of the telomeric half of PAR1 does not

necessarily lead to spermatogenic failure. Consistent with this,

previous studies have identified three fertile men with PAR1

partial deletions, in whom meiotic homologous recombina-

tion occurred between SHOX and the centromeric end of

PAR1 (fig. 1C) (Ogata et al. 2002; Kant et al. 2011). In case

2, furthermore, the site of meiotic recombination was re-

stricted to a �400-kb region at the most centromeric part

of PAR1. The SHOX-containing deletion in this individual re-

sided on the X chromosome throughout meiosis, indicating

that the recombination occurred between the Y chromosome

and the nontransmitted sister chromatid of the X chromo-

some. We cannot completely exclude the possibility that the

sex chromosomal recombination in case 2 occurred outside

PAR1. For example, PAR2 on Xq/Yq also has the potential to

mediate male meiotic recombination (Ciccodicola et al. 2000;

Raudsepp and Chowdhary 2015). However, this probability is

low, because 1) complete loss of X chromosomal PAR1 was

observed in two men with spermatogenetic arrest (Gabriel-

Robez et al. 1990; Mohandas et al. 1992), 2) the estimated

genetic size of PAR1 in normal males is�50 cM (Flaquer et al.

2009; Evers et al. 2011; Otto et al. 2011), suggesting that

virtually all spermatocytes leading to live births undergo ho-

mologous recombination in this region, and 3) in midpachy-

tene spermatocytes, chiasmata were observed exclusively in

PAR1 (Sarbajna et al. 2012). Of note, the �400-kb PAR1

segment retained in case 2 accounts for only 14.8% of nor-

mal PAR1 and corresponds to 0.26% and 0.68% of the

length of the X and Y chromosomes, respectively (the

UCSC Genome Browser). The estimated genetic size of this

segment in normal males is<5 cM (fig. 1C; Hinch et al. 2014),

indicating that during normal spermatogenesis, this short seg-

ment is rarely involved in sex chromosomal recombination.

Nevertheless, in case 2, this segment is likely to have hosted

homologous recombination in most spermatocytes, because

animal studies have shown that X–Y pairing in 50% of germ

cells, but not in 30% of cells, permits sperm production (Faisal

and Kauppi 2016).

The aforementioned results indicate that the minimal size

requirement of human PAR1 to maintain spermatogenesis is

fairly small. In this regard, it is noteworthy that the size of

PARs is highly variable among mammalian species (Graves

et al. 1998; Raudsepp and Chowdhary 2015). PARs are be-

lieved to be under the constant evolutionary pressure to

shrink, yet such PAR attrition can be counteracted by the in-

sertion of DNA fragments through chromosomal transloca-

tion (Graves et al. 1998; Mensah et al. 2014). Indeed, recent

studies have shown that a small percentage of healthy men

carry a �110-kb insertion polymorphism in PAR1 that

expands the size of the recombination platform to some ex-

tent (Mensah et al. 2014; Poriswanish et al. 2018). Thus, hu-

man PAR1 is still evolving. The present study provides

evidence that human PAR1 is highly tolerant to size reduction.

These data are consistent with the prior observation that the

size of murine PARs is only 700 kb or less (Perry et al. 2001;

Raudsepp and Chowdhary 2015). The high recombinogenic

activity of mammalian PARs is likely to reflect their long chro-

mosome axes, which leads to the frequent occurrence of

double-strand DNA breaks (Kauppi et al. 2011; Acquaviva

et al. 2020).

In summary, the results indicate that a �400-kb segment

at the centromeric end of PAR1 is sufficient to produce ho-

mologous recombination during human spermatogenesis.

This study highlights the extreme recombinogenic activity of

PARs in the maintenance of male fertility.

Materials and Methods

This study was approved by the Institutional Review Board

Committee and performed after obtaining written informed

consent to participate. The probands of families A and B were

identified through molecular analyses of SHOX for patients

with short stature and/or skeletal deformity. The other mem-

bers of these families were ascertained by familial studies of

the probands.

Genomic DNA samples were obtained from peripheral leu-

kocytes of the participants. Multiplex ligation-dependent

probe amplification for SHOX and its flanking regions was

performed using the commercially available kit (SALSA

P018-G1, MRC-Holland, the Netherlands). CGH was per-

formed using a human catalog array (4� 180 k format;

Agilent Technologies, California, USA) according to the man-

ufacturer’s instructions. The results of CGH were assessed

using the Genomic Workbench (version 7.0, Agilent

Technologies) with the default settings of the aberration de-

tection algorithm.

Metaphase spreads were generated from peripheral leu-

kocytes. Fluorescent in situ hybridization was carried out using
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a standard procedure (LSI Medience, Tokyo, Japan). We uti-

lized a �14-kb probe containing SHOX exons 3–5 and a part

of exon 6a and a probe for the Xq/Yq telomere region

(TelVysion VYS33-260023; Abbott Laboratories, Illinois,

USA). The cells were stained with 40,6-diamidino-2-phenylin-

dole, dihydrochloride (ThermoFisher Scientific,

Massachusetts, USA).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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