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Observational studies have shown that the composition of the human gut microbiome in children 
diagnosed with Autism Spectrum Disorder (ASD) differs significantly from that of their neurotypical 
(NT) counterparts. Thus far, reported ASD‑specific microbiome signatures have been inconsistent. To 
uncover reproducible signatures, we compiled 10 publicly available raw amplicon and metagenomic 
sequencing datasets alongside new data generated from an internal cohort (the largest ASD cohort 
to date), unified them with standardized pre‑processing methods, and conducted a comprehensive 
meta‑analysis of all taxa and variables detected across multiple studies. By screening metadata to 
test associations between the microbiome and 52 variables in multiple patient subsets and across 
multiple datasets, we determined that differentially abundant taxa in ASD versus NT children were 
dependent upon age, sex, and bowel function, thus marking these variables as potential confounders 
in case–control ASD studies. Several taxa, including the strains Bacteroides stercoris t__190463 and 
Clostridium M bolteae t__180407, and the species Granulicatella elegans and Massilioclostridium 
coli, exhibited differential abundance in ASD compared to NT children only after subjects with bowel 
dysfunction were removed. Adjusting for age, sex and bowel function resulted in adding or removing 
significantly differentially abundant taxa in ASD‑diagnosed individuals, emphasizing the importance 
of collecting and controlling for these metadata. We have performed the largest (n = 690) and most 
comprehensive systematic analysis of ASD gut microbiome data to date. Our study demonstrated 
the importance of accounting for confounding variables when designing statistical comparative 
analyses of ASD‑ and NT‑associated gut bacterial profiles. Mitigating these confounders identified 
robust microbial signatures across cohorts, signifying the importance of accounting for these 
factors in comparative analyses of ASD and NT‑associated gut profiles. Such studies will advance 
the understanding of different patient groups to deliver appropriate therapeutics by identifying 
microbiome traits germane to the specific ASD phenotype.
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eOTU  Empirical operational taxonomic unit
GI  Gastrointestinal
NT  Neurotypical
OTU  Operational taxonomic unit
rRNA  Ribosomal ribonucleic acid
SRA  Sequence Read Archive

The prevalence of Autism Spectrum Disorder (ASD) continues to  rise1, and mounting evidence implies a poten-
tial role of the gut microbiome in ASD symptomatology. The core behavioral features of ASD are often accompa-
nied by multiple comorbidities such as gastrointestinal (GI) and immune  dysfunction2. A highly metabolically 
active entity, the gut microbiome resides at the intersection of numerous communication axes in the  body3. Its 
involvement in immune  development4,5, mood  disorders6, and other extra-GI disorders has been established. 
Seemingly countless observational studies have found significant variability in the  bacterial7–20 and  fungal19 popu-
lations in ASD-diagnosed v. neurotypical children, but signals have not been robust across cohorts. Consistency 
in linking specific features or signatures to the ASD phenotype has proven futile to  date21–24.

Due to the varying degree of behavioral symptoms and unique set of clinical features each individual will 
display, the ASD phenotype is extremely  heterogeneous25. Between 40 and 70% of children with ASD experience 
GI abnormalities such as constipation and  diarrhea26,27. While stool consistency has been shown to affect the 
observed microbial profile  significantly28,29, this variable is not properly controlled in many studies. A recent 
 reanalysis30 of a published  dataset19 concluded that the original results were confounded by constipation in the 
ASD subjects. Additionally, human gut microbial populations fluctuate dramatically with age, particularly during 
early  childhood31. ASD is typically diagnosed within the first 4 years of  life32 yet there exists high variation in the 
median age of the past cohorts ranging from 3 to 11 years. This study explores variation in age of test subjects and 
mismatches in comorbidities between case and control groups, as they likely contribute to the inconsistencies 
observed across investigations conducted.

Leveraging previously published microbiome sequencing data from case–control studies, we identified rela-
tionships between specific variables and the gut microbiomes of all ASD children, as well as those observed only 
in subsets of the children studied. Utilizing linear mixed-effects models for meta-analysis, we identified bacterial 
taxa whose differential abundances were consistent across studies. We show that age, sex, and bowel function are 
important confounders that must be controlled and evaluated in a consistent manner when appraising inter-study 
ASD datasets. A discussion and synopsis of the sample sizes and statistical methods necessary to account for 
these variables and thus more accurately estimate ASD-associated effect size(s) ensues. The approach described 
here will aid in understanding the heterogeneity of the patient groups, leading to the identification of appropriate 
patient subsets to deliver targeted therapeutics in the future.

Methods
Dataset selection and inclusion. PubMed and the Sequence Read Archive (SRA; National Center for Bio-
technology Information) were searched in March 2019 to identify publicly available raw datasets collected from 
case–control studies investigating the gut microbiota in ASD. The following queries yielded 72 potential publica-
tions/datasets: “autism[Title/Abstract] AND (microbiome[Title/Abstract] OR microbiota[Title/Abstract]) AND 
(16S OR sequencing OR metagenomic)” and “(autism gut) AND bioproject_sra[filter]” for PubMed and SRA, 
respectively. Inclusion criteria were adopted as follows: case–control ASD studies with human subjects under 
18 years of age, datasets generated by 16S rRNA gene amplicon or metagenomic sequencing of human fecal 
samples, and raw data deposited in a public repository. Nine publications and 1 additional BioProject met all 
inclusion criteria, and an additional 6 publications met all criteria except for the availability of raw data (Sup-
plementary file 1: Table S1). Of these 6, only 1 author provided raw data upon request. In total, 11 raw data-
sets associated with the 11 included studies were obtained. Three additional datasets acquired from an internal 
case–control ASD  cohort33 were also included. One public dataset was subsequently excluded due to corrupted 
FASTQ files, bringing the final total to 13 datasets representing 10 cohorts. For datasets where repeated samples 
were collected, a single time point per individual was selected at random to include in the analysis.

Metadata variable selection. Metadata were curated according to the Second Genome controlled vocab-
ulary. Metadata variables which were present in multiple studies with values for n ≥ 6 individuals per group per 
study were included in the analysis. Those present in a single study were excluded. All possible pairing combina-
tions of the included metadata variables were also used in the analysis to test each variable in subsets of subjects 
(Supplementary file 2: Fig. S1). In the combinations, each value of each categorical variable was used to subset 
subjects and test microbiota associations with the remaining variables. Original contrasts were labelled with 
the prefix “Subset: None” (e.g. Subset: None; Variable: Autism Spectrum Disorder—FALSE over TRUE) while 
contrasts performed in combination with another variable were labelled with the subset group value (e.g. Subset: 
Biological sex = Male; Variable: Autism Spectrum Disorder—FALSE over TRUE).

Data processing. Raw data were downloaded from the respective repositories, obtained directly from 
authors (Supplementary file 1: Table S1), or generated in-house (see Supplementary file 3). Data were processed 
using standardized pipelines for each sequencing technology. For 16S rRNA gene amplicon sequencing data 
generated with Illumina technology, the DADA2 workflow was used with default settings for filtering, learning 
errors, dereplication, amplicon sequence variant (ASV) inference, and chimera  removal34. Truncation quality 
was set to 2, and ten nucleotides were trimmed from each terminus of each read for both forward and reverse. 
Data generated using pyrosequencing technology, and any sequencing data with trimmed reads, were merged 
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(for paired-end sequencing) then aligned to an in-house strain database (StrainSelect, strainselect.secondge-
nome.com, version 2019 i.e. SS19) as described in the next section. Remaining sequences without unique strain 
matches were quality filtered, dereplicated, and clustered (97%) with UPARSE to generate de-novo operational 
taxonomic units (OTUs). For metagenomic shotgun sequencing data, adapter sequences and low-quality ends 
were trimmed using  Trimmomatic35 (< Q20), then contaminant sequences were removed using  Bowtie236. Host 
sequences were removed with  Kraken37 and rRNA sequences were removed with  SortMeRNA38.  Sourmash39 was 
used to generate compressed representations of DNA sequences. Data generated using PhyloChip hybridization 
 technology40 (see Supplementary file 3) were processed with the Sinfonietta software (Second Genome, Inc, 
Brisbane, CA) as previously  described41, generating empirical OTUs (eOTUs).

Strain‑level annotations. Across all data types, consistently formatted identifiers for known strains 
were assigned using the SS19 database. SS19 contains known microbial strains publicized as of July 22, 2019. 
The abundance of each strain within shotgun metagenomic reads was calculated using Sourmash (kmer = 51, 
scaled = 5000). Using  USEARCH42, ASVs matching a unique strain (≥ 99% global alignment identity) in the 
database were annotated with the strain identifier only if no genes from different strains had equivalent or higher 
identity matches than the unique strain hit. Abundances were summed for all ASVs matching the same strain. 
If a unique strain match was not achieved for an ASV, then species level and higher taxonomic placement was 
estimated with sintax (-cutoff 0.80)43. Genome Taxonomy Database  (GTBD44) taxonomic nomenclature for spe-
cies and higher taxa were used where available. Overall, 6%, 0.9%, and 6.8% of 16S ASVs, OTUs and eOTUs, 
respectively, were unique matches to strains.

Statistical analysis. Within each dataset, taxonomic units (e.g. strains, sequence variants) present in less 
than 5% of biospecimens were removed. In addition, biospecimens with a sequencing depth less than 1% of 
the mean sequencing depth in the respective dataset were removed. To identify variables most associated with 
changes in bacterial community composition in each dataset, permutational multivariate analysis of variance, 
also known as Adonis (R package “vegan”) was performed for each variable/combination at each taxonomic 
rank.

For individual taxa, effect sizes (fold change in  log2 scale) and standard errors were calculated within each 
dataset for each variable/combination at every taxonomic rank (phylum to species levels). Calculations for non-
aggregated (strain level) 16S rRNA gene amplicon sequencing data were obtained using  DESeq245. Given that 
sourmash results in a table of relative abundances, effect sizes and standard errors were calculated using the escalc 
function (measure = “ROM”) in the “metaphor” R  package46 to obtain log transformed ratios of means which 
were then transformed to  log2 scale. Metagenomic data were not aggregated to higher taxonomic ranks. Aggre-
gated 16S data were first transformed to relative abundance then effect sizes and standard errors were calculated 
as above. PhyloChip fluorescence intensity data were  log2 transformed and here, escalc (measure = “MD”) was 
utilized to calculate the raw mean difference between groups which is equivalent to  log2(fold change).

To identify taxa with concordant effect sizes for any given metadata variable/combination across multiple 
datasets, linear mixed-effects  models46 were calculated using the rma.mv function in the “metafor” package. 
Each model was computed by regressing the effect sizes for a single taxon against a fixed effect, the metadata 
variable/combination, while controlling for the random variability introduced by each distinct dataset. The 
random-effects model can be written as yi = µ + ui + εi, where ui ∼ N(0, τ2) and εi ∼ N(0, vi). For a set of i = 1,..., k 
independent studies, yi denotes the observed effect size in the ith study, µ denotes the average true effect, and 
τ2 is the variance in the true effects. Sampling variances are equal to vi, where vi is the square of the standard 
errors of the estimates. In cases where multiple datasets originated from the same cohort study, inner (dataset) 
and outer (cohort) levels of the random effect were specified; datasets within a given cohort share correlated 
random effects. P values were adjusted according to the Benjamini–Hochberg method for all models within a 
given taxonomic rank. A floor of 1e-10 was applied to adjusted P values. Plots were generated using R packages 
“ggplot” and “ggpubr”. See Supplementary file 2: Fig. S2 for a schematic of the methods.

Results
Concordance of metadata variables across studies. Raw sequencing datasets (n = 10) were collected 
and re-analyzed from publicly available case–control studies. These ten datasets, representing nine distinct 
cohorts, were evaluated alongside three microbiome datasets from an internal cohort (Table 1). Datasets con-
sisted of 16S rRNA gene amplicon and metagenomic DNA sequences. In addition, one internal dataset was gen-
erated using PhyloChip technology. Amplicon sequencing datasets covered multiple 16S rRNA variable regions. 
Cohorts included subjects between 2 and 18 years of age from the United States, Canada, China, Italy, and India. 
Participants were reported to be age-matched in 7 of the 10 studies although we found a significant difference 
in the ages of ASD v. NT children in one  study17 (Supplementary file 2: Fig. S3). Strati et al.19 did not report the 
minimum and maximum ages of their participant pool.

To identify microbial features associated with specific metadata variables across datasets, we first examined 
all the variables that were concordant across studies. A total of 52 distinct variables were reported (Supplemen-
tary file 1: Table S2). Age (10 of 13 datasets), sex (10 of 13 datasets), and bowel function (6 of 13 datasets) were 
among the most prevalent metadata categories. Of the 52 variables selected for meta-analysis, the vast majority 
were present in fewer than five datasets, and only five variables were present in more than four datasets (Fig. 1). 
To investigate the impact of potential confounders, all possible pairwise combinations of variables were also 
included in the meta-analysis, resulting in 580 tests (Fig. 1b).
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Table 1.  Summary of datasets. HTS high-throughput sequencing, MTG metagenomics.

Dataset Publication Technology
Sequencing 
instrument 16S region ASD (n) NT (n)

Minimum age 
(years)

Maximum age 
(years)

Median age 
(years) Male (%)

DS1 Kang et al. 2013 16S HTS
454 Genome 
Sequencer FLX 
Titanium

V2V3 20 20 3 16 6 87.5

DS2 Kang et al. 2018 16S HTS
454 Genome 
Sequencer FLX 
Titanium

V2V3 23 21 4 17 9 84.1

DS3 Kang et al. 2017
Kang et al. 2019 16S HTS Illumina MiSeq V4 18 20 7.1 16.7 11.05 89.5

DS4 Li et al. 2019 16S HTS Illumina HiSeq V1V2 59 30 2 10 Not reported Not reported

DS5 Strati et al. 2017 16S HTS 454 Genome 
Sequencer FLX V3V5 39 39 Not reported Not reported Not reported Not reported

DS6 Coretti et al. 2018 16S HTS Illumina MiSeq V3V4 11 14 2 4 Not reported Not reported

DS7 Wang et al. 2019 MTG Illumina HiSeq 
4000 – 43 31 2 8 4 73.0

DS8 Pulikkan et al. 
2018 16S HTS Illumina NextSeq 

500 V3 29 24 3 16 9 75.5

DS9
Averina et al. 2020

MTG Illumina HiSeq 
4000 – 29 20 2 9 3 79.6

DS10 16S HTS Illumina MiSeq V3V4 15 5 2 9 3.5 70.0

DS11

Internal

16S HTS Illumina MiSeq V4 107 92 2 11.83 4.75 72.4

DS12 PhyloChip Thermo-Fisher 
Gene Titan V1V9 96 93 2 11.83 5.17 72.0

DS13 MTG Illumina NextSeq – 96 91 2 11.83 5.17 73.3

Figure 1.  Concordance of metadata variables across datasets. Each bar represents the number of common 
variables between datasets and solid black circles below the bar indicate datasets that contain the intersected 
set of variables. The “Total variables” inset displays the total number of metadata variables for each dataset. The 
top (present in at least 6 datasets) intersected variables are labelled while the remaining variables are listed in 
Supplementary file 1: Table S2.
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Multi‑cohort bacterial abundance signatures germane to ASD exist at all taxonomic ranks. To 
assess the association between bacterial community structure (beta-diversity) and each of the metadata vari-
ables/variable combinations, Adonis tests were performed on non-aggregated data (i.e. ASV or OTU level) as 
well as data aggregated at each taxonomic rank. Non-aggregated data yielded the greatest number of significant 
(P < 0.05) tests (Fig. 2a). The main broad variable under investigation, denoted as “Subset: None; Autism Spec-
trum Disorder—FALSE over TRUE”, was significant in several datasets at every taxonomic rank. Of the 580 
possible combinatorial metadata tests, 30 were significantly associated with bacterial community structure in 
at least two datasets and at least one taxonomic rank (Supplementary file 1: Table S3). Thirteen of the 30 tests 
focused on differences in subject age. Age was a significant contributor to bacterial community variation within 
the NT population (“Subset: Autism Spectrum Disorder = FALSE”) in four out of nine datasets, but was only sig-
nificant in two of 10 datasets in the ASD population (“Subset: Autism Spectrum Disorder = TRUE”). Significant 
changes in beta-diversity for each variable within each subset are shown in Fig. 2b. Variables bearing the greatest 
number of dataset associations were found in healthy, male children (Subsets: “Biological sex = Male,” “Period of 
life = Childhood,” and “Autism Spectrum Disorder = FALSE”).

In addition to community-wide associations, relationships between individual taxa and each variable/variable 
combination were assessed using random-effects models. When comparing ASD and NT children (“Subset: None; 
Autism Spectrum Disorder—FALSE over TRUE”; Fig. 3) with aggregated data, Burkholderiales (order level) was 
detected in nine of the 10 datasets (metagenomic data were not aggregated) and was significantly more abundant 
in children with ASD, although the effect size was small  (log2(fold change) = − 0.59). An unannotated species, 
s__PROV_t__172009 (genus Lawsonibacter), was also enriched in the ASD cohorts (present in five of the 10 
datasets). While remaining meta-analysis results from aggregated data were weak, with significant taxa detected 
in only three datasets, non-aggregated data revealed more consistent associations. Two sequence variants, anno-
tated as unclassified strains of the species Ruminiclostridium_E siraeum, were less abundant in ASD cohorts and 
detected in 12 of 13 datasets (Supplementary file 1: Table S4). Barnesiella intestinihominis and Faecalibacterium 
prausnitzii_K were also depleted in the ASD cohorts from 11 and 9 datasets, respectively. Taxa most differen-
tially abundant in the ASD-diagnosed cohorts and exhibiting the largest effect sizes included: Fusicatenibacter 
saccharivorans (10 datasets), Bacteroides uniformis (8 datasets), and Bacteroides thetaiotaomicron (5 datasets).

Heterogeneity of the ASD phenotype is evident in taxonomic profiles affected by GI dysfunc-
tion. We next explored the differential taxonomic findings in subsets of patients. Due to the influence of GI 
function on gut bacterial  profiles47,48 and the high prevalence of GI dysfunction in the ASD  population26,49, we 
elected to appraise ASD-associated differential taxa abundances in children without bowel dysfunction (“Subset: 
Tends to have normal bowel function; Autism Spectrum Disorder—FALSE over TRUE”). Removing children 
with bowel dysfunction invalidated many significant ASD v. NT findings suggesting the initial findings were 
more related to bowel function than study group, although the number of datasets and participants that could 
be investigated in the subset was reduced (Fig. 4, Supplementary file 2: Fig. S3). Several bacterial taxa exhibited 
differential abundance in ASD v. NT children only after subjects with bowel dysfunction were removed, indicat-
ing a close relationship with ASD diagnosis rather than constipation/diarrhea. As expected, the gut bacterial 
community profiles of ASD individuals with constipation differed greatly from those of ASD individuals with 
diarrhea (Supplementary file 2: Fig. S6), which confounds the case–control contrast. Many taxa discriminated 
between ASD subjects afflicted with constipation and those afflicted with diarrhea, including members of the 
Lachnospiraceae family and species of Bacteroides, Bifidobacterium, and Streptococcus (Supplementary file 1: 
Table S5). The number of differentially abundant taxa was far greater than that observed when comparing ASD 
and NT children (Supplementary file 1: Table S4), suggesting that bowel dysfunction exerts a greater influence 
on microbial community dynamics than the ASD phenotype.

Although the effect sizes of most ASD-associated taxa in children with normal bowel function were small, 19 
significant taxa (q < 0.05) were identified. We discuss the top four (based on effect size): Massilioclostridium coli 
(species, depleted in ASD), Granulicatella elegans (species, depleted in ASD), t__190463 (Bacteroides stercoris 
strain, depleted in ASD), and t__180407 (Clostridium M bolteae strain, enriched in ASD). The two species, M. coli 
and G. elegans, were completely absent from ASD patients, but had low prevalence in the NT tested (7% and 3%, 
respectively; 2 datasets). The two strains, t__190463 and t__180407, were prevalent (25% and 38%, respectively) 
and detected in 4 and 3 datasets, respectively. Effect sizes from individual studies in addition to pooled effect 
sizes are reported in Supplementary file 2: Fig. S7. Changes in sample size due to the removal of children with 
bowel dysfunction are reported in Supplementary file 2: Fig. S8.

Age and sex confound comparative analyses of bacterial differential abundance in ASD v. NT 
children. Evidence suggests that the gut microbiome continues to evolve and mature well into  childhood31. 
Given the wide age range of children with ASD studied, it is likely that some inconsistencies in the literature stem 
from age-related development of the gut microbiota. In this study, two distinct periods of life were considered: 
childhood, i.e., 2–9 years old, and adolescence, i.e., 10–17 years old. The abundances of several bacterial taxa 
differed between ASD and NT subjects only when considering children, or only when considering adolescents 
(Fig. 5). Though only detected in two datasets, one unannotated species (s__PROV_t__96605, genus Prevotella) 
was significantly depleted in the ASD groups, irrespective of age.

Sex bias plays a significant role in ASD studies due to the elevated prevalence (~ 4X) of diagnoses in males 
v.  females50. While differences in gut bacterial composition have been documented between male and female 
 subjects51, this confounder is often omitted from statistical analyses of ASD-associated microbial population flux. 
In this study we see that sex-dependent differences in the fecal microbiome are stronger in the ASD-diagnosed 
cohort. Taxa that discriminated between males and females were also specific to each study group (Fig. 6a). Only 
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Figure 2.  Variables associated with beta-diversity in multiple datasets. (a) Variables/combinations significantly 
associated with changes in bacterial community structure in at least 2 datasets are plotted. Each bar represents 
the total number of datasets in which a variable (or variable combination) was tested and the red fraction of 
the bar denotes the number of datasets where the difference in beta-diversity was significant (PERMANOVA, 
P < 0.05). The first bar in each panel represents the variable “Subset: None; Autism Spectrum Disorder—FALSE 
over TRUE.” Remaining variables are listed in Supplementary file 1: Table S3. (b) Proportions of datasets with 
significant tests (non-aggregated data) for each variable combination are plotted. Columns are used to arrange 
subset values while rows segregate test variables. Results from aggregated data (genus and species levels) are 
presented in Supplementary file 2 (Figs. S4, S5).
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three taxa were significantly differentially abundant in both male and female ASD and NT children (Supple-
mentary file 1: Table S7). Furthermore, there was no overlap in differentially abundant taxa between only male 
or only female ASD v. NT comparisons (Fig. 6b). The abundances of members of the Lachnospiraceae family 
and several species of Bacteroides and Bifidobacterium were elevated in the gut microbiomes of ASD-diagnosed 
males compared to their female counterparts. The abundance of these same taxa varied significantly between 
ASD children with constipation v. diarrhea (Supplementary file 1: Table S5). This hints at a potential interaction 
or shared pathway between the two confounders (sex and bowel function) in the ASD population.

Adjusting for confounding factors eliminates noise in ASD‑associated microbiome 
changes. Since we observed confounding for age, sex, and bowel function in microbiome changes, ASD-
associated strains were evaluated in two datasets, i.e., DS1 and DS11, wherein all three metadata were reported 
across both ASD and NT study groups. In DS1, the abundances of four distinct strains were significantly differ-
ent in ASD subjects when the confounders were omitted from consideration. With confounder adjustment, only 
one of the strains retained significance but seventeen additional strains were significantly differentially abundant 
(Supplementary file 2: Fig. S9). Initially, no differentially abundant strains were detected in DS11. After adjusting 
for confounders, however, a single strain was significantly more abundant in the ASD cohort (Supplementary 
file 2: Fig. S9).

Discussion
Although there is convincing evidence that gut microbiome profiles differ between ASD and NT children, there is 
little consensus as to which bacterial taxa are impactful and/or at all relevant to ASD symptomatology. Independ-
ent studies yield results that are not generalizable to the ASD population, potentially due to the heterogeneity of 
the ASD phenotype and variability in age of subjects studied. Recent efforts to systematically review initiatives 
linking the microbiome to ASD and/or conduct meta-analyses on the reported results of such efforts show little 
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Figure 3.  Features associated with ASD at different taxonomic levels. Effect sizes and q-values from random-
effects models (meta-analysis) are plotted. Each model represents an association between the abundance of 
a specific taxon and ASD (negative direction) or NT (positive direction). The color, transparency, and size of 
each point denotes the taxonomic rank of the taxon, the significance of the model, and the number of datasets 
included in the model, respectively. Horizontal dotted line indicates significance threshold (q = 0.05). Significant 
models are labelled by the taxon investigated. Strain-level results are reported in Table S4.
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to no empirically derived associations between varying microbiome diversity and the ASD  phenotype21–24. We 
hypothesized that standardized pre-processing of raw data generated from ASD microbiome surveys coupled with 
downstream comprehensive meta-analyses would yield more insightful and more accurate findings. In a similar 
vein, we thoroughly investigated microbiome populations alongside all the metadata variables compiled from 
numerous studies to reconsider some differential findings in subsets of ASD v. NT children. We found that certain 
bacterial abundances were significantly different between ASD and NT, oftentimes the direct consequence(s) 
of the confounding effects of bowel dysfunction, age, and sex. Our statistical approach is simple, and results are 
directly interpretable, making it favorable for mining microbiome data.

Of the clinical comorbidities documented in children with ASD, GI issues are among the most  common52. 
Diarrhea, constipation, and abdominal pain are the most frequently reported GI symptoms in the ASD 
 population53,54, but many have alternating constipation/diarrhea so these categories are often inadequate to 
describe their GI symptoms over time. However, stool consistency (a proxy for constipation/diarrhea) has been 
reported as the top fecal microbiome  covariate28 and has been shown to confound case–control  studies29. Unsur-
prisingly, the works discussed here suggest that many of the differential taxa abundances previously thought 
to associate directly with the ASD phenotype were likely an artifact linked more closely to constipation and/

Figure 4.  Bowel dysfunction confounds relationships linking ASD to differential bacterial taxa abundances. 
Taxa significantly associated with NT (positive direction) or ASD (negative direction) by meta-analysis are 
plotted by phylum. Taxonomic label prefixes indicate the taxon’s rank where t__, s__, g__ or f__ are strain, 
species, genus or family, respectively. ASD-associated signatures are different when children with bowel 
dysfunction are included (left panels) compared to when only children with normal bowel function are 
considered (right panels). Missing data points indicate taxa absent from the remaining datasets and individuals. 
Effect sizes and significance were calculated using random-effects models.
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or diarrhea in the subjects sampled. Our results align with a recent  reanalysis30 of a dataset included  here19. 
Only two previously published  investigations9,17 and our internal cohort reported information relating to bowel 
function in both case and control groups. Given the significant impact of stool consistency on fecal microbial 
populations and the prevalence of diarrhea and constipation in the ASD population, current and future stud-
ies must consider, at minimum, scoring collected samples based on the Bristol Stool  Scale55 and reporting this 
covariate index in statistical analyses.

Upon considering only individuals with normal bowel function, we were able to identify taxa more closely 
associated with ASD status, a feat not possible in isolated cohorts due to inadequate statistical power. Of note, 
three taxa were depleted in individuals with ASD compared to NT controls across multiple datasets: Bacteroides 
stercoris t__190463 (strain level), Granulicatella elegans (species level), and Massilioclostridium coli (species level). 
Although the two species of interest had low prevalence in the children studied, they were not detected in the 
ASD patients. Bacteroides stercoris was previously reported to have lower relative abundance in ASD compared 
to NT  children56, but higher relative abundance in a different  study15. Here, meta-analysis estimated reduced 
relative abundance in the ASD population after pooling signals from four different datasets, thus demonstrating 
its utility in uncovering democratized associations. Although evidence to suggest a potential mechanism for the 
depletion of B. stercoris in ASD pathology has yet to be demonstrated, we believe the strain identified warrants 

Figure 5.  ASD-associated taxa abundance depends on the period of life studied. Effect sizes and q-values from 
random-effects models investigating the associations between different taxa and NT (positive direction) or ASD 
(negative direction) at different stages of childhood are plotted. The color, transparency, and size of each point 
denotes the taxonomic rank of the taxon, the significance of the model, and the number of datasets included in 
the model, respectively. Horizontal dotted line indicates significance threshold (q = 0.05). Significant models are 
labelled by the taxon investigated except for strain-level results. These models are reported in Supplementary file 
1: Table S6.
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a

b

Figure 6.  Sex-dependent differences in ASD v. NT populations. (a) Effect sizes and q-values from random-
effects models investigating the associations between different taxa and sex (female: positive direction, male: 
negative direction) in the ASD compared to NT groups are plotted. (b) Models investigating ASD-associated 
taxa (NT: positive direction, ASD: negative direction) in either males or females are also plotted. The color, 
transparency, and size of each point denotes the taxonomic rank of the taxon, the significance of the model, 
and the number of datasets included in the model, respectively. Horizontal dotted line indicates significance 
threshold (q = 0.05). Significant models are labelled by the taxon investigated except for strain-level results. 
These models are reported in Supplementary file 1: Table S7.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17034  | https://doi.org/10.1038/s41598-022-21327-9

www.nature.com/scientificreports/

further investigation as a therapeutic. Meta-analysis also revealed that Clostridium_M bolteae t__180407 (strain 
level) was enriched in the ASD populations investigated (3 datasets). Clostridium bolteae has been investigated in 
the context of ASD and is consistently more abundant in these children compared to their NT  counterparts10,57,58. 
Abundances are even higher in individuals with Pitt Hopkins  syndrome59, a severe ASD with a high incidence 
of GI dysfunction. C. bolteae produces a conserved specific capsular polysaccharide which is immunogenic in 
rabbits and has been the focus of ASD vaccine  efforts60,61. Although these findings are promising, more evidence 
is needed as relatively few datasets supported the result in this study and the strain level findings may be con-
founded by between-study heterogeneity (Supplementary file 2: Fig. S7).

Age is another covariate of immense importance and relevance to microbiome health and status, particularly 
in young children. The gut microbiome begins to resemble that of an adult sometime around age  three62, but 
evidence suggests further maturation over the course of later  childhood31. Studies on ASD have inadvertently 
targeted child subjects spanning a broad age range, and unfortunately age-dependent gut microbiome differences 
within each study group likely affect results and confound inter-study inferences. Seven of the 10 studies revisited 
herein ensured that case and control groups were age-matched, though none mentioned controlling for age in 
statistical analyses even though children of preschool age (2–4 years old) and teenagers (13–17 years old) were 
evaluated in the same study. A recent analysis of more than 2500 individuals revealed that disease-microbiome 
associations depend on the age group studied, and that adjusting for age improves the detection of microbes truly 
relevant to the disease  phenotype63. Although demonstrated in adults, it is conceivable that this paradigm applies 
to children and adolescents who are growing and maturing rapidly. Our differential findings in young children 
v. adolescents support the notion that the microbiome differs according to age in non-adult populations as well.

Our findings demonstrate that ASD-associated bacterial taxa abundances differ innately as a function of sex. 
Due to the roughly four-times greater prevalence of ASD diagnoses in males v. females, study populations are 
often biased and imbalanced with respect to sex. Male subjects made up 70–89.5% of the cohorts examined here, 
indicating that sex-dependent microbiome associations were challenging to assess in the isolated studies prior. 
By exploiting meta-analytical approaches, we were able to show that sex exerts an even greater influence on the 
microbiome in children with ASD than those with typical development. In addition, associations between fecal 
microbiomes and ASD were stronger in females compared to males. Consistent with our findings (Adonis test), 
previous studies have reported no associations between gut microbial community structure and sex in healthy 
 children64–66. However, we detected several taxa that were differentially abundant between male and female NT 
children, and these disparities were more drastic in male v. female ASD children, but only three strains were 
significant in both contrasts. There was no overlap in differentially abundant taxa between ASD and NT children 
in male and female subsets. These findings suggest that recent surveys of ASD-microbiome variation, all of which 
are based predominantly on male subjects, may not be generalizable to the female population.

Finally, the limited sample size of most studies including but not limited to those considered in this compre-
hensive analysis (n < 100 across nine cohorts; n < 50 across 5 cohorts) drastically restricts statistical power and 
thus experimental resolution. Considering only the extent of variability observed within the ASD population and 
the number of confounders that need to be addressed, it is overly apparent that larger studies are warranted to 
improve statistical power and strengthen downstream inferences and conclusions. The findings presented here 
strongly suggest that surveys investigating simple case–control contrasts are not suitable when investigating rela-
tionships between gut microbiome perturbations and the ASD phenotype. This work underscores the dire need 
to systematically collect, curate, and report highly detailed metadata. It is also apparent that statistical methods 
used to estimate effect sizes between cases and controls should integrate confounder adjustments to more accu-
rately account for age, sex, and stool sample consistency, at a minimum. Other confounders not addressed by our 
analysis due to inadequate reporting include diet and medications. Dietary preference and medication usage are 
strong gut microbiome  covariates28,29 and are particularly relevant to studies of ASD where case patients often 
have extreme food  selectivity67 and medical comorbidities requiring pharmacological  treatment68.

Our study demonstrates that the gut microbiomes of the ASD population exhibit appreciable heterogeneity, 
an observation that has been established regarding the clinical manifestations of the disorder. High within-group 
variability produces artifacts and masks true ASD-microbiome relationships. As population-scale studies of 
ASD may be difficult to establish, we demonstrated meta-analytical approaches with confounder adjustment 
to unveil gut bacterial disturbances directly related to ASD symptomatology. This is a substantial breakthrough 
in understanding the patient population and associated comorbidities, which will help lead to personalized 
microbiome-based therapeutics.

Data availability
Accession numbers for publicly available raw data are detailed in Supplementary file 1: Table S1. Raw sequenc-
ing data generated from the internal cohort has been deposited at http:// files. cgrb. orego nstate. edu/ David_ Lab/ 
M3_ longi tudin al_ 16s/. Raw PhyloChip data generated from the internal cohort is available in MIAME format 
at https:// green genes. secon dgeno me. com/? prefix= downl oads/ phylo chip_ datas ets/ (SG_SIwai_2021_M3_ASD_
CIMA.tgz). All code used to generate the figures presented can be found in Supplementary file 4.
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