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Key Points

• Coexistence of the
Srsf2 P95H mutation
and Runx1 deficiency
recapitulates the
multilineage
hematopoietic defects
observed in MDS.

• RUNX1 deficiency
strikingly alters global
splicing patterns and
synergizes with the
Srsf2 P95H mutation
to affect DNA damage
response genes.
Myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic malignancies

with a propensity to progress to acute myeloid leukemia. Causal mutations in multiple

classes of genes have been identified in patients with MDS with some patients harboring

more than 1 mutation. Interestingly, double mutations tend to occur in different classes

rather than the same class of genes, as exemplified by frequent cooccurring mutations in

the transcription factor RUNX1 and the splicing factor SRSF2. This prototypic double

mutant provides an opportunity to understand how their divergent functions in

transcription and posttranscriptional regulation may be altered to jointly promote MDS.

Here, we report a mouse model in which Runx1 knockout was combined with the Srsf2

P95H mutation to cause multilineage hematopoietic defects. Besides their additive and

synergistic effects, we also unexpectedly noted a degree of antagonizing activity of single

mutations in specific hematopoietic progenitors. To uncover the mechanism, we further

developed a cellular model using human K562 cells and performed parallel gene

expression and splicing analyses in both human and murine contexts. Strikingly, although

RUNX1 deficiency was responsible for altered transcription in both single and double

mutants, it also induced dramatic changes in global splicing, as seen with mutant SRSF2,

and only their combination induced missplicing of genes selectively enriched in the DNA

damage response and cell cycle checkpoint pathways. Collectively, these data reveal the

convergent impact of a prototypic MDS-associated double mutant on RNA processing

and suggest that aberrant DNA damage repair and cell cycle regulation critically

contribute to MDS development.
Introduction

Myelodysplastic syndromes (MDSs) are complex diseases characterized by ineffective hematopoiesis,
multilineage dysplasia, peripheral cytopenia, and an elevated propensity to progress to acute myeloid
leukemia (AML).1 Large-scale sequencing studies of patients with MDS have identified mutations in
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multiple classes of genes, including splicing factors, transcription
factors, epigenetic modifiers, and cell-signaling proteins.2,3 A
subset of patients with MDS carry mutations in more than 1 gene,
but mutations rarely occur in multiple genes that belong to the
same family. This indicates that the onset of MDS results from the
alteration of multiple programs rather than the lethal inactivation of
a single program. Although single gene mutations have been
modeled to evaluate their contributions to disease-related pheno-
types, limited information is available on how double mutants may
cooperatively affect disease-relevant pathways.

RUNX1 is a master regulator of hematopoiesis and one of the most
frequently mutated transcription factors in MDS, accounting for
10% to 15% of cases.2,4,5 RUNX1 mutations are prevalent in
patients with high-risk MDS, leading to shorter survival.4,5 Muta-
tions are dispersed throughout the gene and subdivided into 2
distinct functional classes: N-terminal mutations within the runt
homology domain that disrupt DNA binding, and C-terminal muta-
tions that attenuate transcriptional activity.6,7 Importantly, most
RUNX1 mutations are either loss-of-function or act in a dominant-
negative fashion to regulate gene expression.7

Relative to RUNX1, mutations in the splicing factors SRSF2 (also
known as SC35), SF3B1, U2AF1, and ZRSR2 are exceedingly
common in patients with MDS, accounting for up to 60% in certain
cohorts.8 These mutations typically arise early in hematopoiesis as
disease-initiating events, but rarely coexist in patients with single
MDS.2,9-14 SRSF2 mutations, which occur almost exclusively at
position P95, are detected in 10% to 20% of patients with MDS
and 30% to 50% of patients with chronic myelomonocytic leuke-
mia with poor survival and prognosis.3,10,15,16 Several recent
reports demonstrate that SRSF2 plays a key role in hematopoiesis
and its mutations are causal to MDS.17-20 Because SRSF2 is an
auxiliary splicing factor that binds to exonic splicing enhancers on
premessenger RNAs, mutations at P95 affect global RNA splicing
by changing its binding preference, leading to missplicing of critical
transcripts to induce myeloid malignancies.17,21

SRSF2 mutations are significantly associated with RUNX1 muta-
tions in several patient cohorts,2,3,15,16,22,23 and their coexistence
has been linked to inferior prognosis among patients with
MDS.23,24 Considering these genes are in different families with
divergent functions, namely transcription and splicing, this pair of
mutations is ideal for studying how double mutants may cooperate
in MDS pathogenesis.

Here, we devised a mouse model to compare the effects of Runx1
knockout, Srsf2 P95H mutation, and both genetic abnormalities
in vivo. We observed more severe MDS-related phenotypes in
double mutant mice compared with single mutants, including
peripheral blood pancytopenia and multilineage dysplasia. To gain
further disease relevance in humans and to enable molecular
dissection in isogenic cellular models, we also generated human
K562 cell lines that carry the same set of single or double muta-
tions. Unexpectedly, we found that besides the altered transcription
program, RUNX1 deficiency also modulated global splicing. When
coupled with the SRSF2 P95H mutation, the double mutant syn-
ergistically impaired genes involved in the DNA damage response
and cell cycle regulation. These findings reveal a much broader
function of RUNX1 in regulating gene expression at both the
transcription and posttranscriptional levels and illuminate how
double mutants drive MDS development through their additive,
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synergistic, and antagonizing effects in different hematopoietic
lineages.

Materials and methods

Please refer to the supplemental Methods for the complete
description of all methods.

Mice

C57BL/6 (CD45.2) and congenic B6.SJL-Ptprca Pep3b/BoyJ
(PEP3 and CD45.1) mice were obtained from Jackson Labora-
tory. Conditional Runx1 knockout and Mx1-Cre mice were gifts
from Nancy Speck.25 Conditional Srsf2 P95H/+ mice were pre-
viously described.17 Polyinosine-polycytosine (pIpC) (Sigma) was
injected intraperitoneally into mice at 12 μg/g every other day for
a total of 3 injections. Genotyping polymerase chain reaction was
performed using the primers previously described.17,25 Peripheral
blood parameters were measured with the scil Vet abc Plus (Scil
Animal Care Company, Grayslake, IL) using 50 μL of whole blood
drawn from the submandibular vein. Peripheral blood smears
were prepared using 2 μL of whole blood and stained with
Wright-Giemsa stain (Sigma). Images were acquired on an
Olympus BX51 microscope equipped with a DP71 camera and
DP Controller/DP Manager software (Olympus, Tokyo, Japan). All
procedures were approved by the Institutional Animal Care and
Use Committee.

BMT

For competitive and noncompetitive bone marrow transplantation
(BMT), total bone marrow (BM) cells were harvested from
untreated donor mice. In noncompetitive settings, 2 million cells
suspended in 200 μL phosphate-buffered saline were IV injected
into lethally irradiated (900 rad) CD45.2 recipient mice. In
competitive settings, CD45.2+ test cells were mixed 1:1 with
CD45.1+ competitor cells, and 2 million cells suspended in 200
μLphosphate-buffered saline were IV injected into lethally irradiated
CD45.1 recipient mice.
Results

Srsf2 mutation and Runx1 deficiency cooperatively

induce pervasive MDS-like phenotypes

To investigate whether the coexistence of Srsf2 and Runx1
mutations may cooperatively impair hematopoiesis in vivo, we
established a mouse model (Srsf2 P95H/+:Runx1 f/f:Mx1-Cre) by
crossing Srsf2-P95H conditional knockin (P95H/+) mice17 with
Runx1 conditional knockout mice (Runx1 f/f),25 both carrying a
pIpC-inducible Mx1-Cre transgene. We chose Runx1 knockout to
model dominant-negative RUNX1 mutations that are often seen in
patients with MDS.7 The Srsf2 P95H allele frequency (50%) and
Runx1 knockout (100%) were confirmed by RNA sequencing
(RNA-seq) (supplemental Figure 1A-B). To determine the pheno-
typic effects of single and double mutations in a hematopoietic cell
intrinsic manner, we transplanted mouse BM mononuclear cells
collected from Mx1-Cre control, Runx1 f/f:Mx1-Cre, Srsf2 P95H/
+:Mx1-Cre, and Srsf2 P95H/+:Runx1 f/f:Mx1-Cre conditional
mutant mice into lethally irradiated recipients and induced Cre
expression by pIpC injection 4 weeks after transplantation
(Figure 1A).
COOPERATION OF RUNX1 AND SRSF2 MUTATIONS IN MDS 6079
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Because MDS is diagnosed by the presence of peripheral blood
cytopenias and dysplastic cell morphology of various lineages,1 we
first examined the peripheral blood of transplanted mice. We found
that double mutant mice exhibited anemia as indicated by reduced
Hb and RBCs accompanied with increased MCV, a phenotype
driven by the Srsf2 P95H mutation (Figure 1B). Double mutant
mice also displayed thrombocytopenia (Figure 1C), a phenotype
that was predominately driven by Runx1 deficiency. These obser-
vations illustrate the additive effects of single mutants on MDS-
related phenotypes by separately affecting different hematopoi-
etic cell populations. By contrast, both mutations negatively
affected the WBC population and additively contributed to more
severe leukopenia in double mutant mice (Figure 1D). Altogether,
double mutant mice exhibited more pervasive peripheral blood
cytopenia than single mutant mice.

Next, we examined cell morphology in the peripheral blood of
transplanted mice. Srsf2 P95H single mutant mice had a pro-
nounced increase in hyposegmented and hypersegmented neu-
trophils and RBCs with Howell-Jolly bodies, in agreement with
previous reports that these single mutant mice have MDS
(Figure 1E).17 Double mutant mice had significantly more
dysplastic RBCs and a trend toward more dysplastic neutrophils,
indicative of a more severe MDS phenotype.

To further characterize the WBC defects, we measured the
absolute numbers of lymphoid and myeloid cells. There was no
significant difference in myeloid cells (CD11b+) among the 4
genotypes, but all 3 mutant mice groups had fewer B cells (B220+)
than WT mice, and double mutant mice had significantly fewer B
cells than either single mutant (Figure 1F-G). In agreement with the
reduction in lymphoid cells in the peripheral blood, we also
observed a significantly reduced proportion of B cells among
WBCs in the BM and spleen (supplemental Figure 1C-D). Finally,
we observed splenomegaly in double mutant mice, a phenotype
driven by Runx1 deficiency (supplemental Figure 1E).

Defective HSPCs in single and double mutant mice

To delineate the cellular source of defective hematopoiesis, we
next examined the hematopoietic stem and progenitor cell (HSPC)
compartments in single and double mutant mice. In patients with
MDS, there is an expansion of hematopoietic stem cells (HSCs)
and common myeloid progenitors (CMPs) or granulocyte-
monocyte progenitors (GMPs), indicative of a preleukemic
stage.26 Indeed, we detected the expansion of lineage− (Lin−) cells
and Lin−Sca-1+c-Kit+ (LSK) cells in the BM (Figure 2A-B) and
spleen (supplemental Figure 2A-B) of single Runx1 deficient mice,
as previously reported,25,27 and double mutant mice. The Srsf2
P95H mutant showed some modest effects on LSK cell expansion,
Figure 1. Coexistence of the Srsf2 P95H mutation and Runx1 deficiency leads to

experiments. (B) Total amount of hemoglobin (Hb), number of red blood cells (RBCs), and m

after BMT (wild-type [WT], n = 19; Srsf2P95H/+, n = 23; Runx1 knockout, n = 24; double m

peripheral blood of recipient mice at 16 weeks after BMT (WT, n = 19; Srsf2P95H/+, n = 23

Total number of white blood cells (WBCs) in the peripheral blood of recipient mice at 16

double mutant, n = 27); time course analysis of WBC. (E) Peripheral blood smears of recipi

(insets) and Howell-Jolly bodies (nuclear remnants) in RBCs (arrows). Smears are represe

neutrophils in each genotype are indicated in the graphs to the right. Absolute numbers of

the indicated times after BMT. Data are mean ± standard error of the mean (SEM). Significa

*P < .05, **P < .01.
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but its combination with Runx1 deficiency seemed to mitigate, not
exacerbate, the phenotype (Figure 2B; supplemental Figure 2B).

On closer examination of LT-HSCs and various populations of
MPPs, we found that Runx1 deficiency selectively expanded the
CD150−CD48+ MPP2 and CD150+CD48+ MPP3/4 cell pop-
ulations (Figure 2C-D; supplemental Figure 2C-D). Interestingly,
the Srsf2 P95H mutation modestly contributed to MPP2 and
MPP3/4 cell expansion, but its combination with Runx1 deficiency
suppressed this phenotype in the BM (Figure 2D), although this
suppression effect was less obvious in the spleen (supplemental
Figure 2D).

On further differentiation, the impacts of Runx1 deficiency on both
single and double mutant mice were transmitted to MPP-derived
CMPs and then to CMP-derived MEPs and GMPs in both the
BM (Figure 2E) and spleen (supplemental Figure 2E). However, at
these stages, the suppressive effect of the Srsf2 P95H mutation
became obscured, and further differentiation of MEP cells segre-
gated the impact of the Srsf2 P95H mutation on erythrocytes and
that of Runx1 deficiency on megakaryocytes (Figure 1B-C). These
findings revealed that in addition to the independent and/or
cooperative impacts of single mutations, the combination of Srsf2
P95H mutation with Runx1 deficiency also causes hematopoietic
abnormalities by means of their antagonizing effects in specific
hematopoietic progenitors.

Competitive disadvantage of HSPCs in mutant mice

In addition to changes in HSPC number in patients with MDS,
HSPC function is compromised, resulting in defective differentia-
tion and the observed peripheral cytopenias and dysplasia.17,26,28

Therefore, we performed competitive BMT using CD45 con-
genic mice to analyze HSC fitness in vivo. We mixed CD45.1
competitor BM of WT mice with CD45.2 BM of individual mutant
mice in a 1:1 ratio, transplanted these cells into lethally irradiated
recipients, and injected the mice with pIpC 4 weeks after trans-
plantation (Figure 3A). Then, we evaluated the chimerism by
determining the percentage of CD45.1 and CD45.2 populations in
the peripheral blood over time. Although Runx1 deficiency had a
minor impact, the Srsf2 P95H mutation conferred a significant
competitive disadvantage in this repopulation assay, as previously
reported,17 and the double mutant further diminished the
competitiveness throughout the experiment (Figure 3B). Interest-
ingly, we observed fewer CD3+ T cells among the double mutant
CD45.2 cells at 12 weeks after transplantation (supplemental
Figure 3A) and a substantially reduced proportion of B220+ and
CD3+ lymphoid cells at 24 weeks after transplantation
(Figure 3C), analogous to our observation in the noncompetitive
BMT experiments (Figure 1F-G).
MDS phenotypes in vivo. (A) Schematic diagram of the noncompetitive BMT

ean corpuscular volume (MCV) in the peripheral blood of recipient mice at 16 weeks

utant, n = 27); time course analysis of Hb. (C) Total number of platelets (PLTs) in the

; Runx1 knockout, n = 24; double mutant, n = 27); time course analysis of platelet. (D)

weeks after BMT (WT, n = 19; Srsf2P95H/+, n = 23; Runx1 knockout, n = 24;

ent mice. Dysplastic cells are indicated and include hyper/hyposegmented neutrophils

ntative of 3 mice per genotype. The frequencies of dysplastic erythroid cells and

myeloid cells (Cd11b+) (F) and B cells (B220+) (G) in the peripheral blood of mice at

nce was determined by 1-way analysis of variance (ANOVA) with Tukey post hoc test.
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Figure 2. Characterization of HSPCs in the BM of single and double mutant mice. Percentages of HSPCs from mouse BM analyzed by flow cytometry 20 weeks after

BMT (WT, n = 5; Srsf2P95H/+, n = 5; Runx1 knockout, n = 5; double mutant, n = 6). (A) Lin− cells. (B) Lin−Sca-1+c-Kit+ (LSK) cells. (C) Long-term HSCs (LT-HSCs; LSK

CD150+CD48−) and multipotent progenitor 1 cells (MPP1; LSK CD150−CD48−). (D) MPP2 (LSK CD150+CD48+) and MPP3/4 (LSK CD150−CD48+). (E) CMPs (Lin−Sca-
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Data are mean ± SEM. Significance was determined by 1-way ANOVA with Tukey post hoc test. *P < .05, **P < .01, ***P < .001. KO, knockout.
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Next, we analyzed the chimerism of total cells in the spleen and
BM 24 weeks after transplantation. In agreement with the trend
in peripheral blood, the Srsf2 P95H mutation conferred a
competitive disadvantage that was further exacerbated by Runx1
loss (Figure 3D). We also examined the competitive disadvan-
tage in individual HSPC populations. We observed a similar
expansion of the MPP2 population in Runx1-deficient LSK cells
(Figure 3E), as seen in the noncompetitive environment
(Figure 2D). However, unlike the minor impact of the Srsf2 P95H
mutant in the noncompetitive environment, we saw a major loss
13 DECEMBER 2022 • VOLUME 6, NUMBER 23
of competitiveness across all progenitor subpopulations in the
competitive environment (Figure 3E). Double mutant cells
exhibited further loss of chimerism, though it was not significantly
lower than single Srsf2 P95H mutant cells (Figure 3E). Alto-
gether, these data demonstrated that the Srsf2 P95H mutation
is largely responsible for the competitive disadvantage of
hematopoietic progenitors, which is further diminished by Runx1
loss. This reduction in HSC fitness contributes to the peripheral
blood pancytopenia of double mutant mice, indicative of a
worsened MDS phenotype.
COOPERATION OF RUNX1 AND SRSF2 MUTATIONS IN MDS 6083
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Global gene expression dysregulated by single and

double mutations

We next explored the mechanistic basis of the magnified MDS
phenotype by the coexistence of SRSF2 and RUNX1 mutations.
To compare altered gene expression in vivo, we performed RNA-
seq on sorted Lin− c-Kit+ (LK) hematopoietic progenitors from
the BM of mice from each genotype 4 weeks following pIpC
injection (supplemental Figure 4A). To overcome the heterogeneity
of isolated hematopoietic cells from mice and to link potential
molecular abnormalities in the context of human cells, we also
obtained K562 cells previously engineered by CRISPR knockin to
harbor the SRSF2 P95H mutation in 1 of 3 SRSF2 alleles29

(supplemental Figure 4B) and performed short hairpin RNA–
mediated RUNX1 knockdown in both parental and SRSF2
P95H knockin cells (supplemental Figure 4C). This established
a set of isogenic K562 cell lines: WT, SRSF2 P95H knockin
(SRSF2P95H/+/+), RUNX1 knockdown (RUNX1 knockdown), and
SRSF2 P95H knockin with RUNX1 knockdown (double).

Considering RUNX1 as a transcription factor30 and a previously
uncovered function of SRSF2 in transcription,31,32 we hypoth-
esized that the combination of these mutations might promote
more severe MDS phenotypes by jointly altering global gene
expression. In LK cells, unsupervised principal component anal-
ysis of the RNA-seq data showed that the Srsf2 P95H mutant
cells were more like WT cells, whereas Runx1 deficient cells
were like the double mutant cells (Figure 4A). This was reflected
by minor gene expression alterations in Srsf2 P95H mutant mice
but a drastically altered gene expression program in Runx1
deficient mice (supplemental Figure 5A; Figure 4B). In contrast,
RNA-seq performed on single and double mutant K562 cells
upon RUNX1 knockdown (supplemental Figure 5B) showed that
SRSF2P95H/+/+ and RUNX1 knockdown cells were both well
segregated from WT and double mutant cells (Figure 4C), sup-
ported by dramatically induced gene expression changes in
these isogenic K562 cell lines (supplemental Figure 5C). The
double mutant recapitulated much of the dysregulated gene
expression observed in single mutant cells and displayed a clear
synergy as there were numerous additionally altered gene
expression events (Figure 4D). The distinctions between LK and
K562 cells, especially regarding the contribution of the SRSF2
P95H mutation, might reflect differences between mice and
humans, their different stages in hematopoiesis, and/or the effect
of other mutations in K562 cells.

To gain insights into the combined contribution of the Srsf2 P95H
mutation and Runx1 deficiency in MDS pathogenesis, we examined
the functional classes of genes altered by the double mutant in
both murine and human contexts. GO cluster analysis of down-
regulated genes in double mutant cells of both murine and human
Figure 4 (continued) enrichment analysis of the downregulated genes in double mutant K5

WT (right). (F) GO enrichment analysis of the upregulated genes in double mutant K562 ce

(right). ClusterProfiler33 was used to refine overlapping GOs by calculating enriched func

circles indicate the P values and the sizes of the circles indicate the number of genes in eac

in triplicate on day 1 and counted daily using trypan blue exclusion. Data are mean ± stan

apoptotic cells (annexinV+ 7AAD−) in single/double mutant K562 cells were analyzed by fl

selection. Cells were seeded in duplicate in 3 independent experiments. *P < .05, **P < .
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origins revealed enrichment of lymphocyte differentiation
(Figure 4E), which likely contributed to the B-cell reduction
observed in double mutant mice. GO analysis of upregulated
genes in double mutant cells uncovered enrichment of gene
expression signatures associated with negative regulation of cell
growth and cellular apoptosis (ERK1/ERK2 regulation)
(Figure 4F).34,35 Therefore, we tested whether the coexistence of
the SRSF2 P95H mutation and RUNX1 knockdown affected
cellular fitness. Indeed, double mutant K562 cells exhibited the
most severe growth defect (Figure 4G) and significantly more
apoptotic cells than WT or single mutant cells (Figure 4H). These
functional consequences likely provide the selection pressure on
various differentiated cell types.

Dramatic impact of RUNX1 deficiency on global

splicing

Because transcription factors may also directly or indirectly
modulate splice site selections and SRSF2 is a well-established
splicing regulator, we next analyzed the impact of these muta-
tions on RNA splicing by using the RNA-seq data generated from
murine LK cells and human K562 isogenic cell lines. Interestingly,
principal componenet analyses of alternative splicing patterns in
both the human and murine systems revealed that cells harboring
the SRSF2 P95H mutation were similar to WT cells, whereas
RUNX1-deficient cells more closely resembled double mutant cells
(supplemental Figure 6A-B). This resulted from the unexpected
impact of Runx1 deficiency on splicing, which was more pro-
nounced than that induced by the SRSF2 P95H mutation
(Figure 5A,C). Double mutant cells exhibited substantially more
dysregulated splicing events than single mutant cells in both K562
cells and LK progenitors (Figure 5B,D). In all 3 mutant genotypes of
both human and murine cells, skipped exon (SE) events were the
most common splicing abnormalities detected (supplemental
Figure 6C-D).

To understand how RUNX1 is involved in splicing regulation, we
analyzed sequence motifs that were significantly enriched in
enhanced or repressed exons in all 3 mutational contexts. As
shown previously, the repressed and enhanced exons in single
SRSF2 P95H mutant cells were enriched for GGNG and CCNG
motifs, respectively,17 in both human K562 cells (Figure 5E-F) and
murine LK cells (Figure 5G-H). RUNX1-deficient cells did not
exhibit this motif bias, and double mutant cells resembled the single
SRSF2 P95H mutant cells. These data suggest that RUNX1 may
affect splicing by altering the expression of diverse classes of RNA-
binding proteins (RBPs). Supporting this hypothesis, we detected
altered expression of 28 RBPs in both RUNX1 knockdown and
double mutant K562 cells (supplemental Figure 6E), 10 of which
have documented roles in splicing regulation (supplemental
Figure 6F).
62 cells compared with WT (left) and in double mutant murine LK cells compared with

lls compared with WT (left) and in double mutant murine LK cells compared with WT

tional categories of individual gene clusters for panels E and F. The colors of the

h GO term. (G) Growth curves of single/double mutant K562 cells. Cells were seeded

dard deviation of 3 independent experiments. *P < .05. (H) Percentages of early

ow cytometry on day 6 and 9 after short hairpin RNA transduction and puromycin

01. GO, gene ontology; KD, knockdown.
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Synergistic impact of RUNX1 deficiency and SRSF2

mutation on the DNA damage response and cell cycle

checkpoint

Given the synergy between Runx1 deficiency and Srsf2 P95H
mutation in LK progenitors that was more pronounced at the level of
splicing than transcription, we hypothesized that the exacerbated
splicing dysregulation in double mutant cells might contribute to more
severe MDS phenotypes. We first performed GO enrichment analysis
of the genes with altered splicing (Figure 6A). Interestingly, among
genes with dysregulated splicing in SRSF2P95H/+/+ K562 cells, we
found no significant GO enrichment, whereas in RUNX1 knockdown
cells, we identified the enrichment of GO clusters related to RNA
splicing/processing/location, DNA replication, and cell cycle check-
point regulation (Figure 6B). Importantly, we found even stronger
enrichment of those GO clusters and additional ones, such as a
cluster associated with DNA damage, in double mutant K562 cells
(Figure 6B). These affected pathways were more pronounced in
murine LK cells, where only the double mutant cells demonstrated
significantly enriched GO clusters (Figure 6C-D). Considering the
known roles of DNA damage and aberrant cell cycle regulation in
MDS,36-40 these enriched pathways support a link between exacer-
bated splicing defects in double mutant cells and worsened MDS
phenotypes. For example, among synergistically altered splicing
events in LK progenitors, we identified increased exon skipping in
Fanca and Atm genes involved in DNA damage response
(supplemental Figure 7A) and Fyn and Plcb2 genes important for B-
cell development (supplemental Figure 7B), which may contribute to
the B-cell defects observed in double mutant mice.

To link specific splicing alterations to aberrant DNA damage
responses and cell cycle regulation, we validated SE events of
genes in these critical MDS-related pathways. In all the selected
genes, exon skipping would induce a frameshift that produces a
truncated protein or reduces expression of the corresponding
protein, impeding DNA damage repair or dysregulating cell cycle
progression. By reverse transcription polymerase chain reaction in
K562 cells, we confirmed double mutant–induced exon skipping in
the Fanconi anemia J gene, BRIP1 (also known as FANCJ,
BACH1) (Figure 6E), which encodes a DEAH helicase that inter-
acts with BRCA1 and has BRCA1-dependent DNA repair and
checkpoint functions.41,42 Exclusion of the cassette exon in BRIP1
transcripts results in a truncated protein, which is in line with the
causal role of inactivating truncation and point mutations of BRIP1
in Fanconi anemia.43-47 We similarly confirmed double mutant–
induced exon skipping in NABP1 (also known as SOSS-B2), a
component of the SOSS complex that senses single-stranded
DNA and promotes DNA repair (Figure 6F),48,49 and in
FANCD2/FANCI-associated nuclease 1 (FAN1), which plays a
Figure 5. RUNX1 deficiency dramatically affects global RNA spicing. (A) Volcano

double mutant K562 cells compared with WT cells. (B) Venn diagram showing the overlap

K562 cells relative to WT cells. (C) Volcano plots of significantly altered splice events in Sr

cells. (D) Venn diagram showing the overlap between splicing events that were significantly

showing the use of 4, 5, or 6-mer nucleotide sequences on promoted vs repressed exons

enrichment of CCNG/GGNG (N = any nucleotide) exonic splicing enhancer motifs adjace

double mutant K562 cells relative to WT K562 cells (SRSF2P95H/+/+: P < 2.2e-16; RUNX1

use of 4, 5, or 6-mer nucleotide sequences on promoted vs repressed exons in single/do

enrichment of CCNG/GGNG exonic splicing enhancer motifs adjacent to differentially splice

cells relative to WT cells (Srsf2P95H/+: P < 2.2e-16; Runx1 knockout: P = .1443; Double
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critical role in DNA interstrand crosslink repair (supplemental
Figure 7C).50-52 We also validated SEs in genes involved in cell
cycle progression, including TBRG453 and AKAP8L54 (Figure 6G-H).

In addition to missplicing of genes involved in DNA damage and
cell cycle regulation, there were several other interesting genes
with altered splicing that may have implications on MDS severity.
For example, we detected 2 exon skipping events in PFKM
(supplemental Figure 7D), which encodes Phosphofructokinase
Muscle, a key regulatory enzyme of glycolysis, with deficient activity
linked to hemolytic anemia.55,56 Lastly, we observed significant
enrichment of misspliced genes involved in RNA processing and
metabolism, such as EXOSC9 (supplemental Figure 7E),57-59 illu-
minating the possibility that aberrant splicing of RNA processing
regulators may further amplify splicing defects in double mutant
cells, contributing to worsened MDS phenotypes.
Discussion

Here, we generated a mouse model to study the phenotypic and
mechanistic impacts of the SRSF2 P95H mutation in combination
with RUNX1 deficiency, mutations significantly cooccurring in patients
with MDS.2,3,15,16,22,23 We focused on homozygous Runx1 knockout
to model dominant-negative RUNX1 mutations. Future studies will be
required to test the impact of heterozygous Runx1 knockout, modeling
loss-of-function mutations, which may produce distinct phenotypes
from those observed here. Using our double mutant mouse model, we
demonstrated that the combination of splicing and transcription
perturbation promotes more severe MDS phenotypes than either
single mutation. In addition, we uncovered a surprising role for the
transcription factor RUNX1 in splicing and underscored the impor-
tance of the DNA damage response in MDS pathogenesis.

In our mouse model, double mutant mice had more pervasive MDS-
related phenotypes than single mutant mice because more cell types
were affected by the coexisting mutations. For instance, double mutant
mice exhibited aberrant hematopoietic phenotypes related to either
Srsf2 P95H (leukopenia, anemia, and dysplastic neutrophils) or Runx1
deficiency (leukopenia, thrombocytopenia, myeloid cell expansion, and
MPP cell expansion). Because the mutations affect mostly nonover-
lapping hematopoietic cell populations, the additive effect of these
coexisting mutations leads to multilineage defects. Besides such
additive effects, we also observed synergistic effects of these muta-
tions in the same cell populations, resulting inmore prevalent dysplastic
cellular morphology, worsened B-cell deficiency, and exacerbated
competitive deficiency. Interestingly, a reduction in B cells has also
been observed in patients with MDS60 and in both Srsf2 P95H17,20

and Runx1 knockout25 mouse models. Future studies are warranted
to address the mechanism and impact of this unexplored phenotype.
plots of significantly altered splice events in SRSF2P95H/+/+, RUNX1 knockdown, and

between splicing events that were significantly dysregulated in single/double mutant

sf2P95H/+, Runx1 knockout, and double mutant murine LK cells compared with WT LK

dysregulated in single/double mutant LK cells relative to WT LK cells. (E) Scatter plots

in single/double mutant cells relative to WT K562 cells. (F) Bar plots quantifying the

nt to differentially spliced cassette exons that were promoted vs repressed in single/

knockdown: P = 1.18e-6; double mutant: P < 2.2e-16). (G) Scatter plots showing the

uble mutant murine LK cells relative to WT LK cells. (H) Bar plots quantifying the

d cassette exons that were promoted vs repressed in single/double mutant murine LK

mutant: P < 2.2e-16). FDR, false discovery rate.
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Despite the more severe hematopoietic defects in double mutant
mice, we did not observe transformation to AML. This reflects
different phenotypic severities induced by different combinations of
mutations, as highlighted in a previous study where the coexistence
of Srsf2 and Idh2 mutations led to leukemia development, whereas
the coexistence of Srsf2 and Tet2 mutations did not.61 The disease
severity could be further enhanced by exposing the mice to a
mutagen, as was shown in a mouse model of Runx1 deficiency in
combination with the mutant splicing factor U2af1.62 In this previ-
ous study, double mutant mice did not develop AML until they were
exposed to the mutagen N-ethyl-N-nitrosourea, which triggered
additional mutations in Tet2, Idh1, and Gata2.62 Consequently, we
speculate that certain tertiary mutations (TET2, ASXL1, and
STAG2) identified in patients with MDS with double SRSF2 and
RUNX1 deficiencies may contribute to leukemic transformation.2,24

Intriguingly, in both of our human and mouse isogenic models,
RUNX1 deficiency resulted in profound splicing alterations and
double mutant cells had the most severe splicing dysregulation.
This is reminiscent of a previous study that showed patient cells
harboring mutations in both SRSF2 and the epigenetic regulator
IDH2 had greater splicing alterations than either single mutation
alone.61 Here, we provide evidence that RUNX1 deficiency may
modulate splicing by altering the expression of RBPs, likely owing
to the role of RUNX1 in transcription control63 and/or by causing
missplicing of splicing regulators. However, RUNX1 may also
directly contribute to splicing regulation by potential RNA binding
of its runt homology domain as observed in vitro64,65 or through its
interaction with splicing factors during cotranscriptional splicing as
observed with other transcription factors.66,67 The involvement of
diverse mechanisms may explain the lack of enriched motifs
associated with altered splicing events in RUNX1-deficient cells.

Importantly, among misspliced transcripts in human andmouse double
mutant cells, we observed significant enrichment of genes involved in
cell cycle regulation and the DNA damage response, characteristic of
MDS.36,37 Our data agree with a recent report that also identified
overrepresentation of misspliced cell cycle and DNA repair transcripts
in human and murine SRSF2P95H/+ samples.68 These pathways were
also among the top synthetic lethal interactions with SRSF2P95H/+ in a
CRISPR dropout screen.68 Missplicing of target genes involved in the
DNA damage response may further synergize with genomic instability
and DNA damage by means of accumulated R-loops39,69 and in com-
bination with RUNX1 deficiency–induced modulation of p53 and
FANCD2 activities.70,71 Together, these findings support the thera-
peutic potential of targeting the cell cycle and DNA damage in patients
harboring SRSF2 or RUNX1 mutations.

In summary, we have shown that Runx1 deficiency and mutant Srsf2
collaborate to impair multilineage hematopoiesis and exacerbate MDS
disease phenotypes in vivo. At the genome-wide level, loss of RUNX1
dysregulates splicing outcomes and cooperates with mutant SRSF2
Figure 6. Mutant SRSF2 and RUNX1 deficiency synergistically affect the DNA da

dysregulated splicing events in double mutant (mt) cells compared with WT K562 cells. (B)

each single/double mutant K562 genotype relative to WT K562 cells. (C) GO enrichment

compared with WT cells. ClusterProfiler33 was used to refine overlapping GOs by calcula

The colors of the circles indicate the P values and the sizes of the circles indicate the num

categories of misspliced transcripts in single and double mutant LK cells relative to WT c

plots depicting the abnormal splicing of genes related to the DNA damage checkpoint (BRIP

messenger RNA; RPKM, reads per kilo base per million mapped reads.
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to further perturb the expression and splicing of key regulators
involved in cell cycle control and the DNA damage response. These
results illustrate how mutations in a transcription factor and splicing
factor can cooperatively promote pathogenesis and support further
studies to explore the therapeutic potential of targeting the DNA
damage response or aberrant splicing in patients with MDS.
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