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The rise and spread of antibiotic resistance is among the most severe challenges facing
modern medicine. Despite this fact, attempts to develop novel classes of antibiotic have
been largely unsuccessful. The traditional mechanisms by which antibiotics work are
subject to relatively rapid bacterial resistance via mutation, and hence have a limited period
of efficacy. One promising strategy to ameliorate this problem is to shift from the use of
chemical compounds targeting protein structures and processes to a new era of RNA-based
therapeutics. RNA-mediated regulation (riboregulation) has evolved naturally in bacteria and
is therefore a highly efficient means by which gene expression can be manipulated. Here,
we describe recent advances toward the development of effective anti-bacterial therapies,
which operate through various strategies centered on RNA.
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RNA-BASED REGULATION IN BACTERIA: OF NATURAL
IMPORTANCE
Non-coding RNAs (ncRNAs) occur naturally in bacteria and can
function as regulators of gene expression. ncRNAs may be tran-
scribed either in-cis, i.e., from the same genomic loci as their
targets, or in-trans, from discrete loci (Waters and Storz, 2009). A
major class of cis-encoded ncRNAs, known as antisense RNAs
(asRNAs), originate from the opposite strand to overlapping
protein-coding genes (Thomason and Storz, 2010). An asRNA
can occur over a portion of the opposite gene or over the entire
length of the gene (Thomason and Storz, 2010). This leads to the
formation of double-stranded RNA (dsRNA) molecules, which
can present as targets for enzymatic digestion, thereby resulting in
decreased translation of the mRNA (Figure 1A; Lasa et al., 2012).
Whole transcriptome analysis, in particular the advent of RNA
sequencing (RNA-seq), has revealed that anywhere from 13 to 49%
of genes in bacteria may be subject to some degree of antisense
regulation (Lasa et al., 2012).

Another class of cis-acting regulatory RNAs originate from the
5′ untranslated regions (UTRs) of genes and can cause premature
transcriptional termination (Lai, 2003). Riboswitches are promi-
nent members of this class (Lai, 2003). Riboswitches generally
control the transcription of downstream protein-coding genes by
folding alternately to form either terminator or anti-terminator
hairpin loops (Figure 1B; Serganov and Nudler, 2013). The highly
structured aptameric region of a riboswitch binds selectively to
a small ligand – such as an amino acid, an enzyme cofactor, or
an ion – when the ligand is present in the cell (Mironov et al.,
2002; Nahvi et al., 2002). The structure of the region adjacent to
the aptamer, known as the expression platform, is then altered,
dictating whether or not transcription can proceed (Serganov and
Nudler, 2013).

Trans-acting RNAs include intergenic small RNAs (sRNAs).
In contrast to asRNAs, which generally bind targets over large
portions of their lengths, most known sRNAs bind to target
mRNAs via short (7–12 nt) stretches, known as seed regions

(Storz et al., 2011). The binding site is generally overlapping
with, or in close proximity to, the ribosome binding site (RBS)
of the target mRNA, thereby occluding 70S ribosome formation
and translation initiation (Figure 1C; Waters and Storz, 2009).
Endonucleolytic cleavage of the mRNA may also occur (Caron
et al., 2010), perhaps to increase the speed of gene silencing, or
to render silencing irreversible. In many lineages, the interac-
tion is facilitated by the Hfq chaperone protein (Vogel and Luisi,
2011). However, in species lacking Hfq, other features of an sRNA,
such as its GC-content, may be important for target recognition
(Arnvig and Young, 2012).

HIJACKING NATURAL DESIGNS – ARTIFICIAL ANTISENSE
AND sRNAs
Antisense RNAs complementary to custom mRNA sequences were
first designed in Escherichia coli in the late 1990s (Engdahl et al.,
1997), and the technique has since been extended to gram-
positive species (Ji et al., 2004). Expressed antisense technology
has been used to target a range of bacterial genes, including those
involved in DNA exchange (Wang and Kuramitsu, 2005), cen-
tral metabolism (Greenberg et al., 2010), and antibiotic resistance
(Ramirez et al., 2013). The antisense molecule is typically com-
plementary to the RBS of the target mRNA, to facilitate steric
block of translation initiation (Woodford and Wareham, 2009).
A positive correlation between the length of an asRNA and the
degree of target gene regulation has been reported for E. coli
(Tatout et al., 1998). However, structural features of the target
mRNA are an important consideration in the design process, given
that interaction sites must be accessible to the antisense transcript
(Deere et al., 2005).

More recently, artificial trans-encoded sRNAs (atsRNAs)
directed at custom mRNAs have also been developed (Man et al.,
2011). These atsRNAs consist of three separate domains – a seed
region, a Hfq binding site, and a rho-independent terminator
(RIT) – and are able to repress the expression of both endoge-
nous and exogenous target genes in E. coli (Man et al., 2011).
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FIGURE 1 | Various types of non-coding RNA in bacteria. (A) asRNAs
are transcribed from the opposite strand to protein-coding genes. The
resulting dsRNA structure can serve as a substrate for cleavage by
RNase III; however, it is not known whether the short degradation
products resulting from this process have any cellular function.
(B) Riboswitches control the expression of downstream genes by

folding to form either terminator or anti-terminator hairpin loops,
depending on the presence or absence of an appropriate signal ligand.
(C) Intergenic sRNAs typically work in combination with the Hfq
chaperone protein, binding the RBS of target mRNA transcripts and
preventing translation of the mRNA. RNase E cleavage of the mRNA
may subsequently occur.

Gene silencing by atsRNAs is more efficient than can generally be
achieved with antisense strategies (Man et al., 2011), and is most
potent when the seed region is present within a single-stranded
part of the molecule (Park et al., 2013). Engineering of atsRNA
constructs against particular targets is possible, and has been used
to produce transcripts directed at E. coli outer membrane porin
and flagellin genes (Sharma et al., 2011).

RIBOSWITCHES AND LIGAND ANALOGS
A number of antibacterial compounds whose mode of action
was initially unclear are now known to act through riboswitches
(Blount and Breaker, 2006). For example, L-aminoethylcysteine
(AEC) is a lysine analog that inhibits the growth of several gram-
positive bacterial species (McCord et al., 1957). However, it has
only recently become apparent that its mechanism of action
involves binding to a lysine riboswitch and causing premature
transcriptional termination of essential anabolic genes (Blount
et al., 2007). Specifically designed analogs have proven effective at
killing bacteria by binding to riboswitches in vitro (Blount et al.,
2007; Kim et al., 2009) and in reducing pathogenicity in animal
infection models (Mulhbacher et al., 2010).

Enthusiasm for the utility of ligand analogs as a novel drug
class has been tempered somewhat by the potential for unintended
off-target effects. For example, the riboflavin analog roseoflavin
inhibits the growth of Listeria monocytogenes by switching the
FMN riboswitch to an “off” configuration (Mansjö and Johans-
son, 2011). However, roseoflavin also increases the expression of
certain virulence genes in the process, perhaps by interacting with

riboflavin metabolism enzymes in the cell (Mansjö and Johansson,
2011). Knowledge of potential off-target binding partners is an
important consideration in drug development. Some riboswitches
are known to employ slightly different binding mechanisms for a
given ligand than do proteins (Blount and Breaker, 2006), and
such mechanistic differences should be considered in the design
process.

Recent advances have resulted in a scaling up of high-
throughput screens for RNA structures and small molecules that
interact with one another. The method of Tran and Disney (2012),
for example, allows the screening of over three million combina-
tions of RNA aptamers and molecules to find interacting pairs.
Strategies to monitor the activity of riboswitches in the presence
of novel ligands are also available; for example, a screening method
involving molecular beacon probes has been developed using an
unmodified version of the adenine riboswitch (Chinnappan et al.,
2013). This approach can, in principle, be applied to any class of
riboswitch and occurs within the native transcriptional context.

TYPE II CRISPR SYSTEMS
Clustered regularly interspaced short palindromic repeats
(CRISPR) and CRISPR-associated (Cas) systems are bacterial
defense mechanisms, which can cleave invading DNA from plas-
mids and bacteriophages (Sorek et al., 2013). There are three
primary CRISPR types (I–III) found in bacteria, differing from
one another in Cas protein composition and mechanism of action
(Sorek et al., 2013). All CRISPR systems function by the incor-
poration of short (∼30 nt) stretches of invading nucleic acids
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FIGURE 2 | CRISPR/Cas systems as genome editing tools and regulators

of gene expression. (A) General outline of a type II CRISPR/Cas system; the
scaRNA component is present in certain lineages only. Pre-crRNA is
processed by the combined action of Cas9 and RNase III to form mature
crRNAs, each containing a repeat (R) element and a spacer (S1–S3) region.
(B) Cas9 normally functions to cleave viral or plasmid DNA in the bacterial cell

upon association of the mature crRNA with a complementary foreign DNA
molecule. The tracrRNA and crRNA components can be replaced by a guide
RNA, and the Cas9 enzyme may be mutated to achieve custom DNA target
cleavage. (C) The novel scaRNA of certain type II CRISPR systems mediates
Cas9 cleavage of a target mRNA transcript by associating with the mRNA at
its RBS.

into so-called spacer regions within the CRISPR array (Barrangou
et al., 2007). Transcription from the array gives rise to a precur-
sor CRISPR RNA (pre-crRNA), which is processed into mature
crRNA fragments, each comprised of a spacer and a repeat region
(Figure 2A; Horvath and Barrangou, 2010). The spacer of a crRNA
binds specifically to a complementary site known as a proto-spacer
in the target DNA to facilitate cleavage (Gasiunas et al., 2012).

While type I and type III systems utilize multiple Cas pro-
teins for target degradation, type II systems require only the Cas9
endonuclease (Chylinski et al., 2013), and have thus received much
attention for their potential use as genome editing tools (Horvath
and Barrangou, 2013). The formation of mature crRNAs in type
II systems involves a trans-activating crRNA (tracrRNA) and the
activity of the endonuclease RNase III (Deltcheva et al., 2011).
Engineered type II CRISPR systems can be introduced directly to
bacterial cells on plasmids to induce a variety of DNA mutations
(Jiang et al., 2013). For human genome editing, a codon-optimized
version of Cas9 has been developed which contains a nuclear local-
ization signal to ensure correct compartmentalization (Cong et al.,
2013). The tracrRNA and crRNA components may be fused to
create custom guide RNA molecules (Figure 2B; Cong et al., 2013;
Mali et al., 2013), and multiple custom spacers can be incorpo-
rated into a single CRISPR array to induce discrete target cleavage
(Cong et al., 2013).

It was thought that CRISPR systems were capable of tar-
geting only invading DNA, however a recent study has shown
that a small, CRISPR/Cas-associated RNA (scaRNA) mediates
endogenous gene regulation in Francisella novicida by mRNA
destabilization (Figure 2C; Sampson et al., 2013). This scaRNA
is part of the type II CRISPR system of F. novicida, and base
pairs with both the tracrRNA and the RBS of the target mRNA
(Sampson et al., 2013). scaRNAs are predicted to occur in a
number of other important pathogens, including Neisseria menin-
gitidis and Campylobacter jejuni (Sampson et al., 2013). Rational
manipulation of the scaRNA component of this system may
enable selective gene regulation in both prokaryotic and eukaryotic
systems in future.

REPURPOSING RNase P
An ingenious yet mechanistically simple mode of RNA-based gene
regulation has been devised which utilizes the intrinsic activity
of the ribozyme RNase P. RNase P is an evolutionarily ancient
and highly conserved endonuclease which normally functions in
bacteria to cleave precursor tRNA (ptRNA) molecules at their 5’
ends (Kazantsev and Pace, 2006). Short oligonucleotides known
as external guide sequences (EGSs) can be designed such that they
bind to target mRNA molecules, resulting in a structure which
resembles a ptRNA and is cleaved by RNase P (Li et al., 1992).
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Furthermore, EGSs can be induced from bacterial plasmids
to inhibit gene expression (Guerrier-Takada et al., 1995), includ-
ing the expression of genes for antibiotic resistance (Soler Bistué
et al., 2009). Multiple EGSs can be targeted toward essential
genes and act in an additive manner to reduce bacterial viability
(McKinney et al., 2001). Significantly, EGS-mediated gene repres-
sion functions in the presence of up to three mismatches along
a 15 nt stretch, implying that several point mutations of the tar-
get would be required for the evolution of bacterial resistance
(McKinney et al., 2001). Currently, the identification of suitable
mRNA-EGS interaction sites is laborious, for example through
randomization of EGS sequences and subsequent selection of tar-
get regions (Lundblad et al., 2008). However, advances toward
the rational computational prediction and design of ribozyme
splice sites (Meluzzi et al., 2012) may help to ameliorate this
difficulty.

DELIVERY MECHANISMS AND CONSIDERATIONS
The treatment of pathogenic infection is predicated on the delivery
of drug compounds to the site of infection in the body and into the
bacterial cell. Natural RNA is susceptible to nucleolytic attack prior
to cell entry. To circumvent this fact, synthetic oligonucleotides
have been developed, including peptide nucleic acids (PNAs),
which are modified to contain a peptide backbone (Good et al.,
2001); and DNA mimics known as phosphorodiamidate mor-
pholino oligomers (PMOs; Geller et al., 2003). These compounds
offer considerable increases in extra-cellular stability; however,
major obstacles remain in permeating the bacterial membrane
(Good et al., 2000; Geller et al., 2003).

Uptake efficiency may be increased by the conjugation of PNAs
and PMOs to short cationic peptides (Nikravesh et al., 2007; Mell-
bye et al., 2009). These positively charged molecules likely function
by co-localising the synthetic oligonucleotides with the negatively
charged bacterial outer membrane. Peptide conjugates have been
developed to act as conventional asRNAs (Deere et al., 2005) and
also to act as EGSs (Lundblad and Altman, 2010). The utility of
antisense peptide conjugates in vivo has been demonstrated using
mouse models of E. coli infection (Tilley et al., 2007). Thermore-
sponsive hydrogels, which are formulated as liquids and harden at

mammalian body temperature, have recently been used to deliver
peptide-PMOs to mouse wounds, improving healing by targeting
the Staphylococcus aureus gyrA mRNA (Sawyer et al., 2013).

A relatively underexplored strategy is to synthesize oligonu-
cleotides as locked nucleic acids (LNAs). LNAs are inherently
more stable molecules than naturally occurring RNA molecules,
because they are “locked” into a 3′-endo conformation (Koshkin
et al., 1998). LNA/DNA hybrid oligomers that contain a stretch
of at least six DNA bases can serve as substrates for RNase
H cleavage to enhance target downregulation (Braasch and
Corey, 2002). These hybrid molecules have been shown to
effectively function as EGSs to decrease amakicin resistance in
E. coli, and were found to be more efficient at gene silenc-
ing than PMOs (Soler Bistué et al., 2009; for a comparison of
these methods, see Table 1). Unlike the synthetic compounds
described above, LNAs carry a negative charge, which means
that they cannot easily be conjugated with peptides. However,
it has recently been shown that LNA/DNA oligomers are nat-
urally uptaken by E. coli cells at a higher rate than regular
nucleic acids (Traglia et al., 2012). Additional research will need
to be carried out on methods to further increase the level of
uptake (which is at a modest 14%), however this finding offers
promise for the future utility of LNA technology in combating
infection.

BACTERIAL RESISTANCE TO RNA-BASED STRATEGIES
Reports of bacterial resistance to peptide-based delivery strate-
gies have been published (Ghosal et al., 2012; Puckett et al., 2012).
Certain peptide-PNA conjugates are transported across the E. coli
cell membrane by the SmbA transporter, with the PNA compo-
nent being the substrate (Ghosal et al., 2012), and mutations to
SbmA can prevent efficient uptake (Ghosal et al., 2012; Puckett
et al., 2012). Alternative transporters are known to be available,
and screening of antisense PNAs on �sbmA strains has been
successful (Ghosal et al., 2012). Notably, however, this mecha-
nism of resistance relates strictly to the mode of transport used
to induce cellular uptake, and is distinct from the gene regula-
tion induced by the antisense molecules themselves. Resistance via
mutation of target mRNA molecules has not been documented,

Table 1 | Comparison of different forms of synthetic nucleic acids used in therapeutic strategies that target bacterial RNAs.

PNA PMO LNA/DNA oligomers

Nuclease resistance High High High

RNA binding strength relative to

nucleic acids

Increased Increased Increased

Typical delivery method Conjugation to peptide Conjugation to peptide or direct

modification

Naturally uptaken

Toxicity Low* Low* Low

Electric charge Non-ionic Non-ionic Anionic

Target specificity Moderate Moderate High

Induction of RNase H cleavage No No Yes

*Note: peptide conjugate may be toxic.
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perhaps indicating that sequence alterations to regulatory regions
such as RBSs, which are generally targeted, are likely to be very
rare.

Bacterial resistance to riboswitch ligand analogs is also known.
For example, pyrithiamine is an antibacterial substance which
acts by mimicking thiamine and binding to the TPP riboswitch.
Certain strains of Bacillus subtilis have evolved resistance to
pyrithiamine by at least two distinct means. Firstly, via muta-
tions to the ligand-binding aptameric region of the riboswitch,
and secondly by overexpressing a thiaminase enzyme (Sudarsan
et al., 2005). It may therefore be prudent to select target riboswitch
classes which regulate multiple genes or operons in a given genome,
rather than a single gene or operon. Furthermore, suitable candi-
dates should exert important gene regulatory functions for cellular
survival, to ensure a lower rate of mutational resistance.

FUTURE PERSPECTIVE
The RNA-based strategies outlined above are at varying stages of
progress toward potential therapeutic utility. A major challenge
in the development of any antibacterial drug is in delivery across
the cell wall, in particular the peptidoglycan layer of gram posi-
tive bacteria, to reach the cytoplasm. Recently, penicillin has been
shown to increase the uptake efficiency of antisense PMOs, likely
through the inhibition of peptidoglycan synthesis (McLeod and
Simmonds, 2013). Thus, systemic searches of compounds known
to disrupt the integrity of the cell wall may lead to the identification
of suitable co-delivery agents.

The development of additional methods for delivery is also
likely to expedite the drug development process. One can envis-
age a scenario in which drugs targeting homologs of the same
gene could be administered differently depending upon the infec-
tious agent. For example, although not extensively researched,
liposomes have been effectively used to deliver antisense PMOs
to the gram-positive methicillin-resistant S. aureus (MRSA; Meng
et al., 2009). Liposome delivery has the conceptual advantage of
avoiding potential resistance issues related to protein transport
such as those described above, and may be a useful means to aug-
ment the uptake of LNA/DNA hybrid molecules, which cannot be
conjugated to proteins.

Increasing the potency of new drug candidates, such that they
may be used at lower effective concentrations, will be another
important step toward their transfer to the clinical environment.
In this regard, atsRNAs may represent a more attractive blueprint
than asRNAs, given the apparently increased efficacy of the for-
mer. Additive antimicrobial effects by silencing multiple important
genes have been shown (McKinney et al., 2001), however, syner-
gistic effects have not yet been demonstrated. Synergism in drug
interactions can lead to dramatically improved clinical outcomes
(Chou, 2006), and synergism between protein- and RNA-level
inhibitors is known (Dryselius et al., 2005). Database searches
reveal no shortage of interacting pairs of genes that may be adapted
for focused therapeutic designs (Yeh et al., 2009).

These aspects notwithstanding, there is no theoretical rea-
son that RNA-based antibacterial therapies should not continue
to progress toward the clinical sphere. In vivo work has shown
their utility in treating both localized (Sawyer et al., 2013) and
systemic (Meng et al., 2009) infections, as proof of concept.

Indeed, their therapeutic development ought to be an inevitabil-
ity, given that antisense strategies have been used in clinical
practice for over a decade to treat viral infections (de Smet
et al., 1999). Moreover, a number of antisense-based treat-
ments of non-bacterial diseases – such as Duchenne muscular
dystrophy – are currently in clinical trials (see, for example,
http://www.sareptatherapeutics.com/). With the present rate of
advance, it may be anticipated that sufficient knowledge of design
and delivery principles will, within the next decade, lead to
the development of antibacterial compounds suitable for clinical
trial.
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