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SUMMARY

Evidence that some high-impact biomedical results cannot be repeated has stimulated interest in 

practices that generate findable, accessible, interoperable, and reusable (FAIR) data. Multiple 

papers have identified specific examples of irreproducibility, but practical ways to make data more 

reproducible have not been widely studied. Here, five research centers in the NIH LINCS Program 

Consortium investigate the reproducibility of a prototypical perturbational assay: quantifying the 

responsiveness of cultured cells to anti-cancer drugs. Such assays are important for drug 

development, studying cellular networks, and patient stratification. While many experimental and 

computational factors impact intra- and inter-center reproducibility, the factors most difficult to 

identify and control are those with a strong dependency on biological context. These factors often 

vary in magnitude with the drug being analyzed and with growth conditions. We provide ways to 

identify such context-sensitive factors, thereby improving both the theory and practice of 

reproducible cell-based assays.

Graphical Abstract

In Brief

Factors that impact the reproducibility of experimental data are poorly understood. Five NIH-

LINCS centers performed the same set of drug-response measurements and compared results. 
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Technical and biological variables that impact precision and reproducibility and are also sensitive 

to biological context were the most problematic.

INTRODUCTION

Making biomedical data more findable, accessible, interoperable, and reusable (the FAIR 

principles) (Wilkinson et al., 2016) promises to improve how laboratory experiments are 

performed and interpreted. Adoption of FAIR approaches also responds to concerns from 

industrial and academic groups about the reproducibility and utility of biomedical research 

(Arrowsmith, 2011; Baker, 2016; Begley and Ellis, 2012; Prinz et al., 2011) and the 

adequacy of data-reporting standards (Errington et al., 2014; Morrison, 2014). Several 

efforts have been launched to repeat published work (https://f1000research.com/channels/

PRR), most prominently the Science Exchange Reproducibility Initiative (http://

validation.scienceexchange.com/#/reproducibility-initiative). The results of such 

reproducibility experiments have themselves been controversial (eLife Editorial, 2017; 

Ioannidis, 2017; Nature Editorial, 2017; Nosek and Errington, 2017.

Rather than focus on a specific published result, the current paper investigates the 

reproducibility of a prototypical class of cell-based experiments. The research was made 

possible by the NIH Library of Network-Based Cellular Signatures Program (LINCS) 

(http://www.lincsproject.org/) and is consistent with its overall goals: generating datasets 

that describe the responses of cells to perturbation by small-molecule drugs, components of 

the microenvironment, and gene depletion or overexpression. For such datasets to be broadly 

useful, they must be reproducible. The experiment analyzed in this paper involves 

determining how tissue culture cells respond to small-molecule anti-cancer drugs across a 

dose range. Such experiments compare pre- and post-treatment cell states and require 

selection of cell types, assay formats, and time frames; they are therefore prototypical of 

perturbational biological experiments in general. Drug-response assays are widely used in 

preclinical pharmacology (Cravatt and Gottesfeld, 2010; Schenone et al., 2013) and in the 

study of cellular pathways (Barretina et al., 2012; Garnett et al., 2012; Heiser et al., 2012).

Cultured cells are typically exposed to anti-cancer drugs or drug-like compounds for several 

days (commonly three) and the number of viable cells is then determined, either by direct 

counting using a microscope or by performing a surrogate assay such as CellTiter-Glo 

(Promega), which measures ATP levels in a cell lysate. With some important caveats, viable 

cell number is proportional to the amount of ATP in a lysate prepared from those cells 

(Tolliday, 2010). Several large-scale datasets describing the responses of hundreds of cell 

lines to libraries of anti-cancer drugs have recently been published (Barretina et al., 2012; 

Garnett et al., 2012; Haverty et al., 2016; Seashore-Ludlow et al., 2015), but their 

reproducibility and utility have been debated (Bouhaddou et al. 2016; CCLE Consortium et 

al., 2015; Haibe-Kains et al. 2013).

Five experimentally focused LINCS Data and Signature Generation centers (DSGCs) 

measured the sensitivity of the widely used, non-transformed MCF 10A mammary epithelial 

cell line to eight small-molecule drugs having different protein targets and mechanisms of 

action. One DSGC (hereafter “center one”) was charged with studying possible sources of 
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irreproducibility identified by inter-center comparison. Investigators in center one had 

previously shown that conventional drug response measures such as IC50 are confounded by 

variability in rates of cell proliferation arising from variation in plating density, fluctuation 

in media composition, and intrinsic differences in cell division times (Hafner et al., 2016, 

2017a). We corrected for these and other known confounders using the growth rate 

inhibition (GR) method (Hafner et al., 2016, 2017b; Niepel et al., 2017), thereby focusing 

the current study on sources of irreproducibility that remain poorly understood. Individual 

centers were provided with identical aliquots of MCF 10A cells, drugs, and media 

supplements, as well as a detailed experimental protocol and data analysis procedures 

(Figure 1A), Supplemental Experimental Procedures). Some variation in the implementation 

of the protocol was inevitable because not all laboratories had access to the same 

instruments or the same level of technical expertise; in our view, this is a positive feature of 

the study because it more fully replicates “real-world” conditions.

In initial experiments, we observed center-to-center variation in GR50 measurements of up to 

200-fold. Systematic studies revealed factors most likely to be responsible for this variation. 

In contrast to several recent studies emphasizing genetic instability as a source of variability 

in sensitivity to anti-cancer drugs (Ben-David et al., 2018), genetic drift did not play a 

significant role in our studies. Instead, irreproducibility arose from a subtle interplay 

between experimental methods and poorly characterized sources of biological variation and, 

to a lesser extent, differences in data analysis (image processing) algorithms. Based on these 

findings, newly trained technical staff without previous exposure to our protocol could 

obtain results indistinguishable from assays performed 2 years previously by others. Thus, a 

sustained commitment to characterizing and controlling for variability in perturbation 

experiments is both necessary and sufficient to obtain reproducible data.

RESULTS

Measuring Drug Responses in Collaboration

To establish the single-center precision of dose-response assays, center one performed 

technical and biological replicate measurements using MCF 10A cells and the MEK1/2 

kinase inhibitor Trametinib at eight concentrations between 0.33 nM and 1 μM (Figures 1B 

and 1C). For technical replicates, multiple drug dilution series were assayed on one or more 

microtiter plates on the same day. For biological replicates, three sets of assays were 

performed, separated by a minimum of one cell passage; each biological replicate involved 

three technical replicates. In all cases, viable cell number was determined by differentially 

staining live and dead cells, collecting fluorescence images from each well, segmenting 

images using software, and then counting all viable cells in all wells (Hafner et al., 2016; 

Niepel et al., 2017). Sigmoidal curves were fitted to the data and four response metrics 

derived: potency (GR50), maximal efficacy (GRmax), slope of the dose response curve (Hill 

Coefficient or hGR), and the integrated area over this curve (GRAOC). Fitting procedures and 

response metrics have been described in detail previously (Hafner et al., 2016, 2017b) 

(Figure S1A), and all routines and data can be accessed on-line or via download at http://

www.grcalculator.org/.
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We found that response curves for technical replicates were very similar (Figure 1B), 

showing that purely procedural error resulting from inaccurate pipetting, non-uniform 

plating, errors in cell counting, etc., were small. Variability in biological replicates as 

measured by drug potency (log10(GR50) values) and efficacy (GRmax values) was within 1.4 

standard deviations for center one (Figure S2) across three different laboratory scientists.

To measure reproducibility across laboratories, while controlling for variation in reagent and 

genotype, a single center distributed to all other centers identical MCF 10A aliquots, drug 

stocks, and media additives, as well as a detailed experimental protocol optimized for the 

cell line-drug pairs under study. This protocol included optimal plating densities, dose-

ranges and separation between doses for reliable curve fitting. When individual centers first 

performed these assays, up to 200-fold variability in GR50 values was observed (Figure S3). 

Differences of this magnitude have previously been observed for large-scale dose-response 

studies performed by different research teams (Haibe-Kains et al., 2013). To understand the 

origins of the observed irreproducibility we performed directed and controlled experiments 

in center one.

Technical Drivers of Variability

First, we studied the origins of the large inter-center variability in estimation of GRmax for 

the topoisomerase inhibitor Etoposide and CDK4/6 inhibitor Palbociclib. We ascertained 

that one center had used the CellTiter-Glo ATP-based assay and a luminescence plate reader 

as a proxy for counting the number of viable cells in a microscope. CellTiter-Glo is among 

the most commonly used assays for measuring cell viability and was therefore a logical 

substitute for direct cell counting. However, when we performed side-by-side experiments 

we found that dose-response curves and GR metrics computed from image-based direct cell 

counts and CellTiter-Glo were not the same: GRmax values (which are unit-less and range 

from −1 to 1) for the topoisomerase inhibitor Etoposide and CDK4/6 inhibitor Palbociclib 

differed by 0.61 and 0.57, respectively, for the two assays (GR50 values could not be 

determined for CellTiter-Glo data because GR > 0.5 under all conditions tested (Figure 2A). 

In contrast, in the case of the EGFR inhibitor Neratinib and the PI3K inhibitor Alpelisib, the 

differences were smaller, varying by 0.03 and 0.24, respectively. This finding likely explains 

some of the inter-center differences observed in drug response metrics (Figure S3).

It is known that CellTiter-Glo and direct cell counts are poorly correlated when drugs cause 

large changes in cell size or alter ATP metabolism, thereby changing the relationship 

between ATP level in a cell extract and viable cell number (Figure 2B for Palbociclib) 

(Harris et al., 2016a; Salani et al., 2013; Soliman et al., 2016). The magnitude of this effect 

depends on the drug being assayed and also on the cell line (Niepel et al., 2017); as a 

consequence, direct cell counting and CellTiter-Glo can be substituted for each other in 

some cases but not in others. Thus, a change in protocol justified by pilot studies on a 

limited number of cell lines and drugs can be problematic when the number or chemical 

diversity of drugs is increased. In this context, we note that counting viable cells by 

microscopy is both more direct and cheaper as a measure of viability than ATP levels; 

CellTiter-Glo is used in place of counting primarily because it is perceived as being easier to 

perform. The problem is not with CellTiter-Glo itself, which can be reproducible when 
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correctly calibrated, but with equating reduced ATP levels with reduced cell number. 

Situations in which ATP levels fall in viable or dividing cells might be of interest 

biologically but identifying these situations requires performing CellTiter-Glo and cell 

counting assays in parallel.

Edge effects and non-uniform cell growth are a second substantial source of variation in cell 

based studies performed in microtiter plates (Bushway et al., 2010; Coyle et al., 1989) 

arising from temperature gradients and uneven evaporation of media. We have observed a 

variety of irregularities in plating and cell growth that often depend on the batch of 

microtiter plates, even when plates are obtained from a single highly regarded vendor 

(Niepel et al., 2017). A variety of approaches are available to minimize edge effects (e.g., 

placing plates in humidified chambers to reduce evaporation from edge wells), but we find 

that variation in growth is often confined to specific regions of a plate (Figure 2C) causing 

systematic errors in dose-response data. Thus, randomized compound dispensing is a 

valuable way to reduce biases introduced by edge effects and irregular growth. Using an 

automated liquid-handling robot such as the HP D300e Digital Dispenser, it is possible to 

dispense compounds directly into microtiter plates in an arbitrary pattern, randomizing the 

locations of control and technical replicates and converting systematic error into random 

error, which is more easily modeled (Niepel et al., 2017). The use of washing and dispensing 

robots also reduces errors that humans make during repetitive pipetting operations; these 

robots are small, robust, and relatively inexpensive, and their use improves the 

reproducibility of many medium- and high-throughput cell-based and biochemical studies.

A third variable we explored involves the concentration range over which a drug is assayed 

and the impact of this range on curve fitting and parameter estimation. For example, when 

Trametinib, a MEK kinase inhibitor, was assayed over a thousand-fold concentration range, 

growth of MCF 10A cells was fully arrested at ~30 nM (Figure 3A, left plot): phenotypic 

response did not change even when the dose was increased 100-fold to 1 μM and thus, 

increasing the dose range had no effect on curve fitting (Figure 3A, left plot). However, 

when Dasatinib, a poly-selective SRC-family kinase inhibition, was assayed over a 

thousand-fold range, curve fitting identified a plateau in GR value between 0.3 to 1 μM, but 

when the dose range was extended to higher drug concentrations GR values became negative 

(Figure 3A, right plot). Thus, a dose range that is adequate for analysis of Trametinib is not 

adequate for Dasatinib. This sort of variation is difficult to identify in a high-throughput 

experiment and suggests that pilot studies are needed to optimize dose ranges for specific 

compounds. Such variation did not impact reproducibility in our inter-center study because 

all centers used the identical dose series, but dose range did affect the accuracy of GRmax 

estimation in general.

A fourth source of inter-center variation was apparent among centers that used imaging-

based cell counting, particularly when assaying Dasatinib and Neratinib (Figure 3B). Above 

1 μM, GR values were reproducibly negative at center one for both drugs but in one other 

center, GRmax was consistently above 0. Follow-up studies showed that the discrepancy 

arose from the use of image processing algorithms that included dead cells in the “viable cell 

count” and from over-counting the number of cells when multi-nucleation occurred (Orth et 

al., 2011; Röyttä et al., 1987). Differences in drug response GR values could be recapitulated 
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in a single laboratory by using different image processing routines and were also evident by 

visual inspection of the segmented images (Figure 3B). In retrospect, all centers should have 

processed images in the same way using Dockerized software (List, 2017), but the necessary 

routines are often built into manufacturer’s proprietary software, making standardization of 

image analysis dependent on the availability of primary data. This demonstrates the impact 

of a relatively subtle interplay between biological and technical sources of variability and the 

importance of locking down all steps in the data processing pipeline from raw measurements 

to final parameter estimation.

Biological Factors Impacting Repeatability

Variables that change the biology of drug response, such as media composition, incubation 

conditions, microenvironment, media volume, and cell density, have been discussed 

elsewhere (Hafner et al., 2016; Haverty et al., 2016) and were controlled to the greatest 

extent possible in this study through standardization of reagents and the use of GR metrics. 

In a truly independent set of assays, experimental variables such as these would need to be 

considered as additional confounders because it is difficult to fully standardize a reagent as 

complex as tissue culture media. However, one center performed a preliminary comparison 

of batches of horse serum, hydrocortisone, cholera toxin, and insulin and found that the 

effects on drug response were smaller than the sources of variation discussed above.

At the outset of the study, we had anticipated that the origin of the MCF 10A isolate would 

be an important determinant of drug response. MCF 10A cells have been grown for many 

years, and karyotyping reveals differences among isolates (Cowell et al., 2005; Kim et al., 

2008; Marella et al., 2009; Soule et al., 1990). To investigate the potential impact of genetic 

drift, we assembled MCF 10A isolates from different laboratories and compared them to 

each other and to a histone H2B-mCherry-tagged subclone of one of the isolates (Figure 

S4A); we also examined four subclones from the LINCS MCF 10A master stock. Variation 

in measured drug response across all isolates and subclones was smaller than what was 

observed when a single isolate was assayed at different centers. Because highly variable 

growth rates are a sign of poor technique, we checked doubling times across centers and 

found them to be similar (Figure S4B). Thus, even though clonal variation can have a 

substantial effect on drug response and other properties of cultured cells (Ramirez et al., 

2016), such variation was not a significant contributor to variability in this study.

To assay the impact of the time of drug exposure on GR values we performed a live-cell 

experiment in which cell number was measured every 2 h using an automated high-

throughput microscope. When we quantified time-dependent GR values over a 12-h moving 

window we found a substantial effect in some cases but not others. For example, GR values 

for cells exposed to Etoposide were nearly constant across all doses throughout a 50-h assay 

period (Figure 4, top left plot), whereas GR values for Neratinib varied from 0 to 1 over the 

same period (Figures 4, bottom left plot, and S5), with the highest variability at intermediate 

drug doses. The temporal dependence of drug response is likely to reflect biological 

adaptation, drug export, and other factors important in drug mechanism of action (Fallahi-

Sichani et al., 2017; Fletcher et al., 2010; Hafner et al., 2016; Harris et al., 2016b; Muranen 
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et al., 2012). These factors remain largely unexplored and are likely to contribute to variation 

in GR values when protocols are not carefully followed.

Final Results

To assess success in identifying and controlling for sources of variability in the measurement 

of drug-dose response, we performed two sets of tests. First, all measurements were repeated 

in center one 2 years after the first round of studies by an experienced research scientist 

(Scientist A from the original study, Figures 1 and S2) and by a newly recruited technical 

associate (Scientist B) who did not have prior experience with drug-response assays. Data 

were collected in biological triplicate with each replicate separated by a minimum of one 

cell passage from the next; each biological replicate was assayed in technical triplicate, as 

described in Figure 1B. Plates, media, supplements, and serum were all from different 

batches as compared to the original experiments and cells were recovered from independent 

frozen stocks. However, the protocol remained the same over the 2-year period and involved 

the same automated compound dispensing and plate washing procedures.

Data from newly trained Scientist B exhibited similar standard error for biological and 

technical repeats with a mean standard error for estimation of GR values of 0.012 across all 

drugs, doses, and repeats. The distribution was long tailed, an apparent consequence of 

systematic error in assays involving Neratinib (Figure 5A, lower). As shown in Figure 4, GR 

values for Neratinib are strongly time-dependent and we might therefore expect data for this 

drug to be sensitive to small variations in procedure. The observed error in GR values 

corresponds to a difference in the estimation of GR50 values of 1.17-fold (mean standard 

error, which corresponds to a variation of ± 0.07 in log10(GR50)) while the standard error for 

90% of GR50 values corresponded to a difference of ~1.5-fold (± 0.18 in log10(GR50)) 

(Figure 5B). For all measurements obtained in center one over a period of 2 years, the mean 

standard error in GR values was 0.015, which is only slightly higher than the error from 

Scientist B alone. The standard deviations in log10(GR50) and GRmax values obtained by 

Scientist A over a 2-year period were indistinguishable from each other and there was no 

observable batch effect for any drug (Figure S2). These distributions represent our best 

estimate of the error associated with measuring drug-dose response using a single protocol 

and experimental setup but different consumables; this estimate can therefore be 

incorporated into future error models. In our opinion these values also represent a good level 

of accuracy and reproducibility.

As a second test, centers repeated drug-dose response measurements using their closest 

approximation to the standard protocol. One center used CellTiter-Glo rather than direct cell 

counting to estimate viable cell number. Use of this method resulted in greater deviation 

from the results in center one, as expected from the studies shown in Figures 2, 3, 4, 5, and 6 

(e.g., technical error in the CellTiter-Glo data from center four exceeded that of all other 

centers). Despite such differences in procedure inter-center variability at the end of the study 

was lower than at the outset, with a standard error in GR value measurement ~2-fold higher 

than in center one and errors in the estimation of GR50 of ~2 standard deviations. The mean 

standard error for log10(GR50) across all drugs was ±0.15 while the standard error for 90% 

of measured GR50 values was within ~2.5-fold (± 0.38 in log10(GR50)) (Figure 5B).
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The distribution of standard errors in GR values is long tailed. Although the mean standard 

errors for technical and biological replicates are comparable, error associated with biological 

replicates has a longer tail, as illustrated by the cases where the upper 10th to 5th percentile 

error across biological replicates was greater than the error in technical replicates (Figure 

5A, lower panels). For example, center four had consistently high technical variability and 

low biological variability, possibly a result of their use of the CTG assay. Overall, the largest 

identifiable source of error in the final data arose from use of the CTG assay as opposed to 

direct cell counting (Figure 6).

From these data we conclude that it is possible for previously inexperienced individuals to 

measure drug-dose response with high reliability over an extended period of time and that 

multiple centers can approximate this level of reproducibility. However, deviations from an 

SOP (see Supplemental Experimental Procedures) with respect to automation and type of 

assay, which might be necessary for practical reasons, can have a substantial negative 

impact.

DISCUSSION

The observation that a large fraction of biomedical research cannot be reproduced is 

troubling; it handicaps academic and industrial researchers alike and has generated extensive 

comment in the scientific and popular press (Arrowsmith, 2011; Baker, 2016; Begley and 

Ellis, 2012; Prinz et al., 2011; Wilkinson et al., 2016). The key question is why such 

irreproducibility arises and how it can be overcome; in the absence of systematic studies 

such as ours, FAIR data will remain little more than an aspiration. In this study, we 

investigated the precision and reproducibility of a prototypical perturbational experiment 

performed in cell lines: drug dose-response as measured by cell viability. Perturbational 

experiments are foundational in genetics, chemical biology, and biochemistry, and when 

they involve human therapeutics, they are also of translational value. A consortium of five 

geographically dispersed NIH LINCS centers initially encountered high levels of inter-

center variability in estimating drug-potency, even when a common set of reagents was used. 

Subsequent study in a single center uncovered possible sources of measurement error, 

resulting in a substantial increase in inter-center reproducibility. Nonetheless, the final level 

of inter-center variability exceeded what could be achieved in a single laboratory over a 

period of 2 years by three scientists. We ascribe the remaining irreproducibility to 

differences in compound handling, pipetting, and cell counting that were not harmonized 

because of the expense of acquiring the necessary instrumentation and a belief—belied by 

the final analysis—that counting cells is such a simple procedure that different assays can be 

substituted for each other without consequence. We believe the final level of intra- and inter-

center precision we achieved exceeds the norm for this class of experiments in the current 

literature (although this is not easy to prove) and that our findings therefore provide a 

roadmap for future studies of reproducibility in other settings.

At the outset of the study we had hoped that comparison of data across centers would serve 

to identify the specific biological, experimental, and computational factors that had the 

largest impact on data reproducibility. However, we discovered that most examples of 

irreproducibility are themselves irreproducible and that technical factors responsible for any 
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specific outlier measurement are difficult to pin down. We therefore undertook a systematic 

study of the assay itself, in a single center, with an eye to identifying those variables with the 

greatest impact on reproducibility. We found that these variables differed from what we 

expected a priori. For example, isolate-to-isolate differences in MCF 10A cultures had less 

of an effect on drug response assays (Figure S4A) than the ways in which drugs and cells 

were plated into multi-well plates and counted (Figures 2 and 3).

In general, we found that irreproducibility most commonly arose from unexpected interplay 

between experimental protocol and true biological variability. For example, estimating cell 

number from ATP levels using the CellTiter-Glo assay produces very similar results to direct 

cell counting with a microscope in the case of Neratinib, but this is not true for Etoposide or 

Palbociclib (Figure 2A). The discrepancy most likely arises because ATP levels in lysates of 

drug-treated cells vary for reasons other than loss of viability; these include changes in cell 

size and metabolism. We have previously shown that the density at which cells are assayed 

can have a dramatic effect on drug response (Hafner et al., 2016), but this too is context 

dependent. For some cell line-drug pairs, density has little or no effect, whereas for other 

pairs it increases drug sensitivity and for yet others it has the opposite effect. This 

observation has important implications for the design of experiments in which diverse 

compounds are screened: pilot studies on a limited range of conditions (dose and drug 

identity in this work) cannot necessarily be extrapolated to large datasets and are not a sound 

basis for substituting indirect assays for direct assays. The tendency for even experienced 

investigators to substitute assays for each other, or to implement historical methods rather 

than standardized protocols (SOPs), is undoubtedly a source of irreproducibility.

Several lines of evidence suggest that context dependence in drug response reflects true 

changes in the underlying biology and not flaws in assay methodology itself. For example, 

cell density directly impacts media conditioning and the strength of autocrine signaling, 

which in turn changes responsiveness to some drugs but not others (Wilson et al., 2012; 

Yonesaka et al., 2008). Thus, even in cell lines, drug response is not a simple biological 

process, and it is easy to envision ways in which changes in measurement procedure that 

might have no effect in one cell type or biological setting could affect results obtained in 

other settings. At the current state of knowledge, there is no substitute for empirical studies 

that carefully assess the range of conditions over which data remain reliable and precise for 

cell lines and drugs of interest. Moreover, the most direct assay—not a convenient substitute

—should be used to score a phenotype whenever possible. Unfortunately, when the goal is 

collection of a large dataset, a prerequisite for most machine-learning approaches, attention 

to biological factors known to be important from conventional cell biology studies is often 

de-emphasized in favor of throughput.

Data-processing routines are important for reproducibility (Sandve et al., 2013). Data and 

data-analysis routines can interact in multiple ways, some of which are clear in retrospect 

but not necessarily anticipated. For example, collecting eight-point dose-response curves 

generally represents good practice, but it is essential that the dose range effectively span the 

GEC50 (the mid-point of the response). When this is not the case (as illustrated by Figure 

3A), curve fitting is underdetermined and response metrics become unreliable. In many 

cases problems with dose range are not evident until an initial assay has been performed and 
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an iterative approach is therefore necessary. Iteration is straightforward in small-scale 

studies, but more difficult in large-scale screens; for a large dataset, data-processing routines 

must be developed to automatically identify and flag problems with dose range. 

Additionally, accurate reporting of dose range is necessary to provide a bound-to-drug 

sensitivity measurement. Another example of data-processing challenges involves imaging 

software for automated cell counting: such routines should be optimized for cells that grow 

and respond to drugs in different ways (Figure 3B) and must be tested for performance at 

high and low cell densities.

Processing pipelines for the type of data collected in this study are much less developed than 

the pipelines commonly used for genomics data (Ashley, 2016; Bao et al., 2014; Lam et al., 

2011), but much can be learned from the comparison. For example, computational platforms 

with provenance such as Galaxy (Goecks et al., 2010), or Sage Bionetworks’ Synapse 

(Omberg et al., 2013) have been developed to support data sharing, reproducible analyses, 

and transparent pipelines, with a primary focus on genomics data. Some of these best 

practices have already been adapted to the analysis of LINCS dose-response data (see STAR 

Methods). Image-processing algorithms present a unique challenge in that they are 

frequently embedded in proprietary software linked to a specific data acquisition 

microscope, which complicates common analysis across laboratories; publicly available 

image analysis platforms are preferable (Carpenter et al., 2006).

Elements of a Reproducible Workflow

The elements of a workflow for reproducible collection of dose-response data are fairly 

simple conceptually (Figure 7A) although not necessarily easy to implement: (1) 

standardization of reagents, including obtaining cell lines directly from repositories such as 

the ATCC, performing mass spectrometry-based quality control of small-molecule drugs, 

and tracking lot numbers for all media additives; (2) standardized data processing starting 

with raw data and metadata through to reporting of final results; (3) use of automation to 

improve reliability and enable experimental designs too complex or labor intensive for 

humans to execute reliably—in many cases, this involves simple and relatively inexpensive 

bench-top dispensing and washing—and (4) close attention to metrology (analytical 

chemistry), measurement technology, and internal quality controls. The first two points are 

obvious, but not all laboratories are equipped in the same way and some data-processing 

routines are embedded in a non-obvious way in instrument software. In the current work, a 

major benefit of automation is that it makes random plate layouts feasible, thereby changing 

systematic edge effects into random error that has less effect on dose-response curve fitting. 

In the case of dose-response data, metrology focuses on variability among technical and 

biological replicates, assessment of edge effects, and outlier detection. Edge effects and 

other spatial artifacts can be identified by statistical analysis (Mazoure et al., 2017) and 

plate-wise data visualization (Boutros et al., 2006). Spatial artifacts can then be removed 

with plate-level normalization such as LOESS/LOWESS smoothing (Boutros et al., 2006; 

Pelz et al., 2010), spatial autocorrelation (Lachmann et al., 2016), or statistical modeling 

(Mazoure et al., 2017).
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A contribution of the current study is to show that future execution of reproducible drug-

dose-response assays in different cell types requires systematic experimentation aimed at 

establishing the robustness of assays over a full range of biological settings and cell types. 

Such robustness is distinct from conventional measures of assay performance such as 

precision or repeatability in a single biological setting (Figure 7B). Testing of this type is not 

routinely performed for the simple reason that establishing and maintaining robust and 

reproducible assays is time consuming and expensive: we estimate that reproducibility adds 

~20% to the total cost of a large-scale study such as drug-response experiments in panels of 

cell lines (AlQuraishi and Sorger, 2016). Iterative experimental design is also essential, even 

though it has been argued that this is not feasible for large-scale studies (Harris, 2017).

Conclusions

A question raised by our analysis is whether, given their variability and context-dependence, 

drug response assays performed in vitro are useful for understanding drug response in other 

settings, human patients in particular. Concern about the translatability of in vitro 
experiments is long-standing, but we think the current work provides grounds for optimism 

rather than additional worry. Simply put, if in vitro data cannot be reproduced from one 

laboratory to the next, then it is no wonder that they cannot easily be reproduced in humans; 

conversely, paying greater attention to accurate and reproducible in vitro data are likely to 

improve translation. Moreover, many of the factors that appear to represent irreproducibility 

in fact arise from biologically meaningful variation. These include the time-dependence of 

drug response, the impact of non-genetic heterogeneity at a single-cell level, and the 

influence of growth conditions and environmental factors. The simple assays of drug 

response in current use are unable to correct for such variability, and the problem is made 

worse by “kit-based science” in which technical validation of assays is left to vendors. 

However, if the challenge of understanding biological variability at a mechanistic level is 

embraced, it seems likely that we will improve our ability to conduct in vitro assays 

reproducibly and apply data obtained in cell lines to human patients (Goodspeed et al., 

2016). We note that RNAi, CRISPR, and other perturbational experiments in which 

phenotypes are measured in cell culture are likely to involve many of the same variables as 

the dose-response experiments studied here.

Despite a push for adherence to the FAIR principles there is currently no consensus that the 

necessary investment is worthwhile, nor do incentives exist in the publication or funding 

processes for individual research scientists to meet FAIR standards (AlQuraishi and Sorger, 

2016). Data repositories are essential, but we also require better training in metrology, 

analytical chemistry, and statistical quality control. In developing incentives and training 

programs, we must also recognize that reproducible research is a public good whose costs 

are borne by individual investigators and whose benefits are conferred to the community as a 

whole.
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STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to, and will 

be fulfilled by, the Lead Contact, Laura Heiser (heiserl@ohsu.edu).

Materials Availability Statement—This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three isolates of the non-malignant female human breast epithelial MCF 10A cell line, here 

referred to as MCF 10A-GM, MCF 10A-OHSU, and MCF 10A-HMS, were sourced 

independently from the ATCC and then passaged in separate institutions; use of these lines 

was intended to replicate the common practice of maintaining local cell stocks. MCF 10A-

H2B-mCherry cells were created by inserting an H2B-mCherry expression cassette into the 

AAVS1 safe harbor genomic locus of MCF 10A-HMS using CRISPR/Cas9 (Hafner et al., 

2016). All lines were confirmed to be MCF 10A cells by STR profiling (Table S1), and 

confirmed to have stable karyotypes by g-banding 47,XX,i(1)(q10),+del(1)(q12q32),add(3)

(p13),add(8)(p23),add(9)p(14). All lines were cultured in DMEM/F12 base media 

(Invitrogen #11330-032) supplemented with 5% horse serum, 0.5 μg/mL hydrocortisone, 20 

ng/mL rhEGF, 10 μg/mL insulin, 100 ng/mL cholera toxin, and 100 units/mL penicillin and 

100 μg/mL streptomycin as described previously (Debnath et al., 2003). Base media, horse 

serum, hydrocortisone, rhEGF, insulin, and cholera toxin where purchased by the MEP-

LINCS Center and distributed to the remaining experimental sites. MCF 10A-GM was 

expanded by Gordon Mills at MD Anderson Cancer Center and distributed to all 

experimental sites. Cell identity was confirmed at individual experimental sites by short 

tandem repeat (STR) profiling, and the cells were found to be free of mycoplasma prior to 

performing experiments.

METHOD DETAILS

The experimental and computational protocols to measure drug response are described in 

detail in two prior publications (Hafner et al., 2017b; Niepel et al., 2017). The following 

protocol (available in full below) was suggested for this study: cells were plated at 750 cells 

per well in 60 μL of media in 384-well plates using automated plate fillers and incubated for 

24 h prior to drug addition. Drugs were added at the indicated doses with a D300 Digital 

Dispenser (Hewlett-Packard), and cells were further incubated for 72 h. At the time of drug 

addition and at the endpoint of the experiment, cells were stained with Hoechst and LIVE/

DEAD™ Fixable Red Dead Cell Stain (Thermo Fisher Scientific) and cell numbers were 

determined by imaging as described (Hafner et al., 2016; Niepel et al., 2017) or by the 

CellTiter-Glo assay (Promega). Some details of the experimental protocol differed across 

Centers and overtime, e.g., manually dispensing of drugs or use of 96-well plates. The data 

included in Figures 1C and S2 (Scientist C) were collected for a separate project using 

different stocks of consumable reagents, and included here as an additional comparison. In 

these experiments, cells were treated via pin transfer, and HMS isolate 3 MCF10A cells 

were used.
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For live-cell experiments with MCF 10A-H2B-mCherry, cell counts were performed by 

imaging plates in an 2 hr interval over the course of 96 hours (only first 50 hours shown) 

(Hafner et al., 2016; Niepel et al., 2017). Data analysis was performed as described 

previously (Hafner et al., 2016; Niepel et al., 2017).

The evaluation of irregularities in growth across microtiter plates was performed by plating 

MCF 10A cells at 750 cells per well in 60 μL of media in 384-well plates using automated 

plate fillers and determining cell numbers after 96 h through imaging as described (Hafner et 

al., 2016; Niepel et al., 2017).

Drugs were obtained from commercial vendors by HMS LINCS, tested for identity and 

purity by LC/MS in house as described in detail in the drug collection section of the HMS 

LINCS Database (http://lincs.hms.harvard.edu/db/sm/), and distributed as 10 mM stock 

solutions dissolved in DMSO to all experimental sites. See Key Resources Table for 

additional metadata.

Measuring Drug Responses – SOP

General Considerations: The two main considerations in measuring drug responses in cell 

lines are that the results are reproducible and representative of the relevant underlying 

biology of the system. To improve reproducibility we point out specific experimental steps 

that are prone to introducing variability and articulate what steps can be taken to minimize 

this variability. To ensure that the results are representative of the underlying biology we 

point out specific experimental conditions that should be optimized for each drug-cell line 

condition. For example, some drug-cell line interactions change with cell density and/or are 

dependent on cell state, so it is important to maintain constant plating numbers within an 

appropriate density range from one experiment to the next. Although always plating cells at 

high density so there is little or no growth might produce reproducible results that suggest a 

cell line is resistant to drug, this result would not necessarily be representative of how the 

drug actually acts on dividing cells. Experimental design therefore must achieve both goals - 

reproducibility and representativeness.

Automation is one key way to improve reproducibility. In particular when working with 384 

well plates any form of manual manipulation will introduce unacceptable levels of variation. 

Ideally, every step (plating, treatment, measurement, and analysis) should be automated to 

reduce user-induced artifacts.

Step-By-Step Protocol

Plating Cells.

1) Grow MCF10A cells following protocol provided by Gray/Mills.

a) It is important the cells are in mid-log phase and not in a state of arrest 

or quiescence since they will otherwise need more than 24 hours to 

become proliferative again.

2) Harvest and count cells following protocol provided by Gray/Mills.
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a) Make sure that during the detaching process all cells get harvested and 

that the cells do not clump which will make accurate counting and 

dispensing difficult.

b) Cells should quickly be brought up in complete growth media and 

traces of detaching solution should be removed by centrifugation to 

minimize stress for the cells.

c) Automated cell counters may not give the most accurate counts, but 

they will speed up the process when many cell solutions need to be 

counted and they will improve reproducibility

3) Plate cells at 750 cells/well in 60-ul complete media in four standard 384 well 

plates compatible with downstream assay of cell number. (ALTERNATIVE – 

Plate 2250 cells/well in 200ul media if using 96 well plates.)

a) An accurate count here is not sufficient to estimate the number of cells 

in the well at the time of drug treatment. There is too much variability 

in the the number of cells that actually adhere and the time it takes for 

cells to start growing after plating. We therefore use one plate of the 

four plates to obtain an accurate pre-treatment cell count.

a) Especially for sensitive cells it is important to stain for dead cells to 

ensure that the correct number of live cells gets plated.

b) Ideally use a fully automated cell dispenser.

c) Take care to gently resuspend cells if plating takes more than a couple 

of minutes as cells will settle which will lead to uneven dispensing.

d) Place plates on a benchtop, sheltered from direct warm or cool air 

from the heating system, for 20 minutes to allow the cells to settle. 

Cells may distribute unevenly if they are placed directly in the 

incubator due to vibration of the shelves.

e) Move plates to an incubator. If the incubator is opened often, it is 

advisable to place plates into secondary containment (we use a 

tupperware container lined with moist paper towels) to reduce 

temperature and CO2 fluctuations, in particular of the edge wells.

4) Incubate cells for 24 hours.

a) Cells will show a bit of a lag phase after plating, either due to a 

slowdown of growth during the expansion of the cells or due to stress 

induced by plating. It is advisable to observe for a new cell line if cells 

are actively cycling after plating.

b) We have observed some synchronization after cell plating as well. 

Again, this is likely due to a cell cycle arrest present in the cells at the 

time of plating.
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Treating Cells.

5) Treat cells in three plates with drugs in a nine-point SQRT(10)-fold dilution 

series covering four orders of magnitude starting at the highest dose according to 

the table below using an HP D300 Drug Dispenser.

a) The time of addition of drug is considered t=0.

b) The experimental design should be such that the three plates represent 

a technical triplicate of the overall experiment. Since there is plate-to-

plate variation it is best to have the technical repeats on different 

plates.

c) Automation is the most important feature. And ideally, we want to 

minimize the addition of extraneous media. So treatment with a D300 

or pin transfer is ideal.

d) If no D300 drug dispenser is available, prepare the drugs at the right 

concentration and transfer them in 10 μl into each well using a multi-

channel pipette.

6) At time t=0 assay the fourth (untreated control) plate (see below).

7) Incubate the treated cells for up to an additional 72 hours.

a) Ensure that in the DMSO-treated control wells cells are still dividing 

actively at the end of the experiment.

b) Fast growing cell lines can be measured after two days while slower 

growing lines can be incubated for three or even four days.

8) At time t=3 days assay the technical triplicate plates (see below).

Measuring Cell Numbers.

9) At the indicated time points perform your preferred assay to determine the 

relative cell number for each well.

a) The preferred method to analyze cell number is to count them by 

microscopy assays to get a direct count of viable cells (see assay 

below).

b) ALTERNATIVE – Proxy assays such as CellTiter-Glo or AlamarBlue 

will work for the GR calculations, however DNA, ATP, or other proxy-

markers may be affected by drug response independent of the actual 

cell number.

10) Add 20μl of staining solution (1:1000 LIVE/DEAD Far Red Dead Cell Stain 

(Thermo Fisher Scientific, L-34974), 2 μM Hoechst 33342 (Thermo Fisher 

Scientific, 62249), 10% OptiPrep (Sigma-Aldrich, D1556-250ML) in PBS). 

Incubate for 30min at RT. Add 20μl of fixing solution (3% formaldehyde (Sigma 

Aldrich, F8775-500ML), 20% OptiPrep (Sigma-Aldrich, D1556-250ML) in 
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PBS). Incubate for 30min at RT. Remove 90μl of supernatant and replace with 

90μl of PBS and proceed to scanning.

a) NOTE – Add the staining and fixing solution with an automated 

pipettor, holding it at an approximately 45 degree angle and touching 

the side wall of the tube. The solutions should run down the side wall 

of the well and accumulate at the bottom of the well due to their 

increasing density.

b) ALTERNATIVE – Stain and fix cells by adding 20μl of 8 μM Hoechst 

33342 (Thermo Fisher Scientific, 62249) in 12% formaldehyde (Sigma 

Aldrich, F8775-500ML). Incubate for at least 1h before proceeding to 

scan. This method does not distinguish between live and dead cells 

directly, even though apoptotic cells should have grossly altered 

morphology which can be recognized by image analysis software.

11) Scan each treated well of the 384 well plates.

a) If possible, scan the entire well area to improve count accuracy for low 

cell numbers or unevenly distributed cells.

12) Use your favorite image analysis algorithms to count live cells.

a) Use a standard nuclei detection algorithm. Be sure to impose min/max 

levels for area or brightness to exclude nuclear fragments.

b) If using the LIVE/DEAD stain, do not count any nuclei that are LIVE/

DEAD-positive.

Record Results.

13) Record the measured cell numbers or proxy measurements according to the 

DR2.0 standards.

a) Data standards are detailed in a separate document.

b) Be sure to record all necessary pieces of information so the results 

from different Centers can be aggregated and compared

Calculating Drug Sensitivity.

14) Calculate growth-rate inhibition (GR) values for each drug dose and fit the 

resulting curve with a sigmoid to extract GR50, GRinf, and GRhill.

a) Calculation of GR metrics are detailed in a separate document.

Drug Information.

Drug HMSLid Primary target Highest dose (uM) Stock (mM)

Paclitaxel 10102 microtubules 1 10

Alpelisib/BYL719 10233 PI3Ka 10 10
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Drug HMSLid Primary target Highest dose (uM) Stock (mM)

Neratinib/HKI272 10018 EGFR/HER2 3.16 10

Dasatinib 10020 BCR/ABL 10 10

Trametinib/GSK1120212 10142 MEK 1 10

Palbociclib/PD0332991 10071 CDK4/6 3.16 10

Vorinostat 10282 HDAC 10 10

Etoposide 10250 Topoisomerase 10 10

QUANTIFICATION AND STATISTICAL ANALYSIS—The technical variability 

associated with data collected by each Center or scientist in Center one was computed for 

each drug-dose pair as the standard error (SE; Equation 1) in GR value across all technical 

replicates per biological replicate. Note that GR values, not GR metrics derived from curve 

fitting were used for this calculation. The number of data points considered for calculating 

SE in technical replicates varied by Center/scientist and is shown in the table under the 

column “# Technical replicates per biological replicate”. The number of SE values per drug-

dose pair is equal to the number of biological replicates. For example, the distribution of 

standard error (technical replicates) for Center 1, Scientist B is made up of 192 SE data 

points (8 drugs * 8 doses * 3 biological replicates).

SE = σ
n

Equation 1a

σ =
∑(xi − μ)2

n − 1 Equation 1b

For a given drug-dose pair, σ is the standard deviation computed across GR values, n is the 

number of technical or biological replicates, xi,-is the GR value measured in a certain 

replicate i, μ is the mean GR value across replicates.

The biological variability of each Center or scientist was also computed for each drug-dose 

pair as the standard error (SE; Equation 1) in GR value across all biological replicates such 

that each SE computation was based on data from only one technical replicate per biological 

replicate. The number of data points used to compute each SE value is equal to the number 

of biological replicates. The number of SE values per drug-dose pair is equal to 
t
1

b
 or tb 

where b is the number of biological replicate plates, t is the number of technical replicates 

per biological replicate. For example, the number of SE values (data points) computed per 

drug-dose pair for Center 1, Scientist B is 33 = 27. The total number of drug-dose pairs in a 

complete dataset for each Center is 64. Hence, the distribution of standard error for 

biological replicates associated with data collected in Center 1 by Scientist B is computed 

from 1728 data points.
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Center/Scientist # Technical replicates per biological replicate # Biological replicates

Center 1, Scientist A (2019) 9 (3 wells × 3 plates) 3

Center 1, Scientist A (2017) 2 3

Center 1, Scientist B 9 (3 wells × 3 plates) 3

Center 1, Scientist C 4 2

Center 2 4 1

Center 3 3 2

Center 4 3 2

Center 5 2 2

DATA AND CODE AVAILABILITY

Analysis of variability in GR values or metrics measured across centers is recorded in 

Jupyter notebooks. These notebooks document blocks of executable code alongside human-

readable descriptions of the methods used to compute variability, and can be re-run by the 

reader to reproduce the results described. Jupyter notebooks for experimental design and 

data analysis are available: https://github.com/labsyspharm/MCF10A_DR_reproducibility 

and https://github.com/datarail/datrail.

The data from each Center and a list of best practices are available at http://

www.grcalculator.org/grbrowser/ under ‘LINCS MCF10A Common Project’.

The data from Scientist C are available: http://lincs.hms.harvard.edu/db/datasets/20343/ and 

http://lincs.hms.harvard.edu/db/datasets/20344/

All data have also been deposited on Synapse: (synapse.org) syn18456348. The final drug 

response results (mean GR values and GR metrics) generated by all LINCS Centers (Related 

to Figure 5) are under Synapse: syn18478968. The time course data (Related to Figures 4 

and S5) are under Synapse: syn18478971. All technical and biological GR values for each 

Center (Related to Figures 5 and S6) are under Synapse: syn18475380.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Implementing FAIR data standards requires identification of experimental 

confounders

• Five labs performed the same experiment on mammalian cells and compared 

results

• Several factors affecting reproducibility were explored

• Biological context had an unexpected impact on the robustness of cell-based 

assays
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Figure 1. Overview of Workflow
(A) Centerone defined the experimental protocol and established within-center 

reproducibility by assessment of technical (different wells, plates, same day) and biological 

(different days) replicates. Common stocks of drugs, cells, and media, as well as a standard 

experimental protocol, were distributed to each of the five data-generation centers. Center 

one explored the various technical and biological drivers of variability. This information was 

fed back to the other centers to refine their dose-response measurements.

Niepel et al. Page 24

Cell Syst. Author manuscript; available in PMC 2020 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B) Dose-response curves of MCF 10A treated with the MEK½ inhibitor Trametinib from a 

typical experiment showing technical and biological replicates. Technical replicates at the 

well (triplicate wells per plate) and plate (triplicate plates per experiment) levels make up 

biological replicates (repeats collected on different days in the same laboratory). The red 

triangles represent the average of the three biological replicates shown. Error bars represent 

SD of the mean.

(C) Independent experiments performed in center one, and in all centers (averages of two or 

more biological replicates). Circles represent the original dataset, triangles represent data 

collected by a new technician 2 years after the initial data collection [data shown in (B)], and 

diamonds represent independently collected data in center one. Inter-center replicates 

(averages of one or more biological replicates) performed independently at each center. 

Error bars represent the standard deviation of the mean. See also Figure S1.
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Figure 2. Experimental Causes of Variability
(A) Dose-response curves of MCF 10A cells treated with four different drugs measured by 

image-based cell count or ATP content (CellTiter-Glo) on the same day by center one, which 

is equivalent to technical replicates. Note the GR50 value for alpelisib as measured by 

CellTiterGlo was not defined.

(B) Representative images of MCF 10A cells treated with vehicle control (DMSO) or 1 μM 

Palbociclib. Cells were stained with Hoechst and phalloidin. Images have been contrast 

adjusted.
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(C) Uneven growth of MCF 10A cells in a 384-well plate over the course of 3 days that 

demonstrates the presence of edge effects. In the heatmap, color represents the number of 

cells per well, as assessed by imaging. Plots show deviation from mean number (for the full 

plate based on the distance from the edge, by column, or by row). Error bars represent the 

standard deviation. Asterisks indicate the row or column differs significantly from all others. 

See also Figure S2.
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Figure 3. Technical Causes of Variability
(A) Dose-response curves of MCF 10A cells treated with Trametinib or Dasatinib fitted to 

either the extended dose range (up to 1 μM and 10 μM, respectively) or omitting the last 

order of magnitude.

(B) Results of cell counting for MCF 10A cells treated with Dasatinib or Neratinib using 

two different image processing algorithms (denoted as A (red) and B (blue)) included in the 

Columbus image analysis software package.

(C) Number of dead cells (LIVE/DEAD™ Fixable Red Dead Cell Stain positive) and nuclei 

(Hoechst positive) counted for MCF 10A cells treated with 3.16 μM Dasatinib or 1 μM 

Neratinib based on the two different algorithms (corresponding to the plots in C). See also 

Figures S3 and S4.
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Figure 4. Changes in Drug Response Related to the Underlying Biology
Left: Inhibition of MCF 10A growth (12-h instantaneous GR values) measured in a time-

lapse, live-cell experiment involving treatment with multiple doses of Etoposide (top) or 

Neratinib (bottom). Different colors indicate different drug concentrations ranging from 1 

nM (yellow) to 10 μM (blue). Right: Dose-response curves derived from 12-h GR values 

computed at 24 (red) and 48 h (blue) across three biological repeats. Etoposide displays only 

modest time-dependent effects (top) while neratinib appears to be more effective at 

inhibiting growth at early time points as compared to later time points (bottom). Error bars, 

SD. See also Figure S5.
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Figure 5. Technical and Biological Variability in Estimating GR Values and Metrics
(A) The kernel density estimate (KDE) of the standard error (SE) for measurement of GR 

values across technical (green curve) or biological (blue curve) replicates for all drugs and 

doses. The left panel depicts data from center one, scientist B (performed in 2018); the 

middle panel shows four sets of measurements from all scientists in center one (performed 

between 2016–2018); and the right panel all data from all centers. The distribution of 

technical error for Scientist B is duplicated in the middle and right panels as a black dotted 

line to facilitate comparison. Data for these distributions were derived from GR values for 

each dose and replicate, not GR metrics obtained from curve fitting. The number of GR 

value data points used to compute SE is detailed in STAR Methods. The number of SE data 

points that constitute each KDE is shown in the legend; for the left panel this is 192 SE data 

points (8 doses × 8 drugs × 3 biological repeats). The lower section of each panel depicts the 

error in GR value measurements across technical replicates (green) and biological replicates 

(blue) for each individual drug.

(B) The range of SE in GR values compared to the SE in corresponding GR metrics (GRmax, 

area over the GR curve (GR AOC), and log10GR50) for all drugs. The black vertical line (A, 

lower plots, and B) is the mean technical error for a given drug and the red vertical line 

demarcates the 90th percentile error across technical replicates (meaning that the error for 

90% of GR values or GR metrics is below that value); a blue circle demarcates 90th 

percentile error across biological replicates.
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Figure 6. Variability of the Response Measures across Centers
(A) Dose-response curves of MCF10A cells treated with eight drugs measured 

independently by the five centers (circles represent data from image-based assays and 

triangles from CellTiter-Glo assays). See Figure S6 for underlying replicates. Dotted black 

lines show the dose-response curve when all independent replicates were averaged. Error 

bars represent SD of the mean.

(B) GR metrics describing the sensitivity of MCF 10A cells to eight drugs measured 

independently by five centers (circles represent data from image-based assays and triangles 
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from CellTiter-Glo assays). The black line shows the mean sensitivity across all centers, and 

the gray area shows the standard error of the mean computed from the average of each 

center. For GR50 and GRmax, error bars represent the standard deviation of the log10(GR) 

values. Note that some data are shared between Figures 6 and S3.
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Figure 7. Best Practices for Dose-Response Measurement Experiments
(A) Summary of findings in this and related studied with respect to experimental and 

technical variability in dose response studies at the experimental design, materials, methods, 

and analysis stages; “*” indicates sources of variability that have been thoroughly 

investigated in a previous paper (Hafner et al., 2016).

(B) Differences between precision, robustness, and reproducibility; see text for details.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Horse Serum Sigma-Aldrich Cat # H1138, Lot # 12B496

Penicillin/Streptomycin Invitrogen Cat # 15070-063, Lot # 1697552

Hydrocortisone Sigma-Aldrich Cat # H-4001, Lot # SLBN5690V

Epidermal growth factor R&D Systems Cat # 236-EG, Lot # HLM7515071

Insulin Sigma-Aldrich Cat # I9278, Lot # SLBP1369V

Cholera toxin Sigma-Aldrich Cat # C8052, Lot # 095M4093V

Alpelisib MedChem Express Cat # HY-15244, Lot # 06192

Dasatinib MedChem Express Cat # HY-10191, Lot # 13044

Etoposide MedChem Express Cat # HY-13629, Lot # 11793

Neratinib MedChem Express Cat # HY-32721, Lot # 10283

Paclitaxel MedChem Express Cat # HY-B0015, Lot #18138

Palbociclib MedChem Express Cat # HY-50767, Lot # 16349

Trametinib MedChem Express Cat # HY-10999, Lot # 07378

Vorinostat MedChem Express Cat # HY-10221, Lot # 09386

Deposited Data

Mean GR values and metrics for all 
Centers this paper Synapse: syn18478968

GR values and metrics for all Centers/
Scientists this paper Synapse: syn18475380

GR values and metrics for timecourse this paper Synapse: syn18478971

Experimental Models: Cell Lines

MCF10A ATCC CRL-10317; RRID CVCL_0598

MCF 10A-H2B-mCherry Hafner et al. 2016 N/A

Software and Algorithms

MATLAB (R2016b) MathWorks https://mathworks.com/products/matlab.html

Columbus (v2.7.0) Perkin Elmer, Waltham, MA http://perkinelmer.com/product/image-data-storage-and-analysis-
system-columbus

DataRail Hafner et al. 2017b https://github.com/datarail/datarail
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