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Abstract: The nanostructure-based surface texturing can be used to improve the materials wettability.
Regarding oil–water separation, designing a surface with special wettability is as an important
approach to improve the separation efficiency. Herein, a ZnO nanostructure was prepared by a
two-step process for sol–gel process and crystal growth from the liquid phase to achieve both a
superhydrophobicity in oil and a superoleophobic property in water. It is found that the filter
material with nanostructures presented an excellent wettability. ZnO-coated stainless-steel metal
fiber felt had a static underwater oil contact angle of 151.4◦ ± 0.8◦ and an underoil water contact
angle of 152.7◦ ± 0.6◦. Furthermore, to achieve water/oil separation, the emulsified impurities in
both water-in-oil and oil-in-water emulsion were effectively intercepted. Our filter materials with a
small pore (~5 µm diameter) could separate diverse water-in-oil and oil-in-water emulsions with a
high efficiency (>98%). Finally, the efficacy of filtering quantity on separation performance was also
investigated. Our preliminary results showed that the filtration flux decreased with the collection of
emulsified impurities. However, the filtration flux could restore after cleaning and drying, suggesting
the recyclable nature of our method. Our nanostructured filter material is a promising candidate for
both water-in-oil and oil-in-water separation in industry.

Keywords: nanostructured surface; wettability; metal fiber felt; oil–water separation; emulsion

1. Introduction

Surface wettability is an important material property, and it is determined by surface
structure and surface chemical composition [1,2]. Based on existing theoretical methods, a
special material wettability can be achieved by modification of surface texture and surface
chemical composition [3,4]. During the last decades, there has been increasing interest in the
materials with unique functions due to their promising application in various fields such as
self-cleaning, antimicrobial, anti-icing, biocompatible materials, or oil transportation [4–9].
Particularly, depending on the different interfacial energy between organic compounds and
water in immiscible oil–water mixtures, the materials with special wettability have gained
widespread attention in oil–water separation [10,11]. As a simple preparation method,
the meshed membrane owned many advantages, such as high permeability of pore space,
good oil–water separation efficacy, and promising corrosion resistance [12,13]. Membrane
emulsification method attracted plenty of attention. The factors to affect the demulsification
performance have been systematically investigated, which included membrane pore size,
membrane thickness, transmembrane pressure, as well as emulsion composition [14–17].
In contrast, traditional methods such as gravity-driven separation, biological treatment,
adsorption, and electrochemical techniques have many flaws, such as low separation effi-
ciency, low separation capacity, long time cost, and noticeable secondary pollution [18–20].
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Furthermore, the structural parameters of filter membranes may play pivotal roles
in the performance of oil–water separation, such as pore size, porosity, and membrane
thickness [21–23]. To date, some simulation and experimental studies have provided clues
for filter membrane design. Some representative examples were introduced here. You
et al. utilized electrospinning techniques to prepare two fibrous membranes with different
nanopore diameters. They found that the physical cutting effect dominated the coalescence
process when oil droplets crossed a smaller pore on the membrane [24]. Zhu et al. found
that the oil droplets continuously separated emulsion via using squeezing coalescence
demulsification (SCD) within a narrow pore size. Their hydrogel nanofiber membranes
had a sustained separation capacity. More importantly, these results demonstrated that
the pore size, the membrane wettability, and the interfacial tension coefficient of oil–water
could control the SCD’s efficiency [25]. Recently, Wei et al. fabricated highly hydrophilic
and underwater oleophobic polytetrafluoroethylene membranes, which showed a high
oil–water separation efficiency and achieved a high oil–water separation flux. They found
that the emulsion separation may be an interfacial problem and may be related to the
pore structure of a filtration membrane [26]. Furthermore, Xi et al. manufactured under-
water superoleophobic paper-based materials with excellent wet intensity through green
papermaking techniques. They also demonstrated that the water flux could be increased
by controlling the average membrane pores’ size [27]. These preliminary studies could
provide an important basis for the design of filter membranes.

Among these structural parameters, the diameter of the liquid distributor and the hole
shape dominated the oil–water separation. To achieve a high demulsification efficiency, the
filtering precision should be improved accordingly [28,29]. For the highly precise filtering
materials at the submicron scale, a nanostructured membrane is an ideal candidate to
improve separation efficacy [30]. In addition, surface energy, a key material characteristic,
could only be modified by the coating on that material. Due to the limitation of coating
technology, these treatment approaches have been used to promote surface wettability
without achieving a satisfied performance in terms of coating combinations [31].

In addition, membrane filtration modified by organic polymer could achieve effective
separation of oil–water mixtures. Due to its poor stability in the aqueous medium, however,
it is hard to use the common polymer membranes with a special wettability in practice [32].
Therefore, the stable materials such as the inorganic membranes are promising alternatives.
To date, all previous studies just focused on the fabrication of hierarchical surface structures
without giving adequate attention to the substrate, which determines the material strength
and stability.

ZnO nanostructured pillars could be used in complex industrial oil–water mixtures [33–36].
In this study, the stable ZnO nano-pillars were prepared on a high-intensity metal fiber
filter by crystal growth, which had a good combination with the substrate. Therefore, the
modified filter material possessed stability of mineral coating and strength. Our method
promoted the surface wettability and achieved both a superhydrophobicity in oil and a
superoleophobic property in water. The filter membrane modified by nano-pillars could be
stably used in both water-in-oil and oil-in-water conditions. The filtration flux variation
with the collection of emulsified impurities was also investigated. This study provided a
novel strategy to achieve stability and strength of a mineral coating simultaneously and
might have wide application in separating water-in-oil and oil-in-water emulsions.

2. Materials and Methods
2.1. Preparation of ZnO Seed Layers

The stainless-steel fiber felts with the filtration precision of 5 µm were used as a
substrate in this study. To eliminate surface contamination, all substrate samples were ul-
trasonically cleaned with absolute ethanol and ultra-pure water for 10 min. (CH3COO)2Zn
(0.75 M (CH3COO)2Zn) (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) and Mo-
noethanolamine ((CH3COO)2Zn and Monoethanolamine in the proportion 1:1) (Aladdin
Biochemical Technology Co., Ltd., Shanghai, China) were dissolved in a 2-methoxyethanol
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solution (Aladdin Biochemical Technology Co., Ltd., Shanghai, China). This solution was
magnetically stirred and heated in a temperature-controlled water bath (70 ◦C, 60 min).
The seed solutions were obtained by standing at room temperature for 24 h. Substrates are
submerged in the seed solution and lifted repeatedly. Finally, the substrates with the ZnO
nanostructured coating were sintered (350 ◦C, 20 min) to stabilize the coating.

2.2. Preparation of ZnO Nano-Pillar Coated Substrates

As shown in Figure 1, the seed layer coated substrates were first immersed in Zn(NO3)2
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)/hexamethylenetetramine (HMTA)
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China)/DAP (Macklin Inc., Shanghai,
China) (0.05 M Zn(NO3)2, Zn(NO3)2, and DAP in the proportion 1:6) aqueous solution
(10 min) and then was heated in a constant temperature water bath (90 ◦C, 3 h). After the
reaction, the substrates were separated from the solution and washed with ultra-pure water
to obtain the substrates with ZnO nanostructures.

Figure 1. Schematic illustration of manufacturing ZnO modified metal fiber felt.

2.3. Characteristic Analysis

A field emission scanning electron microscope was used to examine the surface mor-
phology of the samples as they were developed (SEM, HITACHI-SU8220, Hitachi, Ltd.,
Tokyo, Japan). Chemical component was characterized by energy dispersive spectrometry
(EDS, Bruker, Billerica, MA, USA). Data-physics was used to characterize surface wettabil-
ity, including water contact angle (WCA), oil contact angle (OCA), underoil–water contact
angle (UWCA), and underwater–oil contact angle (UOCA) (Data-Physics, DataPhysics
Instrumente GmbH., Filderstadt, Germany). The liquid droplets utilized for WCA, UWCA,
CA and UOCA analyses had a volume of 4 µL. The amount of water remained in the
collected filtrates was determined by Karl Fischer Titrator (TP653, TimePower Measure
and Control Equipment Co. Ltd., Beijing, China). Total organic carbon (TOC) equipment
was used to measure the oil content of the filtrates (TOC-L, Shimadzu (Shanghai) Global
Laboratory Consumables Co. Ltd., Shanghai, China). The Zetasizer Nano ZS (Malvern
Instruments Ltd., Malvern, UK) was used to investigate the dispersion of water droplets in
oil and oil droplets in water. The microscopy pictures of W/O and O/W emulsions were
acquired by using an inverted microscope (Keyence Corporation, Osaka, Japan).

2.4. Oil–Water Separation

Here, 99.6 g of infused oils (Diesel, Decane, Dodecane, and N-tetradecane) were com-
bined with 0.4 g of water and ultrasonically agitated for 1 min to create water-in-oil(W/O)
emulsions. To prepare oil-in-water (O/W) emulsions, 0.4 g of oil (Diesel, Decane, Dode-
cane, and N-tetradecane) was combined with 99.6 g of ultra-pure water and ultrasonically
agitated for 10 min. The experiment of separation was performed by using a home-made
filter device that sandwiched the created membrane between two glass tubes. Before
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assembling the separation device, the prepared filter membranes were placed in ultrapure
water or oil solutions for 30 s, dependent on the types of emulsions. The pre-wetted filter
membranes were used in the separation experiments. A glass cylinder tube containing
metal fiber felt as a filter was placed at the position shown in Figure 2 to realize filtration of
oil–water emulsions under gravity. The filtrate was collected at the bottom of the vessel
after the emulsion was poured through the open end of the glass cylinder. The oil–water
emulsion was quickly poured into the home-made separation device. The liquid column
was sustained at a depth of 10 cm during the separation. The separation efficiency was
estimated by the following equation:

η = 1− C1

C0
(1)

where C0 represented the dispersed phase content in the initial W/O and O/W emul-
sions (ppm); C1 represented the water/oil content in the collected filtrate (ppm); and η
represented the separation efficiency. Meanwhile, the filtration flux (L) was calculated by:

L =
m

ρπr2t
(2)

where m was the mass of collected filtrate measured with a balance scale; ρ was the density
of water/oil (ρ = 103 kg/m3); r was the radius of a glass tube (the radius of the glass tube
in this study was 8 mm); t was the filtration duration, with the filtration flux computed by
measuring the quantity of filtrate 1 min per time.

Figure 2. Schematic diagram of experimental setup.

3. Results and Discussion
3.1. Surface Morphology and Chemical Composition of ZnO Coated Metal Fiber Felt

The seed layer was coated on a metal fiber felt substrate using the sol-gel method.
We fabricated ZnO-coated metal fiber felts by immersing the metal fiber felts with the
seed layer into the precursor solution for the liquid phase growth process (Figure 1). At
the initial growth stage, HMTA tardily decomposed to liberate OH− ions. The generated
OH− ions form insoluble ZnO precipitated at supersaturated Zn(OH)4

2− ions or Zn2+ ions.
As a polar crystal, ZnO (0001) exhibited a positive charge on the crystalline surface and
attracted OH− ions and Zn(OH)4

2− ions in the solution. As a result, ZnO had the highest
growth rate along the C-axis compared to other crystal planes and eventually forms ZnO
nanostructures [37–40]. The overall chemical reactions were presented as follows:
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C6H12N4 + 6H2O→ 6HCHO + 4NH3

NH3 + H2O→ NH4+ + OH−

Zn2+ + 2OH− → ZnO(s) + H2O

SEM images indicated that the raw stainless-steel fiber felt was composed of metal
fibers with an intricate arrangement and the surface of the metal fibers was smooth
(Figure 3a,b). The average metal fiber diameter of the fabricated substrates increased, and
the average pore size decreased after being coated with ZnO nanostructures (Figure 3c,d).
The zoomed-in imaging showed that ZnO had nano pillar-like structures. Furthermore, the
ZnO nanopillars in our growth experiments had hexagonal cross section with an average
top diameter of 185 ± 81 nm. Finally, ZnO nanostructures wrapped metal fibers’ surface
without blocking pores.

Figure 3. SEM images of original filter membrane (a,b). SEM images of ZnO-coated filter mem-
brane (c,d).

The liquid-phase ZnO growth had two stages: dissolution and crystallization. The
growth solution concentration was one of the critical parameters for ZnO’s nucleation and
growth. The effect of growth solution concentration on the formation of ZnO coating on
filter membrane was shown in Figure 4. We found that the surface was accumulated by
dense ZnO structures at low growth solution concentrations (Figure 4a). The nanostruc-
tures had a slight pitch and low ratio of length to neck diameter. During crystal growth, the
concentration of growth solution determined the solutions’ concentration at the center of
crystal growth face. As the concentration of growth solution increased, the supersaturation
of Zn-ions in the solution was enhanced. It led to apparent orientation growth behavior
and eventually formed nanoarray structures (Figure 4b). When the concentration increased
to 0.05 mol/L, the filter membrane surface presented arranged pillar-like structures. A
large gap between nanostructures facilitated the droplets’ immersion into nanostructures.
The average diameter of nano-pillars decreased from 314 ± 52 nm to 91 ± 24 nm, and the
average length of the nano-pillars just increased slightly. ZnO nanostructure transformed
from nano-pillars to nano-needles (Figure 4c). The decrease in the diameter of the nanos-
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tructures increased the size of structural interstices, resulting in a coating deficiency on
metal fibers and weakened stability of ZnO coatings. Energy-dispersive X-ray spectroscopy
(EDS) data were shown in Figure 4d–f. Zn and O element distribution and measurements in
coated metal fiber confirmed that the final coating was constituted of ZnO with an excellent
coverage density.

Figure 4. SEM imaging of ZnO-coated filter membranes manufactured with various growth solution
concentrations: (a) 0.025 mol/L (MF-0.025); (b) 0.05 mol/L (MF-0.05); (c) 0.1 mol/L (MF-0.1) (The
length of the white scalebar in (a–c) is 20 µm, and the size of scalebar in the zoomed picture is 2 µm);
(d,e) the original EDS mapping of Zn and O elements in a ZnO coated filter membrane; (f) EDS
elemental analysis.

3.2. Surface Wettability

The contact angle measurements were accustomed to analyzing the surface wettability
of as-prepared filter membranes, as illustrated in Figure 5. Additionally, the wettability
of the studied surface layers was evaluated using MF-0.05 as a test sample. A droplet of
water was dropped onto a ZnO-coated filter membrane in the air. It diffused rapidly within
80 ms, which suggested that the coated filter membrane had satisfactory hydrophilicity
(Figure 5a–c). Furthermore, the oil droplet swiftly spread on the as-prepared filter mem-
brane in the air, demonstrating a superoleophilicity (Figure 5e–g). However, the oil droplet
could not spread on the as-prepared filter membrane in the water, illustrating that the
coated filter membrane had an excellent oil repellency once submerged (Figure 5d). A
drop of water was also unable to spread on the filter membrane previously prepared,
which demonstrated the filter membrane’s outstanding repellence towards water underoil
(Figure 5h). ZnO coated filter membrane had a static underwater oil CA of 151.4◦ ± 0.8◦

and underoil water CA of 152.7◦ ± 0.6◦, respectively, exhibiting both superhydrophobicity
in oil and superoleophobic properties in water.

3.3. Separation of Oil-in-Water Emulsions

In contrast to a stratified oil–water mixture, an oil-in-water emulsion containing emul-
sified oil droplets with various sizes was difficult to be separated. To prevent emulsified
droplet penetration and achieve separation of O/W emulsions, the micropore size was
one of the important characteristics of separation membranes. Here, the capacity of ZnO
coated filter membrane to separate in the O/W emulsion was demonstrated. To ana-
lyze the separation efficacy of an as-prepared filter membrane, emulsions of diesel/water,
N-decane/water, dodecane/water, and N-tetradecane/water were invented. Figure 2
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illustrated that the apparatus utilized separate O/W emulsions. The cleaned water was
gravity-fed through the membrane and collected in the beaker underneath, while the
as-prepared emulsions were poured into the top tube. The electronic balance recorded
the mass of the collected filtrate in real-time. The separation findings of dodecane/water
emulsion were illustrated in Figure 6. As shown in the microscopic imaging, the prepared
water/dodecane emulsion contained a large amount of micron-sized oil droplets with an
average size distribution of 8 µm. The collected water was transparent after filtration across
the as-prepared filter membrane and there were no oil droplets revealed when observed
under an inverted microscope.

Figure 5. (a–c) Imaging of a water droplet spreading through coated filter membrane; (d) imaging
of an underwater oil droplet on a filter membrane with a 151.4◦ contact angle; (e–g) imaging of oil
droplets spreading through coated filter membrane; (h) imaging of an underoil water droplet on a
filter membrane with a 152.7◦ contact angle.

Figure 6. The microscopic and optical images of O/W emulsions (a) before separation and average
size of oil droplets; (b) filtered with filter membrane coated with ZnO.

Furthermore, other emulsions such as diesel/water, N-decane/water, and N-tetradecane/
water were successfully separated (Figure 7a,b). As expected, the as-prepared filter mem-
brane successfully separated the four emulsions, but only left minimal residual oil in the
filtrate. All the oil-in-water emulsions exhibited the promising permeation fluxes. The
highest flux of 3139 L·m−2·h−1 was obtained for diesel-in-water emulsion. These findings
suggested that the ZnO-coated filter membrane could separate a variety of O/W emulsions.
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Though the separation efficiency obtained in this study was similar with previous studies
using inorganic coating materials (Nano-ZnO and Nano-TiO2) to separate oil-in-water
emulsions, we obtained a higher separation flux performance than these studies [41–43].
In addition, the as-prepared filter membrane was evaluated by a ten-times recycling sep-
aration of the dodecane/water emulsion to indicate the characteristic of reusability. The
membrane was ultrasonic-assisted cleaned with absolute ethyl alcohol for 5 min after each
cycle of the experiment (collected filtrate volume was 80 mL), and it was immediately used
for the following filtration test. After 10 recycles, the TOC concentration was less than
72 mg/L and the separation efficiency remained higher than 98%, confirming its capability
for standing oil–water separation application (Figure 7c). Moreover, our results demon-
strated an excellent cyclic stability of the filter membrane coated with ZnO, although the
variations of flux in each cycle decreased with the increase in filtration duration (Figure 7d).

Figure 7. (a) The separation efficiency and TOC in the filtrates of oil-in-water emulsions; (b) var-
ious oil-in-water emulsion separation fluxes; (c) the recycling separation of the as-prepared filter
membrane for O/W emulsions; (d) separation flux stability in 10-cycle experiments.

3.4. Separation of Water-in-Oil Emulsions

The ZnO-coated filter membrane could separate O/W emulsion and O/W emulsion.
The water content in the filtrate, separation flux, and corresponding separation efficiency
were used to analyze the separation performance of the as-prepared filter membrane. As
demonstrated in Figure 8a, the appearance of the W/O emulsion was cloudy and contained
sufficient micron-sized water droplets with an approximate average size of 10 µm. There
were no water droplets in the liquid filtered by the ZnO-coated filter membrane (Figure 8b).

Figure 9a demonstrated that the as-prepared filter membrane was capable of accu-
rately separating various W/O emulsions, such as water/diesel, water/N-decane, wa-
ter/dodecane, and water/N-tetradecane. The efficiency of separation of the as-prepared
filter membrane for various water-in-oil emulsions were more than 98%. Furthermore, the
water concentration for the filtrates of different emulsions was less than 80 ppm. The follow-
ing Equation (2) was used to estimate the filtration flux of the as-prepared filter membrane,
and fluxes (L) for different emulsions were evaluated for each minute. The separation fluxes
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for water/diesel, water/N-decane, water/dodecane, and water/N-tetradecane emulsions
were about 392, 663, 960, and 744 L·m−2·h−1, respectively (Figure 9b). The separation
efficiency obtained in this study was similar to existing studies about inorganic coating
materials, which were used to separate water-in-oil emulsions. However, the separation
flux obtained here was lower than in all these studies [44,45].

Figure 8. The microscopic and optical images of surfactant-stabilized water-in-oil emulsions
(a) before separation average size of water droplets; (b) filtered with filter membrane coated with ZnO.

Figure 9. The separation efficiency and water content in (a) water-in-oil emulsions filtrates;
(b) filtration fluxes of various water-in-oil emulsions; (c,d) the recycling separation performance of
ZnO coated filter membrane for water-in-oil emulsions.

As an example, the reusable separation capability of the as-prepared filter membrane
was accessed by the separation experiment of water/N-decane. The separation of each
cycle lasted for 8 min, followed by a 5 min ultrasonically cleaned with absolute ethyl
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alcohol. Figure 9c showed that even after 10 cycles of use, the efficiency of separation of
the as-prepared filter membrane was always greater than 98%, and the water content in
the filtrates was lower than 80 ppm, suggesting that the as-prepared filter membrane was
more recyclable. Furthermore, during the reusability experiment, the filtration flux did not
change appreciably, suggesting the filter membrane had excellent separation efficiency and
splendid stability (Figure 9d).

3.5. Demulsification Mechanism in Oil-in-Water and Water-in-Oil Emulsion

ZnO nanostructures had achieved both a superhydrophobicity in oil and a superoleo-
phobic property in water. As shown in Figure 10a–c, the separation mechanism could
be concluded as follows: it was due to the excellently amphiphilic property in air; the
as-prepared filter membrane was extensively wetted by the water phase when it interacted
with an oil-in-water emulsion, allowing the water phase to easily infiltrate through. The
emulsified oil droplets were then intercepted and adsorbed on the filter membrane in the
second step. Finally, oil droplets attracted and coalesced with other emulsified droplets,
allowing oil-in-water emulsions to be separated efficiently. Moreover, these water droplets
captured by the membrane during the separation process were rapidly coalesced and
demulsified to create bigger droplets (Figure 10e–g).

Figure 10. Mechanism of demulsification process of oil-in-water and water-in-oil emulsions;
(a–c) coalescence and demulsification of emulsified oil droplets; (e–g) coalescence and demulsi-
fication of emulsified water droplets; (d,h) suppositional separation process of oil-in-water and
water-in-oil emulsions.

Despite the above results and analysis, the flux change in separation process deserves
further study. The oil droplets constantly agglomerated and adsorbed to the fibers during
oil-in-water emulsion separation. As illustrated in Figure 11a,b, the oil phase was inter-
cepted to access the filter membrane’s surface. The oil–water flux through the membrane
was determined by membrane porosity, pore size, as well as pore distribution. Current
study found that relatively large pore size leads to a high separation flux. Some parts of
porous structures would be blocked by the absorbed oil droplets on the membrane, which
resulted in a decreased porosity and a shortened effective separation area of the membrane.
In other words, the oil–water separation was saturated with the duration, which signifi-
cantly decreased the oil–water separation flux. As envisioned, our results suggest that the
variations of permeation flux decreased with the increase in filtration duration. The flux
decline was in the range of 45–55% (Figure 11c). The same trend was observed during the
separation of a water-in-oil emulsion (Figure 11d–f). In addition, the fluxes in separation
process varied with the time (Figure 11c,f). As the accumulation of droplets increased on
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the surface, the pore size decreased and eventually changed the influx during the emulsion
separation process. Our observations were consistent with the previous studies with simi-
lar focuses. For example, the separation flux of membranes with different pore sizes was
reported at a range between 250 and 4300 L·m−2·h−1 [15,41]. We need to point out that
the data obtained from a single moment may not accurately describe the flux change in
the separation process. It will be more practical if we focus on a general description of the
entire separation process or the average data shown in Figures 7d and 9d. Finally, it was
needed to point out that the filter membrane could continue to adsorb emulsified droplets
even after a simple cleaning.

Figure 11. Image of metal fiber felt surface in the separation process of (a) oil-in-water emul-
sions and (d) water-in-oil emulsions; (b,e) the performance oil–water separation through one hour;
(c,f) variation of separation fluxes with each minute.

4. Conclusions

Herein, the surfaces with special wettability were achieved by ZnO nanostructures,
which could improve oil/water separation efficiency. In this study, ZnO nanostructures
were fabricated by a two-step process for the sol-gel process and crystal growth from the
liquid phase to achieve both a superhydrophobicity in oil and a superoleophobic property
in water. Our study demonstrated an excellent wettability of nanostructured stainless-steel
fiber felt. The ZnO coated filter membrane had a static underwater oil contact angle of
151.4◦ ± 0.8◦ and underoil water contact angle of 152.7◦ ± 0.6◦, respectively.

In oil–water separation, the emulsified impurities in both water-in-oil and oil-in-water
emulsion liquid were effectively intercepted to achieve an oil–water separation. The filter
material with small pores (~5 µm diameter) could separate diverse water-in-oil and oil-
in-water emulsions with a separation efficiency higher than 98%. Based on the oil–water
separation mechanism, we could predict that the blocking of filter materials was caused
by the collection of emulsified impurities. Thus, the effect of filtering quantity on the
separation efficacy was investigated to analyze the influence of impurities. The investi-
gation results showed that the filtration flux decreased with the collection of emulsified
impurities. However, the filtration flux could restore after cleaning and drying, suggesting
the recyclable nature of our strategy. The nanostructured filter material is a promising
candidate for separating both water-in-oil and oil-in-water emulsion in industry. The
proposed filter materials in this study may be repetitively used without any treatments,
secondary pollution, and low energy consumption. Therefore, our methods may have wide
application in the future.
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