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Abstract 

The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2) created a rush to discover drug candidates. Despite the efforts, so far no vaccine or drug has been 
approved for treatment. Artificial intelligence offers solutions that could accelerate the discovery and optimization of 
new antivirals, especially in the current scenario dominated by the scarcity of compounds active against SARS-CoV-2. 
The main protease (Mpro) of SARS-CoV-2 is an attractive target for drug discovery due to the absence in humans 
and the essential role in viral replication. In this work, we developed a deep learning platform for de novo design of 
putative inhibitors of SARS-CoV-2 main protease (Mpro). Our methodology consists of 3 main steps: (1) training and 
validation of general chemistry-based generative model; (2) fine-tuning of the generative model for the chemical 
space of SARS-CoV- Mpro inhibitors and (3) training of a classifier for bioactivity prediction using transfer learning. The 
fine-tuned chemical model generated > 90% valid, diverse and novel (not present on the training set) structures. The 
generated molecules showed a good overlap with Mpro chemical space, displaying similar physicochemical proper‑
ties and chemical structures. In addition, novel scaffolds were also generated, showing the potential to explore new 
chemical series. The classification model outperformed the baseline area under the precision-recall curve, showing 
it can be used for prediction. In addition, the model also outperformed the freely available model Chemprop on an 
external test set of fragments screened against SARS-CoV-2 Mpro, showing its potential to identify putative antivirals 
to tackle the COVID-19 pandemic. Finally, among the top-20 predicted hits, we identified nine hits via molecular dock‑
ing displaying binding poses and interactions similar to experimentally validated inhibitors.
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Introduction
The global pandemic of coronavirus disease (COVID-19) 
caused by SARS-CoV-2 (severe acute respiratory syn-
drome coronavirus 2) created a rush to discover drug 
candidates against the virus [1–3]. As of June 2020, no 

vaccine or molecule has been approved for treatment 
of COVID-19, despite many molecules being screened 
and entering clinical trials, including remdesivir, chloro-
quine and lopinavir [4–6]. Therefore, there is an urge to 
boost drug discovery campaigns in order to identify safe 
and potent antivirals to tackle the COVID-19 pandemic. 
Moreover, the present efforts could form the basis of 
drug discovery strategies if a new coronavirus pandemic 
occurs.
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Coronaviruses are enveloped, single-stranded RNA 
viruses members of the family Coronaviridae [7]. Their 
genome is approximately 30  kb and contains a variable 
number of open reading frames (ORFs) which encode 16 
nonstructural (nsp), 4 structural and several accessory 
proteins [8–12]. ORF1a/b translates to two polyproteins, 
pp1a and pp1ab, which are processed by two proteases 
into structural and nonstructural proteins [13–15]. In 
SARS-CoV-2 the nonstructural protein 5 (nsp 5) is the 
main protease and is essential for viral replication [2, 16].

The main protease 3-chymotrypsin-like (Mpro or 
3C-like) of SARS-CoV-2 is a cysteine protease and con-
sists of a homodimer organized in three domains (I–
III) [17]. The active site is located on the cleft between 
domains I and II and features the catalytic dyad Cys-His 
[2, 17]. Mpro is conserved among coronaviruses, shar-
ing ~ 76% sequence similarity with SAR-CoV-1 Mpro, and 
there are no homologs in humans, making it an attractive 
target for drug discovery [2, 7, 18]. Furthermore, the high 
sequence similarity to SARS-CoV-1 Mpro suggests that 
previously described inhibitors could be used as tem-
plates to design new inhibitors to boost the drug arsenal 
against SARS-CoV-2.

The development of treatments against SARS-CoV-2 is 
a fast-changing field and a comprehensive review is out 
of the scope of this work. However, we instruct the inter-
ested reader to a recent review from our group about 
COVID-19 molecular targets and drug repurposing 
strategies [19] as well as other reviews about treatment 
options [20–22]. Due to the lack of antivirals targeting 
SARS-CoV-2, computational approaches could offer fast 
solutions to design, prioritize and optimize small mole-
cules for screening. In this scenario, artificial intelligence 
(AI) has been extensively used to explore the chemical 
and biological space in large molecular databases to find 
drugs that could be repurposed and novel antiviral activi-
ties [10, 23–27].

In this work we used ULMFiT [28] to train a chemistry 
model to generate molecules in the same chemical space 
as molecules screened against SARS-CoV main protease 
(Mpro); and a classification model to predict the bioactiv-
ity of the generated molecules on SARS-CoV-2 Mpro. The 
molecules predicted as active were further analysed using 
molecular docking to investigate possible interactions 
with Mpro.

Methods
Dataset and molecule representation
We used ChEMBL 26 [29] and PubChem [30] as sources 
of chemical data in the format of SMILES (Simplified 
Molecular Input Line Entry Specification) strings [31]. We 
downloaded 1,940,733 small molecules from ChEMBL 
and submitted them to standardization to neutralize 

charges, remove salts, normalization of groups and con-
verting the SMILES to the canonical form. The data was 
filtered to keep only molecules with atoms in the set 
L = {H, C, N, O, P, S, Br, I, Cl, F}. We also removed mole-
cules with less than 10 or more than 50 heavy atoms. The 
filtering and standardization steps were implemented 
using RDKit 2020.01.1 (https​://www.rdkit​.org/).

For fine-tuning, the dataset consisted of over 280  K 
molecules screened against SARS-CoV-1 Mpro available 
on PubChem (AID: 1706). Originally, AID1706 consisted 
of 405 active molecules, but we augmented it with 224 
inhibitors collected from literature by Tang et al., (https​
://githu​b.com/tbwxm​u/2019-nCov) [32]. In total, our 
fine-tuning dataset was highly unbalanced, with 629 
active molecules and 288,940 inactive ones. Molecules in 
the fine-tuning dataset were submitted to the same pre-
processing protocol described above.

In this work, we used molecules represented as SMILES 
strings as input to the model (Fig. 1). Each SMILES string 
is a one-line textual representation of a molecule, where 
each atom is represented by its atomic symbol (e.g., C, for 
carbon; N for nitrogen etc.).

In order to use molecules as SMILES strings as input, 
the SMILES were initially split into individual characters 
or tokens, representing the individual atoms in the mol-
ecule and special chemical environments, (e.g., [OH−] 
and stereochemistry information). After tokenization, 
we used a string-to-integer dictionary to convert each 
token to a unique integer. In total, the dictionary con-
sisted of N entries, including beginning of string (BOS), 
end of string (EOS) to represent the start and end of 
each SMILES string, respectively. We also added pad-
ding tokens (needed for the classification task) and UNK 
tokens to deal with tokens that were not covered by the 
dictionary, which could be useful when dealing with mol-
ecules with exotic groups. To summarize, each molecule 
was represented by an integer array, where each number 
represented an atom or chemical environment.

Model architecture
We used AWD-LSTM as a base architecture [33], which 
is a kind of recurrent neural network (RNN) that can 
handle sequential data and learn short and long-term 
dependencies between items in a sequence [34]. The 
architecture consists of an embedding layer, three LSTM 
(Long-Short Term Memory) layers and a fully con-
nected linear layer (Fig. 2). Similar to the original ULM-
Fit method [28] (see Additional file  1: Part I), we used 
an embedding layer with shape N × 400, where N is the 
number of input tokens in our dictionary and 400 the 
number of outputs.

We initially trained the model using the default 1152 
hidden units of ULMFit. However, the total training time 

https://www.rdkit.org/
https://github.com/tbwxmu/2019-nCov
https://github.com/tbwxmu/2019-nCov


Page 3 of 20Santana and Silva‑Jr ﻿BMC Chemistry            (2021) 15:8 	

was superior to the GPU time available. Therefore, we 
changed the number of hidden units to 512 while still 
maintaining performance. During training, the embed-
ding layer receives the inputs and maps them to a latent 
feature space that contains the contextualized informa-
tion about a molecule, which can be learned. The embed-
ding and LSTM layers are the encoder of the model, 
responsible for learning the “chemical language” and 
short and long-term dependencies between each token. 
The final layer was the decoder and consisted of a linear 
layer with a softmax activation that outputs probabilities 
for each predicted token.

For fine-tuning the classifier, we used the same AWD-
LSTM architecture as the language model but augmented 

it with two additional linear blocks with relu activations. 
In other words, only the linear blocks of the classifier 
were trained from scratch, which makes the ULMFit 
approach very flexible in the quantitative structure–
activity relationship (QSAR) context, since the chemi-
cal language learned by the general model can be reused 
[35].

The input to the classifier is the activation of the last 
time step ht of the encoder concatenated with the max-
pooled and mean-pooled activations of previous time 
steps. This pooling operation returns the maximum and 
average activations of previous time steps, allowing the 
model to focus on the most important features to make 
a prediction [28]. In addition, batch normalization and 

Fig. 1  Overview of the basic concepts showing an unfolded recurrent neural network. Molecules are represented as SMILES strings in order to 
train a chemical model. The SMILES string is split into individual tokens representing atoms and special environments (e.g., charged groups and 
stereochemistry). The tokenized molecule is then used as input to a recurrent neural network (RNN). At each time step t, the model receives as input 
a token and the hidden state of the previous step (ht−1). It then updates its own hidden state ht, and outputs the next token in the sequence (yi)

Fig. 2  Overview of the ULMFit approach. Initially, a general chemical model is trained to learn the “chemical language” contained in a collection of 
input molecules. The learned features can then be transferred to a target-task and adapted to the idiosyncrasies of the data. These “chemical models” 
can be used to generate molecules on demand. The last step consists of using the fine-tuned features to train a classifier that predicts bioactivity
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dropout layers were used between each layer to avoid 
overfitting. The final layer consisted of a linear layer with 
softmax function to output the probabilities for bioactiv-
ity prediction, classifying each molecule as “Active” or 
“Inactive”.

Training
We trained the general chemical model from scratch 
for 10 epochs using a constant learning rate of 3 × 10–3. 
We randomly selected 10% of the data as a validation 
set to monitor the performance and avoid overfitting. 
For fine-tuning, we started with the pretrained model 
and fine-tuned it using discriminative learning rates and 
gradual unfreezing as proposed by Howard & Ruder in 
the original ULMFit paper [28]. In this context, since 
each layer captures different types of information [36], it 
is sensible to fine-tune each layer with a different learn-
ing rate [28]. The learning rate was adjusted using the 
function ηlayer−1 = ηlayer/2.6, used in the original ULM-
FiT approach, where η is the learning rate and layer is the 
number of a specific layer.

Training with gradual unfreeze initially trains only the 
linear blocks of the classifier, while keeping the param-
eters of the encoder frozen. We initially trained the clas-
sifier for 4 epochs and then unfroze and fine-tuned each 
layer every 3 epochs until convergence and all layers were 
fine-tuned [37]. This method of training slowly adapts the 
classifier to the new task and minimizes the risk of cata-
strophic forgetting that could happen when fine-tuning 
all layers at once [37].

Implementation
We implemented our model using Fastai v1 library [37] 
(https​://docs.fast.ai). The codes and models for reproduc-
ibility are freely available on request. All codes were writ-
ten in Python 3 and ran on Google Colaboratory (Colab) 
(Google, 2018) using Ubuntu 17.10 64 bits, with 2.3 GHz 
cores and e 13  GB RAM, equipped with NVIDIA Tesla 
K80 GPU with 12 GB RAM.

Validation of the generative model
To validate the general and fine-tuned chemical models, 
we computed the number of novel, unique and valid mol-
ecules generated. We define these metrics as follows:

•	 Validity: percentage of chemically valid SMILES gen-
erated by the model according to RDKit. A SMILES 
string is considered valid if it can be parsed by RDKit 
without errors;

•	 Novelty: percentage of valid molecules not present in 
the training set;

•	 Uniqueness: percentage of unique canonical SMILES 
generated.

The SMILES strings were generated by inputting the 
start token “BOS” and progressed until the end token 
“EOS” token was sampled or a predefined size was 
reached. The probability for each predicted token was 
calculated with the output of the softmax function and 
adjusted with the hyperparameter temperature (T). The 
sampling temperature is a hyperparameter that adjusts 
the output probabilities for the predicted tokens and 
controls the degree of randomness of the generated 
SMILES and the confidence of predicting the next token 
in a sequence [38]. Lower temperatures make the model 
more conservative and output only the most probable 
token, while higher temperatures decrease the confi-
dence of predictions and make each token equally prob-
able [39, 40]. The probability of predicting the i-th token 
is calculated as (Eq. 1):

where yi is the softmax output, T is the temperature and j 
ranges from i to K number of maximum tokens to sample 
from the model.

Validation of the classifier
The classifier performance was evaluated with fivefold 
cross-validation. We performed two types of splitting: 
(1) random split into training, validation and test sets 
using a 80:10:10 ratio, and (2) Scaffold-based splitting in 
order to ensure that the same scaffolds were not present 
in training and validation sets. In addition, a dataset of 
880 fragments screened against SARS-CoV-2 Mpro using 
X-ray crystallography was used as an external evaluation 
set (https​://www.diamo​nd.ac.uk/covid​-19/for-scien​tists​/
Main-prote​ase-struc​ture-and-XChem​/Downl​oads.html). 
Since the dataset was highly unbalanced, we used the 
area under the precision-recall curve (AUC-PR) as the 
key metric to evaluate the performance, which is more 
informative in this scenario [41]. The AUC-PR can be cal-
culated from a plot of precision X recall (or sensitivity):

where TP, TN, FP and FN are the numbers of true posi-
tives, true negatives, false positives and false negatives, 
respectively.

(1)pi =
e(yi/T )

∑k
j = 1

e(yi/T )

(2)Se =
TP

TP + FN

(3)Sp =
TN

TN + FP

(4)Pre =
TP

TP + FP

https://docs.fast.ai
https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem/Downloads.html
https://www.diamond.ac.uk/covid-19/for-scientists/Main-protease-structure-and-XChem/Downloads.html
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We also compared the performance of our classifier 
on the external test set with Chemprop, a freely available 
message passing neural network (MPNN) that has been 
used to repurpose drugs to SARS-CoV-2 (http://chemp​
rop.csail​.mit.edu/predi​ct) [42].

Chemical space analysis
We evaluated the chemical space coverage by com-
puting Uniform Manifold Approximation and Projec-
tion (UMAP) plots of Morgan circular fingerprints or 
Extended Connectivity Fingerprints (ECFP) of length 
1,024 bits and radius of 2 bonds. UMAP is a dimensional-
ity reduction method used to visualize high-dimensional 
data (in this case ECFP4 fingerprints) in just 2 dimen-
sions (2D). Using this method, similar molecules are 
clustered close to each other, while also preserving the 
global structure of the original high-dimensional data 
[43]. In addition, we investigated the Tanimoto similarity 
between the generated molecules and true inhibitors in 
terms of structure and Bemis-Murcko scaffolds [44].

Docking protocol
A molecular docking simulation was carried out using 
the Protein–Ligand Ant System (PLANTS) v.1.2 docking 
software. The active site Cys145 was used as the center of 
the simulation box and 15Å were added to each cartesian 
direction, in order to include the S1/1′, S2 and S3 sub-
sites of Mpro active site. The molecules were scored with 
the ChemPLP scoring function, using the default search 
speed parameter of PLANTS v1.2 (search speed = 1). 
All docking calculations were carried out using the crys-
tal structure of SAR-CoV-2 Mpro (PDB: 6W79, resolu-
tion = 1.46 Å). Before submitting our molecule library to 
docking, we performed a round of redocking in order to 
validate our protocol. The results are shown in the Addi-
tional file 1: Part III: Molecular Docking.

Physicochemical filtering and PAINS detection
In order to prioritize compounds for purchase and syn-
thesis, we submitted the top 20 predicted hits to a pan 
assay interference compounds (PAINS) filter to remove 
potentially problematic molecules from our final selec-
tion. All calculations were carried out on the FAF-
DRUGS4 server [45].

Results and discussion
General chemical model validation
We initially validated the chemical model trained on 
ChEMBL to access its potential to generate molecules 
using SMILES strings. The main metrics have been used 
to validate generative models in other works [39, 40, 46].

Validity, uniqueness and novelty of the generated molecules
We initially investigated the performance of different 
sampling temperatures on the proportion of valid, unique 
and novel molecules generated. Our results are summa-
rized in Additional file 1: Part II, Table S1.

Overall, our results indicate that the general model can 
generate diverse and novel molecules (Additional file  1: 
Table  S1). When sampling with T = 0.8, we obtained a 
good compromise of validity (98.73 ± 0.15%), unique-
ness (98.69 ± 0.17%) and novelty (86.57 ± 0.36%) scores 
(Additional file 1: Table S1). Therefore, we decided to use 
T = 0.8 for the subsequent experiments. Most structural 
errors were associated with incomplete ring systems, 
where RDKit could not find matching pairs of brackets 
on the SMILES string, and a smaller proportion consisted 
of invalid valances, such as C+5 and Cl+2.

The performance of the general chemical model is in 
accordance with previous findings for LSTM-based mod-
els, with high validity, diversity and novelty scores [38–
40, 46]⁠. For instance, Brown et al. benchmarked different 
generative methods, to access their potential in de novo 
drug design. Their LSTM model achieved validity, diver-
sity and novelty scores higher than 90%, even higher than 
other machine learning methods, including variational 
autoencoders (VAE), generative adversarial networks 
(GAN’s), adversarial autoencoders (AAE) [46]⁠. In another 
study, Merk et al., pre-trained a model on 550 thousand 
SMILES from bioactive molecules from ChEMBL and 
then used it to generate target-specific inhibitors for per-
oxisome proliferator-activated receptor gamma (PPARγ) 
and trypsin, achieving novelty scores of 88% and 91%, 
respectively [47]. We also highlight the study by Moret 
et  al., that adopted a similar approach to ours by using 
transfer learning and a LSTM model on low-data prob-
lems. Their model achieved high proportions of valid, 
unique and novel molecules (> 90%), which was further 
improved when data augmentation was used to increase 
the training size by including different representations of 
the same SMILES string [39].

Chemical space analysis
As shown in Fig. 3, the chemical spaces of ChEMBL and 
of the generated molecules have a high degree of overlap, 
indicating that the model captured the structural features 
from ChEMBL.

Scaffold diversity and novelty
We also investigated the chemical space of the gener-
ated scaffolds. For this task, we sampled 10,000 valid 
SMILES, representing 7538 unique Bemis-Murcko scaf-
folds (75.58%). The top-10 most common scaffolds were 
relatively simple, fragment-sized, with less than 30 heavy 

http://chemprop.csail.mit.edu/predict
http://chemprop.csail.mit.edu/predict
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atoms and consisting of at most two 6-membered rings 
(Fig.  4). In addition, five of the top-10 most common 
scaffolds were also among the most common ChEMBL 
scaffolds, further demonstrating a relative overlap of 
chemical spaces (Fig. 4).

In terms of novelty, 3291 (43.66%) of the scaffolds were 
not present on the training data. In general, the frequen-
cies of each novel scaffold in the generated set were low; 
each representing only 0.03% of all scaffolds (Fig.  5). 
Structurally, the novel scaffolds were more complex than 
the most common ones, with a higher number of heavy 
atoms and heterocycles.

The UMAP shows the scaffolds of 2,000 randomly 
selected molecules from ChEMBL and the generated 
set (Additional file  1: Part II, Figure S1). The plot high-
lights the overlap in chemical space of the scaffolds and 
corroborates our previous analysis that the LSTM model 
captured the chemical information from the training set.

Fine‑tuning for Mpro chemical space
We previously demonstrated that our generative model 
was able to generate valid, diverse and novel molecules 
and scaffolds. In the following experiments, the encoder 
of the LSTM model was used to fine-tune another model 
to generate a focused library for compounds active on 
SARS-CoV-1 Mpro. The dataset of Mpro inhibitors was 

very small, with 629 active molecules and more than 
280 K inactive ones. Therefore, a model that could con-
serve scaffolds associated with high activity and expand 
the chemical space would be a valuable tool to tackle the 
lack of chemical matter for the current and future coro-
naviruses pandemics.

Sampling temperature
Like our previous analysis, we initially evaluated the opti-
mal temperature by sampling 2000 SMILES in five inde-
pendent runs (10,000 in total). As expected, with T = 0.20 
all molecules were valid due to the model only returning 
high confidence predictions about the next character 
in the SMILES string (Table 1). However, the generated 
molecules showed low uniqueness and novelty scores, 
indicating that the model is generating the same mole-
cules at every round. Sampling with temperatures higher 
than 0.5 yielded high proportions of unique, valid and 
novel molecules (Table 1).

Optimal SMILES size
We also investigated the distribution of molecu-
lar weights as a function of the maximum size of the 
SMILES strings the model could generate. Figure 6 shows 
that the model can generate a range of structures, from 
fragments (SMILES size in the range 10–30 characters) 

Fig. 3  UMAP plot of the chemical space of molecules generated by the general chemical model and ChEMBL (2000 molecules were randomly 
selected for each set)
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to molecules with molecular weights > 500  Da, outside 
the ranges of classical drug-like physicochemical filters, 
such as Lipinski’s rule of 5 (molecular weight < 500  Da, 
HBA < 10, HBD < 5 and logP < 5) [48]. The average 
molecular weight of the generated molecules stabilized 
between 350 and 400  Da when the maximum number 
of characters per SMILES string was higher than 60. 
This flexibility to generate molecules with different sizes 
allows our model to be used in different virtual screening 
settings, from fragments to lead / drug -like campaigns. 
For the next analysis, we generated 70,000 valid SMILES 
using the fine-tuned model setting T = 0.80 and the max-
imum size of SMILES set to 50, in order to generate mol-
ecules in the drug-like chemical space.

Generating Mpro‑focused compound libraries
Having set the sampling temperature, we generated 
70,000 valid SMILES using the fine-tuned model. After 
removing duplicates, we obtained 67,527 unique mol-
ecules (96.47%). The generated molecules displayed a 
slight shift to lower values of molecular weight (MW), 
logP and number of heavy atoms, indicating that, in 

general, the model generated smaller and more hydro-
philic molecules compared to Mpro inhibitors (Fig. 6a–
c). On the other hand, the distributions of the number 
of rotatable bonds, H-bonds donor (HBD) and accep-
tors (HBA) (Fig.  6d–f ) were similar between the gen-
erated molecules and Mpro inhibitors. Overall, the 
similarity between the distributions suggests that the 
transfer learning process was able to generate mol-
ecules in the same physicochemical space as the Mpro 
dataset.

We also investigated the ease of synthesis of the gener-
ated molecules. For this analysis, we used the synthetic 
accessibility score (SAS), which penalizes molecules 
with highly complex structures, such as high number of 
stereocenters and multiple ring systems. The SAS score 
ranges from 1 to 10, with high values being assigned to 
more complex and difficult to synthesize molecules [49]⁠. 
The generated molecules had a similar SAS distribution 
to the training set. The mean SAS of the generated mol-
ecules was 2.36, while the training set had a mean of 2.44. 
Furthermore, the minimum (i.e. lowest complexity) and 
maximum SAS for the generated set were 1.13 and 6.96, 

Fig. 4  Top-10 most common scaffolds from the generated molecules and ChEMBL sets. The prevalence of each scaffold is also shown
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respectively; which were comparable to the minimum 
(1.12) and maximum (7.81) scores of the training set.

Navigating the chemical space of the focused library
To gain a better insight of the fine-tuned chemical space, 
we calculated the novelty of the 70,000 generated mol-
ecules and observed a high proportion (96.46%) of novel 
molecules compared to Mpro inhibitors training set, 
showing that the transfer learning process did not simply 
copy molecules from the training data. As shown on the 

UMAP plots, the generated molecules not only share the 
chemical space with Mpro inhibitors but they extend it by 
filling gaps with novel molecules, corroborating our pre-
vious finding about the similar physicochemical param-
eters (Fig. 7).

We also investigated how the generated molecules pop-
ulated the scaffold (in terms of Bemis-Murcko scaffolds) 
chemical space, which is an interesting feature for de 
novo design; if the model could generate novel scaffolds it 
might be possible to find scaffold hopping opportunities 

Fig. 5  Top-10 most common novel scaffolds. The prevalence of each scaffold among the generated molecules is also shown
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and new chemical series. Among the 70,000 generated 
molecules, we found 35,713 unique scaffolds (52.89%); of 
which 35,538 (99.51%) were novel compared to the train-
ing set. The UMAP plot shows the overlap in chemical 
space between Bemis-Murcko scaffolds of the generated 
molecules and Mpro inhibitors. The novel scaffold also 
filled gaps in chemical space demonstrating that the fine-
tuned model successfully approximated the target chemi-
cal space (Fig. 8).

We also analyzed how different the novel scaffolds 
were from the training set scaffolds. Overall, the novel 

scaffolds were structurally different to their closest neigh-
bor in the training set, with a Tanimoto coefficient of 
0.420 ± 0.10. Some novel scaffolds displayed small modi-
fications compared to their closest neighbors, such as the 
insertion or removal of a few atoms between rings, the 
substitution of oxygen for sulfur atoms and substitution 
of one ring (Fig. 9a). In general, these small modifications 
did not affect the core of the scaffold, indicating that 
the model can explore subtle changes while maintaining 
important features for activity. Some scaffolds showed 
more drastic modifications, such as replacing atoms of 
the core of the scaffold, reducing or increasing the com-
plexity of the radicals attached to the core scaffold and 
changing the core structure completely (Fig. 9b).

In general, the model showed some creativity, in a 
sense that it introduced modifications to existing scaf-
folds and generated novel structures. This creativity 
can also be seen in other works. For instance, the RXRs 
and PPARs inhibitors generated by Merk et al. showed 
a similar biphenyl scaffold and most modifications were 
on the radicals. Although the authors did not make the 
training set available, it is possible that the biphenyl 
moiety was present on the training set [47]. In another 
study, Méndez-Lucio and coworkers trained a genera-
tive model using chemical (e..g, SMILES strings) and 
transcriptomic data for 978 genes, showing that the 
model could generate molecules that were structurally 

Table 1  Validity, uniqueness and  novelty (mean ± std) 
of SMILES generated after training

We sampled 2000 SMILES for each temperature in five independent runs (10,000 
in total)

Temperature Validity (%) Uniqueness (%) Novelty (%)

0.20 100.00 ± 0.00 39.79 ± 0.27 33.21 ± 0.59

0.50 99.98 ± 0.03 99.05 ± 0.30 78.44 ± 0.78

0.60 99.95 ± 0.04 99.05 ± 0.18 81.80 ± 1.19

0.70 99.80 ± 0.10 99.58 ± 0.16 85.10 ± 0.58

0.75 99.72 ± 0.15 99.58 ± 0.12 85.85 ± 0.68

0.80 99.44 ± 0.21 99.36 ± 0.20 87.11 ± 0.59

1.00 97.21 ± 0.39 97.15 ± 0.15 88.66 ± 0.95

1.20 89.95 ± 0.23 89.84 ± 0.24 85.38 ± 0.87

Fig. 6  Physicochemical properties for the generated molecules (purple) and known SARS-CoV-1 Mpro inhibitors (green). a Molecular weight; b logP; 
c heavy atom count; d H-bond acceptors; e H-bond donors; and f number of rotatable bonds
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Fig. 7  Chemical space of 1000 randomly selected generated molecules (light green) and 629 Mpro inhibitors (gold)

Fig. 8  Chemical space of 1000 randomly selected scaffolds from the generated molecules set (light green) and 629 Mpro inhibitors (gold)
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similar to their closest neighbors in the training set, 
while also introducing a range of modifications to the 
scaffolds. Concretely, starting with a benzene ring, the 
authors obtained structures with fused rings, differ-
ent substitution patterns and also the replacement of 
carbons atoms to generate heterocycles [50]. A recent 
approach described by Arús-Pous et  al. was used to 
generate molecules starting from any scaffold; by 
exhaustively slicing acyclic bonds of the molecules on 
the training set the authors obtained a vast number of 
scaffolds and decorators data. After training, the model 
generated scaffolds decorated with different groups and 
predicted to be active against dopamine receptor D2 
(DRD2). Furthermore, their model could be used to add 
decorations in a single step or multiple steps [51].

The works summarized above are a small sample of 
what is possible with modern generative models, show-
ing how different deep learning strategies can be used 
to generate novel scaffolds with a range of modifica-
tions. However, it is important to highlight that the true 
impact of such modifications in terms of intellectual 
property and publication quality is still an open ques-
tion [52].

Performance of the fine‑tuned bioactivity classifier
Having demonstrated that the fine-tuned chemical model 
approximated the chemical space of Mpro inhibitors, we 
used transfer learning to fine-tune a classification model 
for bioactivity prediction. The performance of the clas-
sifier varied depending on the split method used. For 
random splitting, the model achieved a validation AUC-
PR of 0.310 ± 0.036 and a test AUC-PR of 0.220 ± 0.027. 
The performance using scaffold split was worse, with 
validation AUC-PR of 0.251 ± 0.083 and test AUC-PR 
of 0.185 ± 0.13 (Fig.  10). This drop in performance is 
expected, since different scaffolds are present in train-
ing and validation. However, this method of validation 
is more realistic when evaluating the performance of 
the classifier for prospective screening on new scaffolds, 
since it reduces the bias on specific chemical series [53, 
54]. Overall, our model outperformed the baseline AUC-
PR for random classification (0.00217), demonstrating it 
can be used to predict bioactivity for SARS-CoV-1 Mpro.

We also evaluated the performance of the classifier in 
predicting the bioactivity of an external set of fragment 
hits screened against SARS-CoV-2 Mpro to estimate its 
applicability for prospective virtual screening on a similar 

Fig. 9  Chemical structures of some generated scaffolds and their closest neighbor on the training set, with small (a) and more drastic changes in 
chemical structure (b)
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target. The baseline AUC-PR for randomly predicting 
hits was 0.089, which is the same as the ratio of hit mol-
ecules in the dataset (78 hits × 802 non-hits fragments). 
Our model clearly outperformed the baseline for random 
predictions, achieving an AUC-PR of 0.255 (Fig. 11).

We also compared the classifier with the freely avail-
able model chemprop, which has been used by the “AI 
Cures” project to repurpose drugs for SARS-CoV-2 [55]. 
Chemprop is a message passing neural network (MPNN) 
that works directly on the molecular graph for molecu-
lar property prediction. The predictions are made by 
averaging the output of 5 models augmented with RDKit 
features [42]. The precision-recall curve shows that our 
model outperformed chemprop (Fig. 11).

After analyzing possible thresholds calculated from 
the precision-recall curve, we decided to use 0.0035 as 
the probability cutoff to predict a molecule as active to 
achieve a good balance between precision and recall. 
Overall, our results suggest that the fine-tuned classifier 
can be used for prospective virtual screening for SARS-
CoV-2 Mpro.

A limitation of our classifier is that the precision-
recall curve shows that it is only possible to achieve a 
high precision (~ 0.70) at the cost of low recall (< 0.10). 
In addition, the probabilities output by the classifier were 
extremely low, with a median of 0.0035. The low prob-
abilities are the result of the extreme class unbalance on 

the training set, with only 0.1% of active molecules. In 
future work, we will prioritize calibrating the probabili-
ties to a more reasonable range and improve the recall. 
The model will be retrained as soon as more activity data 
is available for SARS-CoV-2 Mpro inhibitors. Remarkably, 
most molecules from AID1706 do not have measured 
IC50 available, since they were classified as active based 
on the percentage of inhibition on a single concentration 
screening campaign. Therefore, we still lack confirma-
tory screening for Mpro inhibitors, which would probably 
improve the performance of deep learning models.

Predicting the bioactivity of generated molecules
As a proof-of-concept, we used the fine-tuned classi-
fier to predict the bioactivity of the previously generated 
70,000 valid SMILES. In total, 1,697 molecules were clas-
sified as active and the UMAP plot shows a good over-
lap between the predicted hits and real Mpro inhibitors in 
chemical space (Fig. 12).

We also report the top-20 predicted molecules for 
Mpro inhibition (Fig.  13). These 20 molecules were clas-
sified as hits with high confidence, with probabilities 
in the range 0.99–1.0. By analyzing their structures, we 
found scaffolds that are present in real inhibitors. Of 
these generated molecules, 5 were rediscovered by our 
model (LaBECFar-9, 12, 14, 19 and 20). Benzotria-
zoles similar to LaBECFar-1–4, have been described 

Fig. 10  Boxplots of the performance of the classifier grouped by split method. The validation (red bars) and test (blue bars) sets consisted of 
random or scaffold-based splits of the original SARS-CoV-1 Mpro inhibitors data
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Fig. 11  Precision-recall curves for our model (solid blue line) and chemprop (dashed orange line). The baseline area under the precision-recall 
curve (AUC-PR) for random predictions is given by the ratio of active molecules in the dataset. For the SARS-CoV-2 Mpro, the baseline was 0.089 and 
is shown as a dotted red line

Fig. 12  Chemical space of predicted hits (yellow) and Mpro inhibitors of SARS-CoV-1 (indigo) and SARS-CoV-2 (light green)
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Fig. 13  Top 20 predicted active molecules
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as non-covalent inhibitors of SARS-CoV-1 Mpro and a 
X-ray crystal structure between a prototype bound to 
the enzyme is available on the Protein Databank (PDB: 
4MDS) [56]. Peptidomimetic benzothiazolyl ketones, 
such as LaBECFar-5–10, have been described as cova-
lent inhibitors of SARS-CoV-1 Mpro [57]. In fact, LaBEC-
Far-9 is present on the training set and was rediscovered 
by our approach. The core peptidomimetic structure is 
preserved in the generated molecules and they also bear 
the warhead group benzothiazolyl ketone at P1′ position, 
which could form a covalent bond with the cysteine of 
the catalytic dyad Cys-His on the active site of Mpro.

We also applied our classifier to a list of 1959 FDA 
approved drugs to explore its potential for drug repur-
posing. Additional file 1: Table S2 shows a pruned list of 
predicted actives after removing known active molecules 
that were also present on the training set, including Lopi-
navir, Boceprevir, Darunavir and Fosamprenavir. These 
molecules were previously shown to inhibit SAR-CoV-2 
Mpro in vitro [58–60]. In addition, an X-ray crystal struc-
ture of boceprevir complexed with Mpro is available on 
PDB (PDB: 6WNP). Some of the top 10 molecules on 
Additional file  1: Table  S2 have been described in dif-
ferent in silico analysis showing their potential to bind 
to Mpro, such as Novobiocin [61], Saquinavir [62, 63], 
Aprepitant [64] and Leucovorin [65]. Nevertheless, con-
firmatory screens on these predicted hits are still lacking.

Docking simulation
In order to further prioritize molecules for biologi-
cal testing, we submitted the top-20 predicted hits 
to a docking simulation using the crystal structure of 

SARS-CoV-2 Mpro (PDB: 6W79). Nine molecules were 
considered hits, displaying similar binding poses to 
experimentally validated inhibitors in X-ray crystal 
complexes with Mpro. These hits included three benzo-
triazoles (LaBECar-1, LaBECFar-3 and LaBECFar-4) 
and four benzothiazolyl ketone (LaBECFar-5, LaBEC-
Far-6, LaBECFar-9 and LaBECFar-7), one peptidomi-
metic (LaBECFar-11), and one N-(2-pyridyl)acetamide 
derivative (LaBECFar-17).

The docked pose of LaBECFar-11 fits nicely into the 
active site of Mpro, showing a similar binding pose to pep-
tidomimetic inhibitors described in other works, includ-
ing 11a (Fig.  14a) (PDB: 6LZE) [2, 7, 17, 66, 67]. The 
γ-lactam group at P1 is a glutamine mimetic and binds 
in the S1 pocket, with the oxygen atom acting as H-bond 
acceptor to H163 and the nitrogen as donor to E166 
(Fig. 14b). As described in other works, the formation of 
an H-bond between H163 is critical for activity; H163 is a 
conserved residue at S1 and is responsible for stabilizing 
substrates in place via an H-bond with a glutamine resi-
due at position P1 [7, 66]. Interestingly, LaBECFar-11 
does not possess a warhead group at P1′ position, but 
docking pose suggests it might work as a reversible inhib-
itor or be optimized for covalent inhibition.

The fluoro-phenylalanine group at P1′ position formed 
a H-bond with G143 at S1′, adopting a parallel orienta-
tion to the S2 pocket. The leucine side chain at position 
P2 inserted into the S2 pocket and established hydropho-
bic contacts with the side chains of M49, Y54 and D187 
(Fig.  14b). The benzyl carbamate group at P3 position 
bond on the solvent-exposed S4 pocket, while also form-
ing a H-bond with E166 at S1.

Fig. 14  a Experimental binding pose of peptidomimetic inhibitor 11a (PDB: 6LZE) and b docked pose of LaBECFar-11 on SARS-COV-2 Mpro. (PDB: 
6W79). The amino acid residues are shown as beige sticks and the ligands as green sticks
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The benzotriazole derivatives displayed a similar bind-
ing pose to the non-covalent inhibitor ML300 (PDB: 
4MDS) developed by Turlington et al. [68] (Fig. 15a). As 
shown in Fig.  15b for LaBECFar-4, the benzotriazole 
ring binds to the S1 pocket, formed by the side chains of 
F140, N142, H163, and H172 (Fig. 15b). Overall, LaBE-
Car-1 (Additional file  1: Figure S3A), LaBECFar-3 
(Additional file 1: Figure S3B) and LaBECFar-4 displayed 
an extensive H-bond network with the S1 pocket, with 
H163 and E166 representing the main residues stabilizing 
the ligand.

The S2 pocket also hosted a series of interactions 
with the LaBECar-1, LaBECFar-3 and LaBECFar-4. 
The cyclopentyl moiety of LaBECar-4 inserted into S2 
and stacked with the imidazole ring of H41 (Fig.  15b). 
The cyclopentyl moiety also made extensive hydropho-
bic contacts with M49, Y54 and D187 at S2. The same 
interaction pattern of hydrophobic interactions was 
observed for LaBECFar-1 (Additional file 1: Figure S3A) 
and 3 (Additional file  1: Figure S3B). The N-(2-phenyl)-
acetamide group at position P1 in LaBECar-1 (Addi-
tional file 1: Figure S3A) and 3 (Additional file 1: Figure 
S3B) was solvent exposed, protruding from the bind-
ing site without any noticeable interactions with Mpro. 
The same orientation was not observed in LaBECFar-4, 
where the N-(2-phenyl)-acetamide group was accom-
modated between the S2/S1′ pockets and established an 
H-bond with G143 (Fig. 15b), which is similar to the pose 
of inhibitor ML300 [68].

Different groups were positioned on the solvent-
exposed S4, which is in accordance with the high toler-
ance of this subsite to a range of functional groups [7, 

17, 68]. It might be possible to truncate LaBECar-1, 
LaBECFar-3 and LaBECFar-4 and reduce the molec-
ular weight by removing the P3 group at S4, since it 
is exposed to solvent. A similar strategy was adopted 
by Turlington et  al., for the development and optimi-
zation of ML300 and other benzotriazole derivatives 
[68].

The benzothiazolyl ketones LaBECFar-5 (Fig.  16b), 
LaBECFar-6 (Additional file  1: Figure S4A), LaBEC-
Far-7 (Additional file  1: Figure S4B), LaBECFar-9 
(Additional file 1: Figure S4C) displayed a binding pose 
that could favour covalent inhibition, with the carbonyl 
positioned 4.2  Å from the sulfur atom of C145 at S1′. 
As shown in Fig. 16b for LaBECFar-5, the binding pose 
is similar to the recently solved X-ray crystal complex 
between the benzothiazolyl inhibitor GRL-0240-20 
(Fig.  16a) and SARS-CoV-2 Mpro (PDB: 6XR3). The 
γ-lactam group at P1 position established H-bond with 
the imidazole of H163 and the side chain of E166 on the 
S1 subsite. The leucine side chain at P2 inserted into 
the S2 pocket and formed hydrophobic interactions 
with M49, D187 and Y54. The 4-methoxy-benzyl group 
at P3 interacted with the solvent-exposed S4, forming a 
H-bond with Q192.

We also report the LaBECFar-17; bearing an acryla-
mide moiety that could covalently inhibit Mpro (Fig. 17). 
In fact, one acrylamide from the training set (Pubchem 
SID: 47,196,538) is an analogue of LaBECFar-17 and 
was confirmed to be active on two Pubchem confirma-
tory screenings against SARS-CoV-1 Mpro (AIDs: 1879 
and 1944). The docked pose of LaBECFar-17 revealed 
that the 3,4-dichloro group inserts into the S2 pocket, 
while the pyridine ring forms a H-bond with H163 at S1 

Fig. 15  a Experimental binding pose of peptidomimetic inhibitor ML300 (PDB: 4MDS) and b docked pose of LaBECFar-4 on SARS-COV-2 Mpro. 
(PDB: 6W79). The amido acid residues are shown as bege sticks and the ligands as pink sticks
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Fig. 16  a Experimental binding pose of peptidomimetic inhibitor GRL-0240-20 (PDB: 6XR3) and b docked pose of LaBECFar-5 on SARS-COV-2 
Mpro. (PDB: 6W79). The amido acid residues are shown as beige sticks and the ligands as orange sticks

Fig. 17  Docked pose of LaBECFar-17 on SARS-COV-2 Mpro. (PDB: 6W79). The amido acid residues are shown as beige sticks and the ligand is 
shown as light blue sticks
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(Fig. 17). The warhead acrylamide is at 5.9 Å from the 
catalytic C145 and forms H-bonds with E166 and H164 
at S1.

PAINS filtering
In a final round of in silico analysis, we submitted the 
top-20 predicted hits to a Pan Assay Interference Com-
pounds (PAINS) filter implemented in the FAF-Drugs4 
server in order to identify molecules with the poten-
tial to interfere with biological assays. Not surprisingly, 
LaBECFar-15 and 16 were flagged as PAINS; the amino-
thiophene group in these molecules is known to have 
thiol reactivity. The other 18 predicted hits passed in all 
PAINS filters.

In silico filtering using predefined rules is a valuable 
tool to prioritize molecules from huge databases and 
reduce the risks of false positives in biological assays [69, 
70]. Many tools are available for free and implemented 
in packages such as RDKit and servers such as FAF-
Drugs4. However, automatic virtual filters are not magic 
bullets to catch all molecules that could interfere with 
assays [71]. For instance, current strategies to develop 
Mpro inhibitors often rely on warhead groups, such as 
α,β-unsaturated carbonyls, aldehydes and thiol-reactive 
esters [72, 73]; these groups would probably be flagged 
as problematic in some PAINS filters [70, 74, 75]. There-
fore, the selection of molecules for follow up analysis 
should be done carefully and must take into account the 
nature of the target and the known inhibitors available. 
These highly reactive molecules could be problematic to 
optimize, but they are still the most abundant source of 
starting points to develop Mpro inhibitors and should not 
be discarded before experimental confirmation of bioac-
tivity and that they are not interfering with the biological 
assay.

Conclusions
We used ULMFit to train a chemical model for de novo 
design and fine-tune a classifier for bioactivity prediction 
on SARS-CoV-2 Mpro. The chemical space of the gener-
ated molecules overlapped with the target chemical space 
of Mpro inhibitors, showing that the key structural fea-
tures were properly captured by the model. In addition, 
the generated molecules and real Mpro inhibitors showed 
similar physicochemical properties.

The fine-tuned classifier outperformed the random 
classification baseline and a model that is being used to 
repurpose drugs for SARS-CoV-2 Mpro. The predicted 
active molecules also shared scaffolds with real Mpro 
inhibitors, while introducing a range of changes to lateral 
chains and the core of the scaffolds, indicating it could be 
used to explore the structure–activity of chemical series.

We also highlight that the current version of our gen-
erative model is still limited by the nature of the training 
data. As more molecules are screened against Mpro, we 
will update the model in order to generate more diverse 
and novel molecules.
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