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Summary

Vaccination programmes are critically important to suppress the burden of infectious diseases, saving 
countless lives globally, as emphasised by the current COVID-19 pandemic. Effective adaptive immune 
responses are complex processes subject to multiple influences. Recent genetic, pre-clinical, and clin-
ical studies have converged to show that availability of iron is a key factor regulating the development 
of T and B cell responses to infection and immunisation. Lymphocytes obtain iron from circulating trans-
ferrin. The amount of iron bound to transferrin is dependent on dietary iron availability and is decreased 
during inflammation via upregulation of the iron-regulatory hormone, hepcidin. As iron deficiency and 
chronic inflammatory states are both globally prevalent health problems, the potential impact of low 
iron availability on immune responses is significant. We describe the evidence supporting the import-
ance of iron in immunity, highlight important unknowns, and discuss how therapeutic interventions to 
modulate iron availability might be implementable in the context of vaccination and infectious disease.
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Introduction – iron deficiency, inflammation, 
and hepcidin

Iron is an essential cofactor in cellular biochemistry 
and its catalytic function is thought to be intrinsically 
linked to the evolution of life [1, 2]. In the form of Fe-S 
clusters, haem groups, and individual ions, the element 
supports diverse processes, including energy produc-
tion via the electron transport chain, DNA replication 
and repair, oxygen sensing, and demethylation reactions 

[3–5]. However, both iron deficiency and iron over-
load are prevalent across the global human population, 
illuminating iron as a particularly interesting micronu-
trient in human biology.

The importance of considering iron in the context of 
immunity lies with the vast prevalence of iron deficiency, 
particularly in countries heavily burdened by infectious 
disease. As recorded in 2016, it is estimated that 1.2 
billion people worldwide have iron deficiency anaemia 

Abbreviations:CKD: Chronic kidney disease; LMIC: Low- and middle-income countries; TFRC: Transferrin receptor.
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[6]. It is a leading cause of years lived with disability in 
low–middle-income countries (LMICs), and the fourth 
leading cause globally, particularly affecting children and 
pre-menopausal women. Our appreciation of the burden 
of iron deficiency is limited by an overwhelming focus 
on recording the prevalence of anaemia. Iron deficiency 
in the absence of anaemia (resolved by low ferritin) is 
estimated to be even more prevalent, and indeed, iron 
deficiency impacts on human biology beyond erythro-
poiesis (e.g. growth and cognitive development [7, 8]). 
Recent work indicates particular scenarios and popula-
tions in whom many cell types may experience a high 
degree of iron limitation, based on measuring serum iron 
concentration and transferrin saturation. In high-income 
settings, serum iron levels in healthy individuals vary 
relatively little by age, and are generally 10–30 µmol/L 
[9]. In The Gambia, the prevalence of anaemia among 
infants is high, and these children also frequently present 
with extremely low serum iron levels (below 5 µmol/L 
for much of the first year of life) [10]. Given the well-
established high prevalence of iron deficiency anaemia 
among infants from LMICs, these observations of low 
serum iron in Gambian infants are likely generalisable to 
infants in other LMIC settings.

Central to understanding the pathophysiology 
of iron deficiency is an appreciation of homeostatic 
iron control by the hepatic iron regulatory hormone, 
hepcidin. Through its ability to target ferroportin (the 
iron exporter) for degradation [11], hepcidin main-
tains iron homeostasis by dictating the location of iron. 
In conditions of excess iron, hepcidin expression is in-
duced and ferroportin is degraded on enterocytes and 
erythrophagocytic red-pulp macrophages, preventing 
dietary iron absorption and the recycling of iron de-
rived from phagocytosis of senescent erythrocytes, re-
spectively. Conversely, inhibition of hepcidin (e.g. during 
erythropoietic demand or iron deficiency [12, 13]) pro-
motes iron absorption and releases iron from macro-
phage and hepatocyte storage, thus augmenting serum 
iron concentration. Yet hepcidin is not only a hormone 
which homeostatically regulates iron, but also an acute 
phase response protein. Its expression is induced by in-
flammation, predominantly via the cytokine, IL-6 [14]. 
Inflammatory induction of hepcidin is essential for the 
hypoferremia response to acute inflammation in mouse 
models [15, 16] and has been observed to correlate with 
inflammatory hypoferremia in a number of human infec-
tions [17–20]. Such hepcidin-mediated hypoferremia has 
been suggested as a form of nutritional immunity, essen-
tial for the control of extracellular siderophilic bacterial 
pathogens [21, 22].

Systemic iron deficiency can be nutritional in origin, 
driven by iron-poor diet or diets enriched with factors 
that antagonise iron absorption [23]. However, systemic 
iron availability can also be ‘functionally’ low due to 
chronically raised hepcidin in the context of inflamma-
tion, restricting duodenal iron absorption and iron avail-
ability in the serum, regardless of sufficiency of ferritin 
iron stores [24]. Functional iron deficiency can arise 
secondary to infection, and is common in areas where 
infection rates are high [25–27]. The global burden of 
iron deficiency is driven by the combination of poor nu-
tritional uptake (or absorption) and high hepcidin driven 
by inflammation.

Iron deficiency is not limited to LMICs. In high-income 
countries, infants, children, pregnant women, and indi-
viduals with chronic inflammation are at particular risk 
of iron deficiency [8, 28]. Worldwide, 20% women of 
reproductive age and ~40% pregnant women are an-
aemic [29], with the latter often leading to neonatal 
iron deficiency [30]. Reportedly, menstruation affects 
iron stores to a greater extent than dietary intake [31]. 
In the pathophysiological contexts of chronic inflamma-
tion [e.g. cancer, chronic kidney disease (CKD), obesity 
or autoimmunity], raised hepcidin limits systemic iron 
availability, contributing to widespread anaemia of in-
flammation [32–38]. Serum iron levels can also be par-
ticularly low in conditions of gastrointestinal disease. For 
example, coeliac disease poses both systemic inflamma-
tion and disrupted gut epithelial integrity, impeding iron 
absorption [39, 40].

Thus, iron deficiency is commonly nutritional or sec-
ondary to infection and inflammation, with a propor-
tion of cases manifesting in anaemia. Many population 
studies measure rates of iron deficiency anaemia (often 
defined by low haemoglobin and ferritin concentrations), 
which likely do not accurately identify individuals with 
serum iron deficiency. As we will describe, the latter par-
ameter is the more relevant measure from the perspective 
of iron influencing adaptive immunity.

Serum iron and adaptive immune 
responses

Adaptive immune responses require dynamic cellular re-
configuration of metabolism and cellular physiology as 
antigen-specific lymphocytes proliferate, acquire effector 
functions, and generate immunological memory [41]. 
Activated T cells express 1 million new copies of trans-
ferrin receptor (TFRC) within 24 hours of activation 
[42], suggesting that increased iron uptake is required to 
power the T cell response, consistent with the multiple 
roles of iron for cellular metabolism [1, 2].
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Strong genetic evidence for a role of iron in human 
adaptive immunity comes from analysis of members 
of two families with severe immunodeficiency and sus-
ceptibility to infection, who were shown to carry a 
hypomorphic mutation in TFRC, encoding transferrin 
receptor 1 [43]. This mutation reduces the efficiency with 
which immune cells can uptake transferrin-bound iron 
from serum. These patients had normal numbers of T, B, 
and NK cells, but lacked circulating IgG and had reduced 
numbers of circulating memory B cells. Furthermore, ex 
vivo T and B cell proliferation was defective, but could 
be rescued by provisioning supraphysiological amounts 
of elemental iron, thus bypassing the defect in transferrin 
receptor. Mice with an analogous mutation in TFRC ex-
hibit similar ex vivo and in vivo lymphocyte activation 
defects [42]. These results are consistent with previous 
studies in animal models and in vitro, which indicate the 
importance of transferrin-bound iron uptake for lympho-
cyte activation [44, 45]. While complete inhibition of 
transferrin-bound iron uptake blocks lymphocyte de-
velopment [46, 47], the effect of more subtle changes in 
iron availability on lymphopoiesis remains unclear [42, 
43, 48].

The study by Jabara et al.[43] demonstrates that adap-
tive immune responses require iron, however, the influ-
ence of variable serum iron availability on immune cells 
remained unaddressed. Our group recently demonstrated 
that transient acute serum iron deficiency, driven physiolo-
gically through enhanced hepcidin activity, suppresses the 
antigen-specific CD8, CD4, and B cell immune response in 
mice [42]. Furthermore, in piglets, a natural model of iron 
deficiency, we found that responses to vaccination were 
improved by iron interventions that increased serum iron 
[42]. These results are consistent with earlier observations 
of impaired humoral immunity and baseline lympho-
cyte activation ex vivo in rodent models of severe dietary 
iron deficiency [48, 49]. They also highlight serum iron, 
regulated by hepcidin, as the factor controlling immune 
responses. Consistent with this concept, we observed de-
creased vaccine-inducible pathogen-specific antibody re-
sponses in human patients with rare mutations that cause 
high hepcidin and low serum iron [42].

Inflammatory hypoferremia – benefits 
and risks

Hepcidin-mediated hypoferremia is a natural part of the 
acute infection response [50–52]. Hepcidin is commonly 
elevated during infection and inflammation, preventing 
macrophagic iron recycling and ‘trapping’ the micronu-
trient in reticuloendothelial cells, limiting the systemic 
availability of iron and its potential to support pathogen 

growth. However, the aforementioned data regarding 
the iron requirements of lymphocytes imply the exist-
ence of a trade-off between hypoferremia as an innate 
nutritional defence to a subset of infections [50, 53] 
and the metabolic requirements of the adaptive immune 
response [42]. The outcome of this trade-off likely de-
pends on the pathogen in question, the persistence of 
the hypoferraemic response and the quantity and distri-
bution of iron resources within the host. For example, 
while iron deficiency certainly protects against malaria 
[54] and certain bacterial infections [21, 22, 50, 55, 56], 
there is no clear evidence that iron availability directly 
alters viral replication in vivo [57].

Viruses can induce hypoferraemia in humans, 
as noted in experimental norovirus infection and 
acute HIV-1, however, in these instances, the effect 
may be transient [17, 19]. The COVID-19 pandemic 
has provided a context in which to investigate how 
hypoferremia and adaptive immunity may be asso-
ciated in humans in a more chronic systemic inflam-
matory setting. Inflammatory hypoferremia has been 
associated with severe disease and low lymphocyte 
counts among patients with COVID-19 [58–63]. 
Emerging evidence indicates that uncoordinated or 
slowed development of effective adaptive immunity 
may be a driver of severe disease [64–66]. Interestingly, 
given the role of IL-6 in systemic iron homeostasis 
during inflammation [14], its expression is elevated 
in cases of acute COVID-19 and associates with dis-
ease severity [63, 67, 68]. IL-6 levels have also been 
suggested to correlate inversely with various aspects 
of the effector T cell response [65]. Clinical trial re-
sults indicate that therapeutic blockade of IL-6 with 
drugs such as tocilizumab and sarilumab may im-
prove patient outcome [69, 70]. Whether disrupted 
iron homeostasis associates with impaired adaptive 
immunity in COVID-19, and how this might be ap-
proached therapeutically, remains to be investigated. 
However, inducing inflammatory hypoferremia in a 
murine model of influenza infection impaired adap-
tive immunity, delayed viral clearance, worsened the 
severity of lung inflammation, and slowed recovery 
from weight loss [42]. This indicates that hypoferremia 
may predispose to poor outcomes of respiratory infec-
tion. This outcome exists in stark contrast to the pro-
tective effects of hepcidin-driven hypoferraemia in the 
context of extracellular bacteria and liver-stage mal-
aria [21, 22, 53]. A potential explanation for this di-
vergence is that denying iron to siderophilic pathogens 
benefits the host. However, if the iron requirements of 
the pathogen are relatively low (such as for viral rep-
lication), inflammatory hypoferraemia instead risks 
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inhibiting a protective adaptive immune response, al-
lowing infection to persist and potentially exacerbating 
tissue damage due to unrestrained inflammation (Fig. 
1). Notably, this scenario suggests that suppressing 
hepcidin activity could provide a therapeutic target for 
restoring iron availability to activated lymphocytes in 
inflammatory settings.

Iron deficiency and vaccine responses 
in humans

When considering studies seeking to link iron status and 
responses to vaccines in humans, as previously reviewed 
by Oppenheimer [49], early investigations tended to 
provide inconsistent results. Vaccination trials for dis-
eases such as diphtheria, tetanus [71], and typhoid [72] 
did not indicate an association between iron deficiency 
and vaccine efficacy, but were likely underpowered 
[73]. A  larger study involving 1554 Ecuadorian in-
fants showed that anaemic children generate low diph-
theria antibody titres (frequently below the protective 
level) following DTP vaccination compared with con-
trol [74]. More recently, anaemia was linked to altered 
development of the immune system in children from 
Mozambique and Tanzania [75]. It was recently demon-
strated that variable combinations of anaemia, haemo-
globin, and soluble transferrin receptor measurements 

in Kenyan infants predicted poor responses to diph-
theria, pertussis, measles, and pneumococcal vaccines 
[76]. However, anaemia is a multifactorial condition, 
which can be driven by influences other than iron de-
ficiency [77]. Direct evidence that serum iron deficiency 
regulates responses to vaccines in humans is limited be-
cause this parameter is rarely reported. One small study 
found that among elderly hospitalised patients receiving 
influenza vaccines, non-response was clearly associ-
ated with suppressed serum iron concentrations (mean, 
8.34 µmol/L vs. 16.00 µmol/L in responders) [78]. More 
significantly, iron supplementation at time of vaccin-
ation, which would be expected to raise serum iron, im-
proved the antibody response to the measles vaccine in 
Kenyan infants [76].

Lower vaccine efficacy has been observed for certain 
vaccines, including measles and live attenuated influ-
enza vaccine, among infants in LMICs [79, 80]. Certain 
high-income populations, including individuals with 
coeliac disease [81], obesity [82], and CKD [83] are re-
ported to generate poor responses to the hepatitis B virus 
vaccine, and the inactivated flu vaccine has been reported 
to perform poorly in CKD patients [84] and the elderly 
[85]. However, whether the high prevalence of iron defi-
ciency and low serum iron in these populations contrib-
utes to low vaccine efficacy has not yet been explored, to 
our knowledge.

Figure 1.  Inflammation, often resulting from infection, induces hepcidin expression via IL-6, driving hypoferraemia. Hypoferraemia 
poses a trade-off to the host, limiting extracellular iron availability and protecting against siderophilic pathogens (e.g. Vibrio 
vulnificus), but also diverting iron away from the adaptive immune response, impairing control of pathogenic viruses (e.g. 
Influenza A virus infection).
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Iron and immunometabolism

Iron deficiency has been shown to have broad effects 
on metabolism and function of different types of cells 
[86–91]. In general, cellular iron homeostasis is main-
tained by iron-regulatory protein-1 and -2 [92]. Loss 
of the genes encoding these proteins in activated T 
cells impairs iron uptake, proliferation, and effector 
functions [42]. However, the precise iron-requiring 
processes disrupted in T cells by iron-restricted con-
ditions, critically impairing activity, remain unclear. 
In vitro, both low-iron culture conditions and genetic 
disruption of tetrahydrobiopterin synthesis (which im-
pacts T cell proliferation in an iron-dependent manner) 
impair T-cell mitochondrial oxidative metabolism 
[42, 93]. DNA and histone demethylases are iron-
dependent, and modulation of their activity through 
iron chelation results in altered cell cycle behaviour 
in B cells [48, 94]. Serum iron deficiency prevents ac-
quisition of effector functions by T cells [42]. In CD4 
T cells, iron controls expression of proinflammatory 
cytokines IL-2 and GM-CSF (but not IFNγ and TNFα) 
via interactions with the RNA binding protein, PCBP1 
[44]. Iron has also been suggested to modulate the re-
sponsiveness of lymphocytes to IL-2R signalling [42, 
95]. The effects of low iron on T cells are likely to be 
complex and there may be different levels of sensitivity 
depending upon the iron requirements and metabolic 
states of different T cell subsets.

Transient serum iron deficiency during the expansion 
phase of the T cell response impairs the quality of CD8 
T cell memory 35 days post-immunisation (assessed by 
cytokine production and magnitude of secondary recall 
response) [42]. This result suggests that iron availability 
may influence the trajectory of T cell differentiation and 
polarisation of the immune response. However, more 
work is required to establish how the negative effects 
of iron deficiency persist over time, and how the cell-
intrinsic and extrinsic regulators of memory differenti-
ation are thus perturbed [96].

Although this review focuses on iron deficiency, we 
should note that genetic diseases which suppress hepcidin 
(hereditary hemochromatosis and thalassemia [97]) and 
lead to systemic iron loading have also been proposed to 
influence immunity. In HFE hemochromatosis patients, 
this impact is complicated by the strong association be-
tween HFE mutations and the major histocompatibility 
complex gene complex. The effect of HFE mutations on 
baseline CD8:CD4 ratios and lymphocyte activation 
phenotypes has been extensively investigated [98–100], 
yet it is not well understood how HFE mutations alter 
the quality of adaptive immunity in vivo.

Correcting iron deficiency to improve im-
munity – challenges and potential

The suggestion that iron deficiency may contribute to 
suboptimal adaptive immunity makes the normalisation 
of iron status an attractive potential ‘immunotherapeutic’ 
intervention (Fig. 2). However, the key evidence that 
therapeutically targeting iron can support adaptive im-
munity is currently limited to the improved T cell and 
antibody responses seen in hypoferraemic mice and pig-
lets, respectively, upon iron supplementation [42], and 
the improved seroconversion and antibody avidity to 
measles vaccination in a retrospective analysis of Kenyan 
infants receiving iron [76]. It is critically important that 
prospective randomised controlled trials are performed 
to more rigorously test the idea that iron could boost im-
mune responses to vaccines in iron-deficient individuals, 
and research in this area is ongoing.

Of relevance to this concept, the resolution of iron de-
ficiency remains a challenge in itself for several reasons. 
Oral iron formulations may exacerbate some infections, 
including malaria, and can increase episodes of diarrhoea, 
although these results are not universally observed in all 
settings [101–106]. Furthermore, the efficacy of oral iron 
in restoring iron status can be variable. A major issue in 
populations with high infection burden is that persistent 
mild inflammation can drive high hepcidin concentra-
tions, disabling efficient dietary iron absorption [107, 
108]. High-dose oral iron supplementation regimes may 
also increase hepcidin to a point where the majority of 
iron is not absorbed [109, 110]. Future improvements in 
dosing schedules [111–113], new iron formulations that 
are more absorbable [114, 115], and potentially the use 
of intravenous iron [116], could counteract the current 
difficulties associated with nutritional iron interven-
tions. Other molecular mechanistic approaches, aimed 
at inhibiting hepcidin and so enhancing iron absorption 
and release of iron from cellular sequestration [117–
121], may also be beneficial, particularly in the context 
of inflammatory anaemias.

Despite the unresolved issues noted above, one spe-
cific consideration for the possible future use of iron 
to improve immune responses is worth highlighting: 
less iron is likely to be needed to boost immune re-
sponses than is needed to improve systemic iron defi-
ciency. The latter often requires iron interventions over 
long periods, with oral iron regimes lasting for several 
months. The nature of this exposure (time and quan-
tity) likely contributes to the noted gastrointestinal 
side effects and predisposition to infections. However, 
to achieve the goal of enhancing the immune response 
to specific vaccines, only short-term supplementation 
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during the metabolically active acute expansion phase 
of adaptive immunity may be necessary, as quiescent 
memory cells are likely to have low iron requirements. 
As each red blood cell contains ~100-fold more iron 
atoms than a T cell [122–124], it is likely that less 
iron administration would be required to support an 
immune response than for longer-term resolution of 
anaemia. Furthermore, over two thirds of the total 
body iron content exists in the erythroid compartment 
[123], highlighting that the number of red blood cells 
required to sufficiently increase haemoglobin during 
anaemia greatly exceeds the number of antigen-specific 
T cells generated at the peak of even a large immune 
response [125]. Acute iron treatment likely presents 
less infection risk than long-term oral-iron regimes, al-
though accompanying short-term prophylactic meas-
ures may be required to further reduce infection risk.

Concluding remarks

Driven by our increasing knowledge of systemic iron 
homeostasis and immunity, iron has been revealed as 

an important immunometabolite. Serum iron status 
influences the adaptive immune response to infec-
tions and vaccinations. The protective innate immune 
effect of low serum iron in the context of extracellular 
siderophilic bacterial infections is offset by the pos-
sible impairment of adaptive immunity. Our know-
ledge of hepcidin regulation could potentially be 
leveraged to swing this risk–benefit balance in favour 
of improving immunity. The highly variable nature of 
serum iron status warrants deeper research into which 
immune cell types have low iron levels in the varying 
contexts of systemic iron deficiency outlined above. 
The high global prevalence of iron deficiency, particu-
larly in populations at risk of poor vaccine responses, 
highlights the hypothetical value of therapeutically 
optimising serum iron levels to improve vaccination 
efficacy. Trials will be required to ascertain which vac-
cines are particularly impaired by iron deficiency and 
could be improved by iron supplementation, the op-
timal iron delivery regime for maximising a durable 
vaccine response, and in which populations we should 
target iron interventions.

Figure 2.  Dietary factors and constitutively high hepcidin expression can drive low serum iron availability. Sufficient iron concen-
trations are required to generate a robust adaptive immune response. In particular settings, it may be possible to acutely supple-
ment serum iron availability to support immunity, thereby improving vaccine efficacy – this concept remains to be investigated.
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