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Abstract: The interactions at the atomic level between small molecules and the main components of
cellular plasma membranes are crucial for elucidating the mechanisms allowing for the entrance of
such small species inside the cell. We have performed molecular dynamics and metadynamics simu-
lations of tryptophan, serotonin, and melatonin at the interface of zwitterionic phospholipid bilayers.
In this work, we will review recent computer simulation developments and report microscopic
properties, such as the area per lipid and thickness of the membranes, atomic radial distribution
functions, angular orientations, and free energy landscapes of small molecule binding to the mem-
brane. Cholesterol affects the behaviour of the small molecules, which are mainly buried in the
interfacial regions. We have observed a competition between the binding of small molecules to phos-
pholipids and cholesterol through lipidic hydrogen-bonds. Free energy barriers that are associated to
translational and orientational changes of melatonin have been found to be between 10–20 kJ/mol
for distances of 1 nm between melatonin and the center of the membrane. Corresponding barriers
for tryptophan and serotonin that are obtained from reversible work methods are of the order of
10 kJ/mol and reveal strong hydrogen bonding between such species and specific phospholipid sites.
The diffusion of tryptophan and melatonin is of the order of 10−7 cm2/s for the cholesterol-free and
cholesterol-rich setups.

Keywords: melatonin; serotonin; tryptophan; phospholipid membrane

1. Introduction

The cell membrane plays a central role in the control of the exchange of key elements
(nutrients, wastes, drugs, and heat as the most relevant) between the exterior of a cell and
its cytoplasm. Lipids, proteins, and cholesterol (CHOL) are among the main components of
human cell membranes. Phospholipids are usually formed by two leaflets of amphiphilic
lipids that are divided into a hydrophilic head and one or two hydrophobic tails. Such
lipids can self-assemble by hydrophobicity [1,2]. Lipid bilayer membranes formed by di-
palmitoylphosphatidylcholine (DPPC, C40H80NO8P) and dimyristoylphosphatidylcholine
(DMPC, C36H72NO8P) are of great interest to computational studies [3–6] because of the
abundance of experimental data [7–11] and their usability as model systems [12,13]. In the
last decades, cell membrane systems have been extensively studied in regards to their asso-
ciation with drugs and small molecules [14–18]. Among these, we will focus our attention to
three species deeply related, belonging to the indole group: melatonin (MEL, C13H16N2O2),
its precursor serotonin (SER, C10H12N2O), and its precursor tryptophan (TRP, C11H12N2O2),
given their interest as pharmaceutical compounds with a wide variety of applications, in
particular a large number that is related to sleep disorders [19–21]. The relationships be-
tween the three components have been reviewed a significant number of times in different
contexts [22–25]. The sequence of transformations in vivo is as follows: first, the hydroxy-
lation of L-tryptophan by tryptophan hydroxylase forms 5-hydroxytryptophan; when fol-
lowed by the decarboxylation by the aromatic aminoacid decarboxylase, we get serotonin;
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then, if serotonin is acetylated by N-acetyltransferase to N-acetylserotonin and further
methylated by 5-hydroxyindole-O-methyltransferase, we produce melatonin [22,26–28].

Melatonin is a neurohormone that is produced in the pineal gland, first being isolated
in 1958 by Lerner et al. [29] after it was identified in bovine pineal extracts. There is
evidence that MEL can regulate circadian rhythms [30] and mood, induce sleep [31], and
contribute in protecting the organism from Alzheimer disease [32], having become one
of most studied hormones in relation to its affectation to the human body [33–36]. MEL
plays a role in aging processes, being mainly protective of oxidative stress and damage [37],
and it is also related to skin pigmentation and DNA repair systems. Hence, MEL has
become a very good candidate for treating several dermatoses that are associated with
substantial oxidative damage, by means of the increase of intracutaneous melatonin pro-
duction as well as by exogenous application and intake [37–39]. MEL has a significant
effect on decreasing cholesterol absorption, causing a great reduction of the concentration
of cholesterol in membrane bilayers and in the liver [40]. It is able to cross most phys-
iological barriers, such as the blood-brain barrier [41,42], so that it may help to control
brain function [43], and it also has interesting immunotherapeutic potential in both viral
and bacterial infections [44]. MEL has been also related to the protection of the organism
from carcinogenesis and neurodegenerative disorders [32,45]. Recently, the use of MEL to
attenuate the effects of the severe acute respiratory syndrome (Covid-19 or SARS-CoV-2)
has been under debate [46], since melatonin is a well known anti-inflammatory agent and
it could be protective against viral pathogens. A comprehensive description of its functions
has been summarised [47–49]. At the microscopical level, several works have analysed
the structure and interactions of MEL with phospholipid membranes [50,51]. Both of the
experiments and simulations suggest that small solutes, such as TRP and MEL, are bound
to the phosphate and carbonyl regions of phospholipid species [52–55]. Recent studies
indicate that cellular permeation rates in the pineal gland are of the order of 1.7 µm/s, and
they can occur by pure diffusion under high temperatures and pressures [56]. However,
other studies found that the active action of glucose transporters are required for the en-
trance of MEL inside cancer cells [57], allowing for MEL to help inhibit tumor growth [58].
The safety of MEL in humans has been addressed. Andersen et al. [59] reported that, in
animal and human studies, the short term use of MEL is safe, even in extreme doses. After
long-term treatments, there have only been reported mild side effects, with none of them
being dangerous for human health. Experimental and computational work on mixtures of
CHOL and MEL at phosphatidylcholine membranes have analysed the joint effects of the
two species [60,61].

The precursors of melatonin, serotonin, and tryptophan have been thoroughly studied
from long ago. SER (also known as 5-hydroxytryptamine or 5-HT) is a biogenic amine that is
most noted for its role as a neurotransmitter, which is mainly produced by enterochromaffin
cells in the gut and also by neurons of the brain stem [62]. It was first isolated and
characterised in 1948 by Rapport et al. [63]. Serotonin was quickly identified in many
tissues, including brain, lung, kidney, platelets, and in the gastrointestinal tract. It is
thought to be a contributor to the regulation of human mood and happiness [64]. It has
been also suggested that SER also regulates the connectivity of the brain [65]. As the third
small molecule to describe here, TRP is an α-aminoacid used in the biosynthesis of proteins.
Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole,
which makes it a nonpolar aromatic amino acid. TRP is essential in humans and it is also a
precursor to the vitamin B3 and is commonly used to treat insomnia and sleep disorders,
like apnea [66,67]. TRP can act as a building block in protein biosynthesis, while proteins
perform a vast array of functions within organisms, such as catalysing metabolic reactions,
replicating DNA, responding to stimuli, providing structure to cells and organisms, and
transporting molecules from one location to another.

Our main aim here is to review and study at atomic detail the interactions and bind-
ing mechanisms between melatonin, serotonin, and tryptophan with the cell membrane,
modelled as a mixture of phospholipids and cholesterol, in aqueous ionic solution. We
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have employed two types of computational methods, molecular dynamics (MD) and well
tempered metadynamics (WTM). MD is a classical simulation tool that is able to generate a
bundle of Newtonian trajectories, one for each single particle of the system, at the atomic
level. As atoms interact through pairwise force fields, their trajectories (composed of
positions and linear momenta of all particles) are deployed and stored at regular time
intervals, in order to be analysed using tools from Statistical Mechanics [68]. MD is a
versatile method that is able to successfully reproduce a large number of microscopic
properties of a wide variety of systems, from simple atomic liquids, such as argon [69] to
molecular liquids as water [70,71], aqueous solutions at interfaces [72–76], up to complex
biophysical systems like DNA [77–79] or model cell membranes [6,80–84]. In order to
handle the problem of computing free energy landscapes in multidimensional systems,
different classes of methods have been proposed, such as quantum mechanics/molecular
mechanics [85], transition path sampling [86–92], adaptive biasing force [93], umbrella sam-
pling methods [94,95], density functional theory molecular dynamics [96], or calculations
of potentials of mean force [97] based on reversible work methods [98]. In this work, we
have employed reversible work and WTM, a method that is able to efficiently explore free
energy surfaces of complex systems while using multiple reaction coordinates what has
been revealed to be very successful [99] for a wide variety of complex systems [100–104].
Section 3 reports the technical characteristics of all simulations.

2. Results and Discussion
2.1. Structural Properties of the Membranes

The structural characteristics of the membranes and the local distributions of atomic
species are the first group of properties to be analysed. To do so, we have sketched the
detailed atomic structures of the three small molecules, the two phospholipids composing
the membranes (DMPC, DPPC) and CHOL in Figure 1. There, the highlighted sites of
TRP are the zwitterions ‘H1’, sharing a positive charge between the three hydrogens that
are bound to ‘N1’; ‘H2’, bound to ‘N2’ and the zwitterions ‘O1’ and ‘O2’, bound to ‘C1’
and sharing a negative charge. In SER, we highlight ‘H1’, ‘H4’, and ‘O’, and, for MEL, we
will keep special attention into ‘O1’, ‘O2’, ‘H15’, and ‘H16’. Finally, the sites ‘O1’ and ‘O2’
sharing the negative charge and oxygen atoms ‘O6’, ‘O8’ will be considered for DPPC and
DMPC and the hydroxilic OH pair for CHOL.

A common test in computer simulations of cell membranes is the comparison of the
area per lipid and thickness of the membrane with experimental data from scattering
density profiles [105]. We have monitored the surface area per lipid A when considering
the total surface along the XY plane (plane parallel to the bilayer surface) that is divided
by the number of lipids Nl plus the number of cholesterol molecules Nchol. in one lamellar
layer [106], as defined in Equation (1):

A =
Lx × Ly

Nl + Nchol
, (1)

where Lx and Ly are the length of the simulation box along X-axis and Y-axis, respectively.
Z-axis is the (instantaneous) normal direction to the surface of the bilayer, set along plane
XY. Fluctuations in the thickness of the membrane are related to the effect of cholesterol on
the rigidity of the membrane and its capability to allow the passing of species in and out of
the cell. In this work, we defined the thickness ∆z as the distance between the phosphate
groups of the lipids at the two sides of the membrane. The area per lipid and thickness
along the last 500 ns of each simulation have been computed (see Figure 2) and Table 1
reports the average values.
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Figure 1. Atomic structures of melatonin, serotonin, tryptophan, dipalmitoylphosphatidylcholine
(DPPC), dimyristoylphosphatidylcholine (DMPC), and cholesterol. Backbone hydrogens are not
explicitly shown. The highlighted labels will be referred in the text.

Table 1. The averaged area per lipid (A) and thickness (∆z) of the anionic membrane for the systems studied in this work.
Estimated errors in parenthesis. Data are partially taken from Refs. [107,108].

Small Molecule and Cholesterol Percentage Phospholipid Species A (nm2) ∆z (nm)

TRP-0% DPPC 0.614 (0.008) 3.97 (0.05)
TRP-30% DPPC 0.408 (0.002) 4.89 (0.04)
TRP-50% DPPC 0.401 (0.002) 4. 78 (0.03)
SER-0% DPPC 0.613 (0.015) 3.83 (0.05)
MEL-0% DMPC 0.618 (0.005) 3.49 (0.06)

MEL-30% DMPC 0.421 (0.007) 4.43 (0.03)
MEL-50% DMPC 0.402 (0.008) 4.47 (0.03)
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Figure 2. Area per lipid of systems with different cholesterol contents: 0%, 30%, and 50% as a function
of simulation time.

The area per lipid decreases as cholesterol concentration increases: this is a well known
trend, as will see below. We obtained a value of around 0.61 nm2 for a cholesterol-free
system and smaller values down to 0.40–0.42 nm2 when cholesterol has been incorporated.
In all cases, the area per lipid is practically independent of the small molecule that is
imbedded in the membrane, and it has little influence of the main type of phospholipid.
These results are in excellent agreement with experimental data [109,110], where the value
for pure DMPC is of about 0.6 nm2 at 303 K. Further, and according to Nagle et al. [1],
values of A of pure DMPC membranes can be obtained from multiple methods (neutron
scattering, X-ray and NMR) and they have been reported to be between 0.59 and 0.62 nm2

at the liquid crystal phase. In the case of DPPC, the best estimations were of between
0.48 and 0.52 nm2 in the gel phase (293 K) and 0.64 nm2 in the liquid phase. These results
are also in overall good agreement with other computational data in a wide variety of
thermodynamical conditions [11,109,111–113], where the values for pure DPPC ranged
between 0.50 and 0.63 nm2 and the trend of decreasing areas for increasing cholesterol
percentages was clearly reported. The huge change that is produced at 30% cholesterol
concentration is consistent with the fact that phosphatidylcholine membranes experience
a phase transition liquid disordered (cholesterol-free system) to liquid ordered phase
(systems of cholesterol 30% and 50%) [114,115].

The thickness of the membranes are in good agreement with those that were reported
by Kucerka et al. [110] by means of X-ray and neutron scattering. The reported value was
of 3.67 nm at 303 K for the DMPC membrane at 0% cholesterol. From the results that are
reported in Table 1, we obtain values around 3.5–4 nm for pure bilayers and of 4.4–4.9 nm
when cholesterol is considered. We observe a tendency to larger bilayer thickness for
increasing cholesterol concentration. Given the reduction of the area per lipid at high
cholesterol percentages, we can conclude that cholesterol favours the compression of the
structure of the bilayer membrane. This feature can increase the rigidity of the membrane
and, by extending the tails of the lipids, give larger bilayer thickness. Such an increase of
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the rigidity of the membrane was observed from both experimental and computational
sides [60,61] in MEL-CHOL mixtures nearby phosphatidylcholine bilayers. According to
these studies, the effect of MEL reducing the thickness of the membrane and enhancing its
fluidity was partially compensated by the condensating effect of cholesterol.

2.2. Preferential Localisations of the Small Molecules at the Interfaces of Phospholipid Membranes:
Atomic Radial Distribution Functions

Each of the three small molecules considered in the present work has been simulated
for long MD trajectories of hundreds of nanoseconds. We have monitored their positions
and velocities and obtained structural, energetic, and dynamical information. In this
section, we will focus our attention on the local structure of the probes when embedded in
the membrane. As a general fact, we have observed that all three selected species show a
strong tendency to be continuously adsorbed at the interface of the membrane during long
periods of the order of 10 ns. In the remaining time, the small molecules move away to
be solvated by the ionic solution surrounding the membrane. As an example, in Figure 3
we report the evolution in time (window of 60 ns) of the position of the center of mass of
melatonin when adsorbed at a DMPC-cholesterol membrane.

In Figure 3, we can observe that the influence of cholesterol is of paramount impor-
tance: when the concentration of cholesterol in the membrane reaches 50% of all lipids,
MEL can easily shift between the interface of the membrane and the solvating aqueous
ionic solution, but, at lower concentrations, the small molecule is likely inside the mem-
brane during the whole time span considered. This indicates that moderate changes of
cholesterol concentration may induce some specific organic probes to retreat from the
inside of cellular membranes to the outer regions and remain outside the cell. This might
have strong implications in melatonin delivery. The relationships between MEL and CHOL
and their interactions have been studied since long time ago [40,60,61], but the knowledge
of their effects are still quite elusive.
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0 20 40 0 20 40 60

(a) (b) (c)

Simulation time (ns)

z 
(Å

)

Figure 3. Z-axis location of the center of mass of MEL in a DMPC lipid membrane with different
cholesterol contents as a function of simulation time. The green dashed line indicates the geometrical
center of the bilayer membrane. Data partially taken from Ref. [108]. (a) 0% cholesterol, (b) 30%
cholesterol and (c) 50% cholesterol. Red diamonds indicate the position of MEL and blue circles
indicate the position of phosphorous atoms of DMPC lipids.
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Because the computation of radial distribution functions (RDF) is the best way to
investigate atom–atom local structures, we have computed a series of specific RDF in order
to have an overview for TRP and MEL. We define the RDF for an atomic pair composed by
particles ‘1’ and ‘2’ as g12(r), and it is given by:

g12(r) =
V 〈n2(r)〉

4 N2 πr2 ∆r
, (2)

where n2(r) is the number of atoms of species ‘2’ surrounding a given atom of species
‘1’ inside a spherical shell of width ∆r. V stands for the total volume and N2 is the total
number of particles of species ‘2’. In the case of TRP, we have considered the partial RDF
that is reported in Figure 4, whereas, for MEL, we will analyse the RDF that is presented in
Figure 5.

From the data that are reported in Figure 4, we can observe that TRP stays bound to
the inner part of the membrane during long periods of time, according to the time scale of
our simulations, in good agreement with the results indicating that, in a cholesterol-free
DOPC bilayer membrane, TRP is preferentially located in the interfacial region [55]. In
this work, we have observed that the average continuous lifetime of TRP at the interface
of the DPPC bilayer is of the order of 10 ns (data not shown). From Figure 4, hydrogen
bond (HB) connections between sites ‘H1’ and ‘H2’ of TRP and DPPC sites ‘O2’ and ‘O8’
(labels according Figure 1) have been found. HB are very short, since the maxima of the
g(r) related to ‘H1’ hydrogens in TRP are located around 1.7 Å for ‘O2’ and around
1.75 Å for ‘O8’ of DPPC. Accordingly, the presence of cholesterol reduces ‘H1-O2’ binding,
but enhances the ‘H1-O8’ one. As a general fact, the presence of cholesterol increases
the length of HB, but also making such bonds stronger. This indicates that the influence
of the cholesterol in the TRP-DPPC binding is a major effect. Interestingly, ‘H2’-DPPC
binding was observed in all of the analysed setups, but with maxima found at larger
distances (1.9–2.0 Å). Again, the presence of cholesterol showed a major influence on the
characteristics of hydrogen bonding.

Figure 5 reports the structural results for MEL. All RDF show fluctuating profiles,
especially at distances that are larger than r = 3 Å and beyond (higher order coordination
shells). There is a clear first coordination shell in all cases, located around 1.8–2.0 Å, due
to HB between MEL and the remaining species, such as in the TRP case. The largest
maximum of all RDF is the one for MEL-CHOL association (not shown here), which is
centered at 1.9 Å when the concentration of cholesterol is of 30%. Choi et al. reported
interactions of MEL-CHOL in DPPC bilayers [61], but at finite melatonin concentration.
In the remaining cases, HB lengths are around 1.9 Å and they were between both ‘H15’
and ‘H16’ of MEL and DMPC sites ‘O1’ (or ‘O2’, since both of the sites are sharing the
negative charge of the zwitterion). In a similar fashion, MEL can also form HB between
both ‘H15’ and ‘H16’ with the DMPC’s sites ‘O6’ (or ‘O8’) for all three percentages of
cholesterol. The present findings are in good agreement with the experimental data from
Severcan et al. [50] that were obtained by Fourier transform infrared spectroscopy, who
observed hydrogen bonding connections between the N-H group of the furanose ring of
MEL (‘H16’ in this work) and the carbonyl (C=O) and phosphate (PO4) groups in DPPC
membranes. Our results indicate HB between ‘H15’ and ‘H16’ of MEL with DMPC’s
phosphate group (‘O1’) as well as with the more internal carbonyl groups (‘O6’ and ‘O8’).
The previously unobserved hydrogen bonds of ‘H15’ with the two well known acceptor
groups in the phosphatidylcholines indicated above are responsible for the absorption of
MEL into the membrane deeper than TRP, with the two selected donors (‘H15’ and ’H16’),
together with the ‘H15-O Chol.’ bridges. These findings are in excellent agreement with the
results that were reported by Drolle et al. [60] by means of small angle neutron diffraction
and MD simulations.
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Figure 4. Radial distribution functions for TRP with DPPC (charged sites ‘H1’, ‘H2’, ‘O2’, and ‘O8’,
see Figure 1): H1TRP-O2 (top left), H1TRP-O8 (bottom left), H2TRP-O2 (top right), and H2TRP-O8
(bottom right). Data are partially taken from Ref. [107].
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Figure 5. Selected radial distribution functions for hydrogens of MEL (‘H15’ and ‘H16’) with DMPC
(‘O2’ (representing ‘O1&O2’) and ‘O6’ (representing ‘O6’ and ‘O8’). The labels as in Figure 1. Data
are partially taken from Ref. [108].
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2.3. Orientational Distributions of Melatonin

Several previous studies have shown that the orientations of drugs on membranes sig-
nificantly impact their function in cells [116–120]. In the present work, we have computed
the principal orientations of MEL through the definition of three different dihedral angles.
We have observed that, in all cases, two preferential orientations arise, since the averaged
angular distributions of MEL are centered around two well defined angular values, which
we call "folded” and "extended” configurations of MEL, found at all cholesterol concentra-
tions. The dihedral angle, which has a better distribution regarding its fluctuations around
mean values, is the angle Ψ that is represented in Figure 6.

Figure 6. Two principal configurations of MEL: folded (left) and extended (right), indicated by the
dihedral (torsional) angle Ψ. The atoms forming the melatonin molecule are: carbon (cyan), oxygen
(red), hydrogen (white), and nitrogen (blue).

The torsional angle considered here is related to the nitrogen atom labelled ‘N1’ in
Figure 1, namely the nitrogen chemically bound to the hydrogen labelled ‘H15’. For this
angle Ψ, after analysing 100 ns of equilibrated trajectories (production runs), we found
averaged values that corresponded to 81 ± 10◦, (folded) and 170 ± 23◦, (extended), as
shown in Figure 7. Further, from the distributions reported there we can observe that Ψ is
neatly defined and it reaches nearly the same mean value, regardless of the concentration
of cholesterol of the system. Interestingly, we find that the extended configuration of MEL
is most favoured in the case of the highest concentration 50% (green triangles), which
suggests that introducing cholesterol into the system could help MEL change from its
folded to its extended configuration more easily through hydrogen-bonding between MEL-
DMPC and MEL-cholesterol. In addition, according to this, Ψ is an excellent candidate for
being used as a collective variable in metadynamics calculations [121,122] of free energy
landscapes for MEL binding in biomembranes, as we report in Section 2.4.
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Figure 7. Angular distributions for the selected dihedral angle Ψ as a function of simulation time.
Percentages of cholesterol are: 0% (black circles), 30% (red squares), and 50% (green triangles). The
dashed lines indicate average values and are a guide for the eye.

2.4. Free Energy Profiles of Small Molecules and Free Energy Hypersurfaces of Melatonin Binding

Once we have established preferential locations and angular distributions of the
small molecules, if assuming some of these coordinates as good candidates for collective
variables, we are ready to use the WTM technique to obtain precise, quantitative values
of the free energy barriers that need to be surmounted by the small molecules to move
throughout the system, mainly exchanging positions between the interfacial regions and
the bulk like aqueous regions of the system. Computationally speaking, WTM is a very
expensive method that requires very long trajectories, so that the target subsystem, i.e., the
small molecule, can move in the full configurational space, visiting regions of low energy
with high probability as well as regions of high energy, being very unlikely to be accessed.
In this work, we will complement WTM with a much simpler technique, based in the
knowledge of RDF described above, namely the computation of the reversible work that is
needed for the target to move between selected regions, being indexed by one dimensional
coordinate, such as a radial distance r. The theory has been nicely described in chapter 7
of Ref. [123]. It states that we can obtain W12(r) i.e., the reversible work (sometimes also
known as potential of mean force, PMF) that is required to move two tagged particles from
infinite separation to a relative separation r from:

W12(r) = −
1
β

ln g12(r), (3)

where β = 1/(kBT) is the Boltzmann factor, kB the Boltzmann constant and T is the
temperature. W12(r) can be understood as the relative Helmholtz (canonical ensemble)
or Gibbs (isothermal-isobaric ensemble) free energy that is associated to atomic pairing.
Figure 8 reports the W(r) found for the three small molecules and Table 2 reports the
quantitative estimations of the main energy barriers.
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Figure 8. Reversible work W(r) (in kBT) for DPPC-small molecules: TRP, SER and MEL. In the
present system 1 kBT∼2.7 kJ/mol. Hydrogen and oxygens of DPPC are indicated with same labels,
as described in Figure 1. Data are partially taken from Ref. [98].

Reversible work calculations can only give us a rough approach to the size of real
barriers, since it is based in the use of the interparticle distance r as the only reaction coordi-
nate, which is known to produce some underestimation [97]. However, given that accurate
reaction coordinates are usually unknown, very hard to obtain, and multidimensional,
W(r) is a reasonable way to estimate the order of magnitude of the free energy barriers. The
sata reported in Table 2 and Figure 8 reveal to us that the highest barrier corresponds to the
pairing of ‘H1’ of TRP with ‘O2’ of DPPC. We have found that all small molecules are able
to establish HB with ‘O2’ and also with the site ‘O8’ of DPPC, with the latter being located
deeper in the membrane (see Figure 1). Conversely, we did not find bindings between ‘H15’
site of MEL and ‘O2’ site of DPPC. The position of maxima of the first barrier are mostly
centered around 2.45 Å for small molecule-’O2’ binding, whereas barriers of ligand ‘H4’ of
serotonin that are associated to the ‘O8’ sites are centered around 2.75 Å. In the case of SER,
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only a first minimum is clearly found, which indicates that SER is normally bound to the
plasma membrane and it does not move to the solvent bulk.

The binding of ‘O2’ in DPPC to TRP is located at 1.75 Å, corresponding to the first
minimum of the PMF between TRP and DPPC, which is of the order of the typical HB
distance in water. Nevertheless, stable positions for ‘O8’ sites of DPPC are found between
1.7 and 2 Å, a remarkable wider distance. We can compare these values with the barrier
for TRP (attached to a polyleucine α-helix) inside a DPPC membrane of 12 kJ/mol [52]
or the barrier of the order of 16 kJ/mol found for TRP in a dioleoylphosphatidylcholine
bilayer membrane [55]. Finally, the agreement of the barriers reported in the present work
(Table 2) with other neurotransmitters, such as glycine, acetylcholine, or glutamate, of
around 2–5 kJ/mol when it is located close to the lipid glycerol backbone [124], is also
quite remarkable.

Table 2. Free energy barriers ∆F (in kJ/mol) for the binding of small molecules to DPPC.

Probe (Active Site) O2-DPPC O8-DPPC

H1 TRP 11.29 7.53
H2 TRP 8.02 4.18

H1 SER 7.95 6.53
H4 SER 7.45 7.87

H15 MEL - 4.85
H16 MEL 8.03 1.97

One way of getting much more precise free energy estimations is through
methods operating with multidimensional reaction coordinates. One of best methods
is well tempered metadynamics, although it is a very expensive computational tool, as we
will explain in Section 3.2. As a specific example, we have applied WTM to the calculation
of the hypersurface of free energy for the system that is composed by MEL and DMPC, at
the three cholesterol concentrations of 0%, 30%, and 50% that are described in Section 3.1.
The WTM specifications have been reported with full details in Section 3.2. We need to
define several specific collective variables (CV) that are able to meaningfully describe
characteristic configurations of MEL in order to compute the three sets of two dimensional
(2D) well tempered metadynamics simulations. The results shown Figure A2 give us an
indication of the convergence of WTM. To achieve this goal, we had to run trajectories of
1400 ns. These trajectories followed from the MD production runs that were employed to
obtain structural and dynamical information.

Figure 9 shows the resulting 2D free energy surfaces (FES) of MEL bound to DMPC
membranes and they correspond to Gibbs free energy calculations. Each state has been
indexed by two CV: (1) the z distance between the center of mass of MEL and the
center of the membrane (z = 0); (2) the torsional angle Ψ defined and analysed in
Section 2.3. The inspection of Figure 9 shows that regions with clear minima are present
in the FES in all cases. The main features are the global minima of the FES located be-
tween z ∈ [0.7, 3] nm and around two distinctive values for the dihedral angle, namely
those that are around |Ψ| ∼ [70◦, 180◦]. Such orientations are in excellent agreement with
the average values of Ψ that were obtained from ordinary MD simulations (see Figure 7)
that correspond to the two “folded” and “extended” geometries of melatonin previously
reported.

The 2D free energy landscapes reveal that the most favourable stable states of mela-
tonin binding to the membrane (basins A,B,C,D) correspond to z-distances around 0.8 nm at
the cholesterol-free system, whereas such a distance tends to significantly increase around
to 1.3 nm for the 3% cholesterol concentration and up to 2.3 nm when cholesterol reaches
50%. As a general fact, the 2D surfaces that are shown in Figure 9 correspond to contour
plots with values being referred to a global zero. The zero of each 2D plot has been set at
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the highest free energy value of all, in our case corresponding to locations at the computed
maxima of the coordinate z.

According to the CV1, MEL is preferentially located at the interface of the DMPC-
cholesterol bilayer (regions with 0.8 < z < 3.0 nm). The locations of MEL outside the
interface and far enough of lipid headgroups (z > 4.3 nm) show very larger free energies
and they cannot be considered to be stable states of the system. Those regions will be
considered as the “bulk”, i.e., the region containing the electrolyte solution surrounding
the membrane. When considering the information revealed by CV2, we can distinguish
two sets of minima: (1) for |Ψ| = 67◦ (basins B and C) and (2) for |Ψ| = 180◦ (basins A
and D. These minima are related to the two preferential configurations of MEL close to
a DMPC-cholesterol bilayer (folded, extended) indicated above around 80 and 170◦ (see
Section 2.3).

We collected the data extracted from Figure 9 to estimate the main free energy barriers
for the main configurational changes on MEL in the quantitative side. Table 3 reports the
values.

Table 3. Free energy barriers ∆F (in kJ/mol) for the main transitions of a DMPC-bound MEL. Folded to extended corresponds
to transitions between basins A and B or between C and D. Internal regions correspond to z ∼ 0.

Cholesterol Percentage Folded-Extended Interface-Bulk Interface to Internal Regions

0 % 18.8 25.3 40.2
30 % 19.7 14.1 50.7
50 % 17.6 9.1 55.5

Our findings have revealed a rather wide range of absolute free energies, which are
in good agreement with the range that was reported by Jämbeck and Lyubartsev [125]
for small molecules (ibuprofen, aspirin, and diclofenac) at the surroundings of lipid bi-
layers, of the order of free energy ranges up to 70 kJ/mol and barriers around 40 kJ/mol.
For the sake of comparison, we should remark that the barriers of 2–10 kJ/mol reported
in Table 2 obtained from the PMF of Figure 8 were related to the formation and break-
ing of HB, when the small molecules were located inside the interfacial region, regard-
less of its orientation. However, free energy barriers of orientational changes or those
that are related to large displacements of MEL to the center of the membrane or to
the extracellular bulk are much larger. For instance (see Table 3), the free energy that
is required to exchange between folded and extended MEL configurations is very sta-
ble, around 15–20 kJ/mol for all cholesterol concentrations. Florio et al. [126] using
a combination of several fluorescence and spectroscopic techniques, found the confor-
mational preferences of an isolated MEL molecule under molecular beams. These au-
thors found MEL three trans and two cis conformers showing free energy gaps of ap-
proximately 12.5 kJ/mol, in quantitative agreement with the values reported here for
orientational changes.
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Figure 9. Two-dimensional (2D) free energy landscapes F(Ψ, z) (in kJ/mol) in the cholesterol-free
case. Four stable state basins (A,B,C,D) are indicated.
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However, the barrier that is to be surmounted by MEL to move from the interface of
the membrane to the extracellular fluid is strongly dependent on cholesterol concentration.
We observed that it decreases with larger amounts of cholesterol, between 25 kJ/mol
at the cholesterol-free case to around 10 kJ/mol for the 50% concentration. Finally, the
probability for MEL to access the central, hydrophobic regions of the membrane is scarce,
since it will require surpassing free energy barriers of more than 40 kJ/mol. This will
make it very difficult to observe transmembrane crossings in the simulated scale of 1 µs.
In a recent work conducted by Wang and coworkers [127], small solutes, such as glycerol,
caffeine, isopropanol, or ethosuximide, were simulated nearby a model cell membrane.
These authors found that, in order to observe transmembrane crossings of such small
solutes in the time length of a simulation at the atomic level of description, they needed
to run trajectories of 10 µs at low temperatures (310 to 330 K) or, alternatively, raise the
temperatures to more than 400 K (for simulation times of 1 µs). In our case, we did not
record any transition of MEL between the two sides of the DMPC membrane along the
simulated trajectory.

2.5. Diffusion Coefficients of Small Molecules: Tryptophan and Melatonin

Microscopic translational dynamics of tryptophan and melatonin have been consid-
ered. We have evaluated the mean square displacement (MSD) of the carbon ‘C2’ in TRP
(see Figure 1) and of the center of mass of MEL. From the long time slopes of both MSD,
we obtained the corresponding self diffusion coefficients D through the Einstein formula
of Brownian motion:

D = lim
t→∞

< |~ri(t)−~ri(0)|2 >

2 d ∆t
, (4)

where~ri(t) is the instantaneous position of particle i. In this general procedure, the spatial
dimension of the diffusion regions d is considered. TRP and MEL showed lateral like
diffusion (d = 2). Table 4 summarises the results.

Table 4. Self diffusion coefficients D (in 10−7 cm2/s) of TRP and MEL in systems with different
cholesterol percentages. The estimated errors are in parenthesis.

Small Molecule 0% CHOL 30% CHOL 50% CHOL

TRP 3.48(0.80) 2.91(0.35) 14.0(0.2)
MEL 1.1(0.4) 3.9(0.6) 4.1(0.9)

The main finding is that self-diffusion coefficients D for TRP (Table 4) are between
3–14 × 10−7 cm2/s, which, even within the same order of magnitude, are significantly
larger than those of the diffusion of DMPC molecules [6] (0.6 × 10−7 in the absence of
cholesterol). The main trend is that D increases for rising cholesterol concentrations. Over-
all, we find that the mobility of TRP is significantly higher than that of DMPC. Nevertheless,
the effect of temperature is remarkable here, since, at complementary simulations at 310 K,
TRP diffusion was of about 2 × 10−7, i.e., being significantly slower given the gel like state
of the membrane in such a case.

In the case of MEL, D also shows a tendency to increase when cholesterol is mixed
with DMPC, regardless of its concentration. In Table 4, at 30% cholesterol, the value of D
for MEL is six times larger than the value of D of DMPC molecules in pure DMPC bilayer
membrane systems [6]. This fact would suggest that its mechanisms of diffusion may be
similar to those of an individual particle (such as in Fickian diffusion) and qualitatively
different of those of lipids, whose diffusion was observed to occur in a sort of collective
way, being associated in local groups of a few units (around 5–10 units) [6].
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3. Methods
3.1. Molecular Dynamics

We have performed seven independent series of MD simulations for TRP, SER, and
MEL in different environments (DMPC, DPPC, and different concentrations of CHOL,
namely: 0%, 30%, and 50% for TRP and MEL, whereas, for SER, only the cholesterol-
free membrane was simulated. Each system contains a total of 204 lipid and/or choles-
terol molecules that were fully solvated by ∼5000–10,000 TIP3P water molecules and
17–21 sodium chloride pairs at the human body concentration (0.15 M), yielding a system
size of about 40,000–60,000 atoms. Table 5 sumarises the characteristics of all simulations.

Table 5. Characteristics of the molecular dynamics (MD) simulation runs performed in this work. The lengths of simulations
include equilibration and production runs.

Phospholipids Small Molecule Waters Total Length (ns) Temperature (K) Ion Pairs

204 DPPC TRP 4962 800 323.15 17 Na+ + 17 Cl−

204 DPPC SER 4962 800 323.15 17 Na+ + 17 Cl−

204 DMPC MEL 10250 800 303.15 21 Na+ + 21 Cl−

Our MD inputs were created with the CHARMM-GUI web-based tool [128]. All
of the systems were simulated at the the isobaric-isothermal ensemble. i.e., at constant
number of particles (N), pressure (P), and temperature (T) conditions, with equilibration
periods for all simulations being more than 200 ns. After equilibration, we recorded
statistically meaningful trajectories of more than 600 ns. A typical size of the system was
of 80 Å× 80 Å× 81 Å. The simulation time step was of 2 fs in all cases. Given its ability to
reproduce area per lipid of DMPC and DPPC in excellent agreement with experimental
data, the CHARMM36 force field [129,130] was used. All of the bonds involving hydrogens
were fixed to constant length, allowing for fluctuations of bond distances and all sorts of
angles for the remaining atoms. Van der Waals interactions were cut off at 12 Å with a
smooth switching function starting at 10 Å. Long ranged electrostatic forces were taken
into account by means of the particle mesh Ewald method [131], with a grid space of about
1 Å and updated every time step. The periodic boundary conditions were considered in
each spatial direction.

3.2. Well Tempered Metadynamics

As we pointed out above, obtaining free energy profiles and estimating the height
of the main barriers between stable states is a very difficult task in condensed matter
systems [132]. In the present work, in Section 2.4 we have presented two possible pathways
to do the job: (1) using a direct method that is based on the reversible work theorem, but
knowing that it is, at its best, a first approach to the real barriers and (2) employing a more
sophisticated tool, called “metadynamics”, which, given a well chosen set of a few reaction
coordinates (the collective variables), is able to provide a much more exact picture of the
free energy hypersurface. Huber et al. [133] and Grubmüller [134] initially proposed the
method and it was developed later on by Laio and Parrinello [99,121] as a method to explore
multidimensional free energy surfaces as a function of a a priori unknown CV. Given some
deficiencies of the original method, well tempered metadynamics [122,135] was introduced.
In the present work, we have run 1.4 µs well-tempered metadynamics simulations in order
to obtain Gibbs free energies of the binding states of MEL at phospholipid membrane
surfaces that were made by DMPC lipids and CHOL in sodium chloride aqueous solution.
Starting from the long trajectories generated by unbiased MD simulations for MEL-DMPC,
we could make a reliable guess of two potentially appropriate CV. All of the metadynamics
simulations were carried out by means of the PLUMED2 plugin [136,137] within the joint
GROMACS/2018.3-plumed tool and they were performed in the NPT ensemble. Table 6
reports the particular details of the WTM simulations. The ussual periodic boundary
conditions in all directions of space were considered.
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Table 6. WTM simulation parameters.

Parameter 0% 30% 50%

Gaussian width of CV1 [nm] 0.30 0.30 0.25
Gaussian width of CV2 [degrees] 20 20 20
Starting (Gaussian) hill [kJ/mol] 1.0 1.0 1.0

Deposition stride [ps] 1 1 1
Bias factor 10 10 20

Simulation time [ns] 1100 1400 1400

4. Conclusions

The interactions of some small molecules with human cells are undoubtedly a relevant
field of research. In particular, the hormone melatonin has an important role in the
treatment of a wide variety of diseases and problems that are related to sleep. It works as
a regulator of circadian rhythms and as an antioxidative. Further, its precursor serotonin
is a neurotransmitter playing a key role in a variety of physiological processes and in the
regulation of mood and cognitive learning. Serotonin is synthesised by the body from
its precursor, the essential aminoacid tryptophan. Tryptophan is a zwitterion, with a
protonated amino group (NH3+) and a deprotonated carboxylic acid (COO−), and it is
used as an antidepressant. In the present work, we are reviewing a series of MD and
WTM simulations of different lipid bilayer membranes in an aqueous ionic solution of
NaCl with embedded small molecules. The calculations have been performed using the
CHARMM36 force field. Among them, cholesterol at two concentrations (30% and 50%)
has been considered together with the cholesterol-free reference systems in order to explore
the influence of CHOL concentrations on the properties of the small molecules.

In a preliminary study on the adsorption of tryptophan at a DPPC bilayer membrane
at 310.15 K (gel phase) [138], we observed a strong first coordination shell for TRP-water
and TRP-DPPC pairs. In this study, we focussed in the liquid phase and only found relevant
changes in the local structure and dynamics of TRP for cholesterol concentrations above
30%. TRP-DPPC binding involved coordination shells for the different oxygen sites of
DPPC that are able to associate (‘O2’ and ‘O8’) versus the two tagged hydrogens (‘H1’ and
‘H2’) in TRP. Additionally, the distribution functions of TRP-CHOL revealed very stable
hydrogen bonding. TRP is able to establish strong interactions with all solvating particles
(water, DPPC, and CHOL), including a sort of double bridge between DPPC and cholesterol
species. Typical HB distances have been found to be around 1.7–2.0 Å, which is in good
agreement with experimental data [139]. Finally, the self diffusion coefficients of TRP are
of the order of 10−7 cm2/s, being strongly dependent of cholesterol’s concentration.

In the case of melatonin, we have simulated its behavior when embedded in a choles-
terol rich DMPC membrane at 303 K and 1 atm. Our interest was firstly focused on the
local structure and angular distributions of MEL. In a similar fashion as in the case of TRP,
strong hydrogen bonds between MEL-DMPC and MEL-CHOL have been found. The most
important structures of MEL have been observed for two angular configurations: “folded”
and “extended”. Using a particular dihedral angle (Ψ), we observed two preferential
values. The angle Ψ was revealed to potentially act as a reliable reaction coordinate, since
two neat angular distributions around∼81◦ and∼170◦ were clearly distinguished. We also
observed that introducing cholesterol into the system can favour MEL to exchange between
extended and folded configurations. Again, the self diffusion coefficient of MEL was found
to be of the order of 10−7 cm2/s, although, in this case, with a very mild dependence on
cholesterol’s concentration.

Free energy barriers for serotonin, melatonin, and tryptophan at 323.15 K and 1 atm
have been analysed using the reversible work theorem, which provides us a simple way
to estimate the height of the barriers that are related to the interatomic distances. These
features will be directly related to the formation and breaking of hydrogen-bonds. We
have found marked first and second coordination shells that correspond to two minima of



Int. J. Mol. Sci. 2021, 22, 2842 18 of 25

the PMF, with energy barriers for TRP-DPPC of the order of 10 kJ/mol. Most remarkable
have been the binding between hydrogen ‘H1’ of TRP and oxygens ‘O2’ and ‘O8’ of
DPPC. In the case of serotonin, we have found it to be a molecule strongly anchored at
the membrane unlike to be solvated by water. Interestingly, melatonin has revealed to be
able to interact both with water and DPPC, still showing moderately strong free energy
barriers. In order to get more precise information, we have conducted well-tempered
metadynamics simulations, and obtained 2D free energy landscapes for MEL binding to
the DMPC-CHOL membranes. Two CVs have been considered: a dihedral angle Ψ and
the distance z between the center of mass of MEL and the center of the lipid bilayer (set at
z = 0). From our results, we have found that MEL is usually bound to the external side
of the membrane, at distances z ∼1–2 nm and in two main configurations with Ψ = 70◦

(folded) and 180◦ (extended), with an energetic cost for the exchange between the two
conformations of about 15–20 kJ/mol. After CHOL is introduced into the system, it pushes
MEL to escape outside the interfacial region of the membrane and move away until it
is fully solvated by the aqueous ionic solution. The energetic cost for MEL to leave the
interface of the membrane towards the water bulk (z-distances around 4 nm) has been
estimated at ∼10–25 kJ/mol. A very uncommon situation in our simulations was that of
MEL accessing the center of the membrane, an energetically expensive process (free energy
barriers of 40 kJ/mol). We believe that the findings that are presented in this work could
be of practical use in two ways: (1) for the design of new reaction coordinates in similar
systems of small molecules of biochemical interest, such as amino acids, neurotransmitters,
drugs, or hormones and (2) from a more general perspective, to contribute the unveiling
of the microscopic interactions of small molecules with cell membranes and the key role
that is played by cholesterol in the properties of such molecules. All of this can lead to
advances in the research of new pharmaceutical compounds and to a better understanding
of the currently available ones.
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Appendix A. Supporting Information

Appendix A.1. Convergence of MD Simulations

Here we can see how full convergence is obtained for the two relevant RDF, related
to TRP-water and TRP-DPPC binding. After 50 ns (initial setup + full equilibration) and
100 ns (50 ns of production) the results are qualitatively similar but not fully converged
yet, but when we extend to 120 ns, the results are virtually the same as those of 100 ns.
Remarkably, the TRP-water structures quickly converged, because of the large amount
of statistics (+5000 waters, stable hydration shells of TRP). This show that 100 ns is a
reasonable length to achieve fully equilibrated results in the present case.
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Figure A1. Convergence of MD simulations through RDF profiles as a function of simulation time
for the production run of TRP in the DPPC and CHOL model membrane.

Appendix A.2. Convergence of WTM Simulations

Finally, to further evaluate the convergence of the metadynamics simulations, we
reported the time cumulative average of 1D free energy profiles as defined in a previous
work (see Formula S2 in Ref. [140]), i.e., averaging the two leaflets and projecting onto
(integrating out) the alternative CV in a range larger than 1 microsecond in all cases. We
have taken the case of 30% concentration of CHOL as an example. From the results of
Figure A2, we can see that after long cumulative time lengths, the differences between a
profile and the one immediately before are very small (up to 2.5 kJ/mol) and lead us to
fully converged free energies for the two CV considered in the present study.
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Figure A2. Time cumulative free energy profiles at the 30% cholesterol system. Bottom: CV1,
top: CV2.
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